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A SPECTRAL CHARACTERIZATION OF THE 
BEHAVIOR OF DISCRETE TIME AR-REPRESENTATIONS 
OVER A FINITE TIME INTERVAL 

E.N. ANTONIOU, A . I .G . VARDULAKIS AND N.P. KARAMPETAKIS 

In this paper we investigate the behavior of the discrete time AR (Auto Regressive) rep
resentations over a finite time interval, in terms of the finite and infinite spectral structure 
of the polynomial matrix involved in the AR-equation. A boundary mapping equation and 
a closed formula for the determination of the solution, in terms of the boundary conditions, 
are also gived. 

1. INTRODUCTION 

The class of discrete time descriptor systems has been the subject of several studies 
in the recent years (see for example [1, 2, 3, 4, 5, 6]). The main reason for this is that 
descriptor equations naturally represent a very wide class of physical, economic or 
social systems. One of the most interesting features of discrete time singular systems 
is without doubt their non causal behavior, while their counterpart in continuous 
time exhibit impulsive behavior. 

However, descriptor systems can be considered as a special - first order case 
of a more general Auto Regressive Moving Average (ARMA) multivariable model 
and thus the study of this more general case can be proved to be very important. 
Such models (known also as polynomial matrix descriptions or PMDs) have been 
extensively studied in the continuous time case by several authors. In this note 
we investigate some structural properties of the discrete time autoregressive (AR)-
representation, as a first step towards the generalization of the descriptor systems 
theory to the higher order case. 

Consider the discrete time AR equation 

AqXk+q + Aq-iXk+q-1 + • • . + A0Xk = 0 (1.1) 

where k = 0 ,1 ,2 , . . . , N — g, or equivalently 

A(a)xk = 0) 4 = 0 , 1 , 2 , . . . - t f - j (1.2) 

where A(a) = Aqa
q +Aq-\<rq~l + . . . + -40 G 5Rrxr[cr] is a regular polynomial matrix, 

i. e. det A(a) ^ 0 for almost every a, xk G 3ftr, k == 0 ,1 ,2 , . . . , N is a vector sequence 
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and a denotes the forward shift operator axk = xk+\. Notice that we are interested 
for the behavior of (1.2) over a specified time interval k = 0,1,2,...,IV and not 
over Z+. 

The matrix Aq is not in general invertible which means that (1.1) can not be solved 
by iterating forward, i.e. given xo, -Ci,..., xq-\ determine successively xqy xg+i, 
This is the main reason why we treat this equation as a boundary condition problem, 
where both the initial and final conditions should be given. This naturally leads to 
the restriction of the time domain to a finite interval instead of Z+ .The results of 
the present paper should be compared to [1, 2, 3, 4, 5, 6] where similar problems for 
systems in descriptor form, are treated in a similar manner. 

Finally, following the notation of [12] we define the behavior of (1.2) as 

B={xk\xke -Kr, xk satisfies (1.2)} (1.3) 

where k = 0 ,1 ,2 , . . . , IV. 

2. PRELIMINARIES — NOTATION 

The mathematical background required for this note comes mainly from [7, 8, 9, 10] 
and [11]. By 9ftmxn[cr] we denote the set o f m x n polynomial matrices with real 
coefficients and indeterminate a. A square polynomial A(a) = Aqa

q + Aq-\a
q~l + 

... + AQ G 9£rxr[cr] matrix is called regular iff det A(a) ^ 0 for almost every a. The 
(finite) eigenvalues of A(a) are defined as the roots of the equation det A(a) = 0. 
Let 

S\\a) = di*g{(a-\iT>\...)(a-\T~} 

be the local Smith form of A(a) at a = At and At is an eigenvalue of A(a)} where 
0 < m*T < m«2 < • • • < mi>- The terms (cr —At)

m'J are called the (finite) elementary 
divisors of A(a) at a = At, mtJ- j = 1,2,.. . , r are the partial multiplicities of At and 
mt = ]>^=1 rriij is the multiplicity of At. 

The dual matrix of A(a) is defined as A(a) = aqA(a'1) = A0a
q +Aiaq~l + . . . + 

Aq. The infinite elementary divisors of A(a) are the finite elementary divisors of the 
dual A(a) at a = 0. The total number of elementary divisors (finite and infinite) of 
A(a) is equal to the product r x q, where r is the dimension and q is the degree of 
A(a). 

A pair of matrices Xi G 3Jrxm*, Jt G 3Jm»xm», where Jt is in Jordan form and At is 
an eigenvalue of A(a)oi multiplicity mt is called an eigenpair of A(a) corresponding 
to A, iff 

q 

Y^AkXiJ? = 0, r a n k c o l ^ J ^ ) ^ - 1 = mt (2.1) 
*=o 

where 

colíx.I.*)^ 

Xi 
XÍJÍ 

XiJ\ ГПi — 1 
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The matrix J,- consists of Jordan blocks with sizes equal to the partial multiplicities 
of A,-. 

Let Ai,A2,...,Ap be the distinct finite eigenvalues of -4(cr), and (X,-,Jt) their 
corresponding eigenpairs. The total number of finite elementary divisors is equal to 
the determinantal degree of A(<r)> i.e. n = deg(det.<4(cr)) = Y%=i m»- The pair of 
matrices 

xF = [xux2,...,xp]exrxn (2.2) 
JF = dmg{JuJ2,...,JP}eftnxn (2.3) 

is defined as a finite spectral pair of A(a) and satisfies the following 

<i 

YJ AkXFJk
F = 0, rank col(XF JF)nll = n. (2.4) 

k=o 

An eigenpair of the dual matrix A(<r) corresponding to the eigenvalue A = 0 is 
defined as an infinite spectral pair of A(a), and satisfies the following 

9 

J ^ ^ * ^ o o J i " * = 0l rankcoUXooJoDjJI^Ai (2.5) 
fc=0 

where Xoo G ST*", J<x> G ^ x / i . 

3. MAIN RESULTS 

Consider the AR-representation (1.2) and a finite spectral pair (XFlJF) of A(<r). 
In the continuous time case, i.e. where a = gj is the differential operator instead 
of the forward shift operator, finite spectral pairs give rise to linearly independent 
solutions. A similar situation occurs in our case. We state the following theorem 

Theorem 1. If (XF,JF) is a finite (If (.Koo, Joo) is an infinite) spectral pair of 
A(<T) of dimensions r x n, n x n (r x /i, // x /i) respectively where n = deg |-4(<r)| 
(// is the multiplicity of the eigenvalue at a = oo of -4(cr)) then the columns of the 
matrix 

tfF(jfc) =XFj£, A. = 0,1,2,. . . ,JV (3.1) 

(*00(fc) = X0oJ^- f c , fc = 0 , l ,2 , . . . ,N ) (3.2) 

are linearly independent solutions of (1.2) for N > n (N > fi). 

P r o o f . Let (XFy JF) be a finite spectral pair of A(<r) . We have 

9 

A(a)XFJk
F = ^AiXpJp^ 

•=o 

= (x>xf4W(2=4)o 
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for k = 0 ,1 ,2 , . . . , IV — q and from the second equation of (2.4) it is obvious that 
the columns of XFJF

 a r e linearly independent sequences over any interval k = 
0 ,1 ,2 , . . . , IV > n. The proof of (3.2) follows similarly if we take into account (2.5). 

• 

The above theorem proves that we can form solutions of (1.2) as linear combina
tions of the columns of the matrices \I/F(A,) and ^^{k). It remains to show that the 
columns of these two matrices are enough to span the entire solution space of the 
equation over a finite interval k = 0 ,1 ,2 , . . . , IV. 

Consider equation (1.2) or equivalently the more detailed form (1.1). Then one 
can write this equation in the following form 

RN+i{A)xN+i = 0 (3.3) 

where RN+i{A) is the resultant matrix of A{a) having IV + 1 block columns 

A0 Ai ••• Aq 0 ••• 0 

0 A0 Ai ••• Aq '*. : 
RN+i(A) = 

: •• '•• '•• '•• 0 
0 ••• 0 A0 Ai ••• Aq 

(3.4) 

where RN+i{A) G ^(N-q+i)xr(N+i) a n d ^ + i = [ , T XT xT ]T e 

sftr(H+i). Obviously equations (1.2) and (1.1) are equivalent to (3.3) in the specified 
time interval k = 0 ,1 ,2 , . . . , N. 

With this simple remark and using the theory for the kernels of resultant matrices 
of a polynomial matrix, we can state the following very important 

Theorem 2. The behavior of the AR-representation (1.2) over the finite time 
interval k = 0 ,1 ,2 , . . . , IV is 

B = span[XF,Xoo]{j£ © j£~k} (3.5) 

and 
dimB = rq 

where r, q are respectively the dimension of A{a) and the maximum order of a in 
A{<r), {XF, JF) is a finite spectral pair of A{a) and {Xoo, JQO) is an infinite spectral 
pair of A{<r). 

P r o o f . Consider equation (3.3). Obviously the solution space of this equation 
is the kernel of RN+i{A). Then the behavior of (1.2) is clearly isomorphic to the 
solution space of (3.3), i.e. 

B~KevRN+i{A). (3.6) 

But from Theorem 1.1 in [10] we have as a special case that 

KerRN+i{A) = Imcol (X F J>)£ 0 8 I m c o ! ^ J^iLo- (3-7) 



A Spectral Characterization of the Behavior of Discrete Time AR-Representations . . . 559 

The dimensions of XF, JF, -YOO, JOO are r x n, n x n>r x fi and fi x fi respectively, 
where n = deg|j4(<r)| is the total number of finite elementary divisors, fi is the 
total number of infinite elementary divisors (multiplicities encountered for in both 
cases) and n + fi = rq (see [8]). Furthermore it is known [8] that the columns 
of col(XJpt/p,Xoo«/c»~*)ilo a r e linearly independent. On the other hand from the 
regularity assumption of A(<r) we have 

rank i?/y+1 (A) = (N - q + l)r 

(this is a well known result, see for example [11] exercise 4.10) and thus 

dimKer RN+i(A) = rq. (3.8) 

Obviously (3.6), (3.7) and (3.8) prove that the columns of the matrix 

[ x F ) x T O ] { 4 ©. /£-*} 

form indeed a basis of B and consequently dim/? = rq. • 

It is clear that the solution space B can be decomposed into two subspaces the one 
corresponding to the finite eigenstructure of the polynomial matrix and the other 
corresponding to the infinite one, i.e. 

B = BF © BB 

where BF = Im col(XF«/>)iI0
 a n d ## = I m co l(^oo ^ " " O ^ o ( t h e subscripts F, B 

are the initials of the words Forward and Backward) 
The first part BF gives rise to solutions moving in the forward direction of time 

and reflects the forward propagation of the initial conditions #o, #i, • • •, -Cg-i, while 
the second part BB gives solutions moving backwards in time, i.e. from 1V to 0. 

This discussion should be compared to that in [1, 2, 3]. Notice that the above de
composition of the solution space into forward and backward subspaces, corresponds 
to a maximal forward decomposition of the descriptor space in [3]. 

A very interesting problem is to determine a closed formula for the solution of 
(1.2) when boundary condition are given. The reason why we have to choose both 
initial and final conditions is obvious, after the above discussion about the behavior 
of (1.2). 

Theorem 3. Given the initial conditions vector xj = [ xT xj • • • xj__1 ]T G 

Wq and the final conditions vector xp = [ ffjv-g+i xJi-q+2 '" xIf V G 5ftr?, 
(1.2) has the unique solution 

xk = [ XFJFMF XooJg-XMoo ] \ VF ] (3.9) 

for k = 0 ,1 ,2 , . . . , 1V, iff the vectors xj} xp satisfy the compatibility boundary con
dition 

XJ 

Xғ 
6 keг Г J%-ч+1Mғ -Mғ (3.10) 
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where MF € tR**'*, MQO € ^ x r , a r e defined by 

= (coliXfJ^^ooJ^U)-1 € 3*r?xr*. Mғ 
M т о 

(3.11) 

P r o o f . Every solution #*, A: = 0,1,2,.. ., 1V of (1.2) will be a linear combination 
of the basis of B, i.e. there exists a vector ( £ 3ftr* such that 

** = [ Xғ лroo ]{J> J£-*K (3.12) 

for k = 0,1,2,..., At. Our aim is to determine C in terms of the given initial - final 
conditions. The initial conditions vector will be given by (3.12) for k = 0,1,2,... , q— 
1. Thus 

x / = col(xFJ i ,X0 0J^-«')LoC 

or equivalently 
" /„ 0 

0 JZ-1+1 XI = (3.13) 

where the matrix Q = col(XFJt
FT1,X00J^'t)^=1 in the above equation is invertible 

(see decomposable pairs in [8]). At this point it would be useful to partition C = 
[ CF COO ]T> where CF and Coo have appropriate dimensions. Now from (3.13) using 
the definition of MF) M^ in (3.11) we obtain 

CF = MFxj 

I£~í+1Coo = MooXj 

(3.14) 

Notice that (3.14) determines CF hut not Coo- Following similar lines for the final 
conditions vector we obtain 

Coo = MooXF 

J^~"+1CF = MFxF 

(3.15) 

Similarly (3.15) determines Coo but not CF- NOW using the first equations in (3.14) 
and (3.15) we obtain 

c = Cғ 
Coo 

Mғ 0 
0 Mo, 

XI 

xғ 

which in view of (3.12) gives the solution formula (3.9), and combining the second 
equations in (3.14) and (3.15) we obtain the boundary compatibility condition 

J^-"+1MF -MF 

-Moo J£-q+1M0 

which is obviously identical to (3.10). 

XJ 

xғ 

= 0 

Notice that equation (3.10) plays the role of the boundary mapping equation in [2] 
and it can be considered as a direct generalization of it. Equation (3.10) summarizes 
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the restrictions posed at both end points of the time interval by the system and with 
an appropriate choice of boundary conditions by (3.9) we can determine uniquely 
all the intermediate values of £&. 

For simplicity of notation and following similar lines with [2], we set 

Z(0,N) = 

and we prove the following 

Theorem 4. rank.Z(0, N) = rq. 

r^~q+1мғ 

" M o o 

-мғ 

J"-q+1ма 

G Wqx2rq 

P r o o f . We set 

then from (3.11) we have 

Ar = col(XFJ>-1,X0OJr,).7

=1 

Mғ 

Moo 
N = /„ 0 

0 Iа 

(3.16) 

Now, post-multiply Z(0, N) by diag{iV, N) which has obviously full rank and use 
(3.16). We have 

Z(0,N) 
N 0 
0 N 

N-q+1 

'ғ 
0 

0 
-Iа o j " - q + 1 

0 -/„ 

Obviously the matrix on the right hand side of the above equation has full row 
rank and hence 

rankZ(0,iV) = rg. (3.17) 

D 

This result should be compared to Theorem 1 in [2], where it is proved that 
a boundary mapping matrix of full rank exists if and only if the corresponding 
descriptor system is solvable and conditionable. In our case the system is obviously 
solvable, since we have already determined a solution and conditionable since we 
have proved that the boundary conditions satisfying (3.10) characterize uniquely 
the solution. However solvability and conditionability of (1.2) can be easily checked 
using rank tests as in [1], but in our case this would be trivial due the regularity of 

It is important to notice here that (3.17) implies 

dimkerZ(0,1V) = rq = dimB 

which means that the initial and final conditions vectors are chosen from a rq—dimen
sional vector space. Thus rq is the total number of arbitrarily assigned values, 
distributed at both end points of the time interval. The connection between 
dimker.Z(0,1V) and dimB is obvious. 
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4. EXAMPLE 

In order to illustrate the above results we shall give an example which exhibits only 
backward behavior. This is done for brevity reasons, while it is well known that the 
finite eigenstructure of A(a) gives rise to forward linearly independent solutions (see 
for example [8]). Consider the unimodular polynomial matrix 

A(a) = 
1 c2 

0 1 

Obviously there are no finite elementary divisors and thus no finite spectral pairs, 
since dztA(a) = 1. Consider also the AR equation 

A(a)xk = 0 

for fc = 0,1,2,..., iV — q. According to the notation used earlier we have q = 2 and 
r = 2 and thus we have to expect 

dim/? = rq = 4. 

Indeed, consider an infinite spectral pair of A(a) 

XQQ — 
1 0 0 0 
0 0 - 1 0 Joo — 

0 1 0 0 
0 0 1 0 
0 0 0 1 
0 0 0 0 

Then according to Theorem 3, a basis of B = BB is formed by the columns of the 
matrix 

тN-k 
'oo 

6N-k <5LV-fc-l 6N-k-2 6N-к-3 

0 0 —6N-k —6N-k-i 
*(k)=X00j£ 

where Si = 0 for i'•£ 0 and 8Q = \. The boundary mapping equation will be 

Z(0,N) = [-Moa\j£-<+1Moo] 

since there is no finite spectral pair. Now we can see that 

Moo = 

0 0 1 0 
1 0 0 0 
0 0 0 - 1 
0 - 1 0 0 

and thus for N > 4, we have j£~q+1 = 0 

Z(0,N) = 

0 0 - 1 0 0 0 0 0 
- 1 0 0 0 0 0 0 0 
o 0 0 1 0 0 0 0 
o 1 o 0 0 0 0 0 
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which has full row rank. Obviously by (3.10) the final conditions can be freely 
assigned while for N > 4 the initial conditions must be zero. This is natural because, 
the infinite spectral pair of A(a) gives rise to reversed in time deadbeat modes, which 
after four steps of backward propagation of the final conditions, become zero. The 
intermediate solution formula can be obtained by (3.9) 

IV-ib ; Xk =XooJZ~ MooXF = 
Æ/V-Jfc-1 —6/V-Jb-З í/V-ib — í/V-]b-2 

0 Æ.rV-Jt-1 0 ÖN-k 
*F, 

where no initial conditions are involved because there is no finite spectral pair of 
A(a). 

5. CONCLUSIONS 

In this note we have determined the solution space or the behavior B of the discrete 
time Auto-Regressive representations having the form A(a) xk = 0, where the matrix 
A(a) is a square regular polynomial matrix and xk is a vector sequence over a finite 
time interval k = 0,1, 2 , . . . , N. The solution space B is proved to be a linear vector 
space, of dimension equal to the product of the dimension r of the matrix A(a) and 
the highest degree of a occurring in the polynomial matrix. 

It is also shown that the behavior can be decomposed into a direct sum of the 
forward and backward subspace, which corresponds to a maximal F/B decomposition 
of the descriptor space in [3]. We have also determined a basis for the solution space, 
using a construction based on both the finite and infinite spectral structure of A(a). 

We introduce the notion of the dual AR representation which is simply the same 
system but with reversed time direction. Finally, a generalization of the boundary 
mapping defined for first order systems in [2], to the higher order case is given and 
it is shown that such a boundary mapping can be obtained in terms of the spectral 
pairs of A(a). 

(Received January 23, 1997.) 
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