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M O D I F I E D M I N I M A X Q U A D R A T I C E S T I M A T I O N 

O F V A R I A N C E C O M P O N E N T S 

VIKTOR WITKOVSKÝ 

The paper deals with modified minimax quadratic estimation of variance and covariance 
components under full ellipsoidal restrictions. Based on the, so called, linear approach to 
estimation variance components, i. e. considering useful local transformation of the original 
model, we can directly adopt the results from the linear theory. Under normality assump­
tion we can can derive the explicit form of the estimator which is formally find to be the 
Kuks-Olman type estimator. 

1. INTRODUCTION 

We consider a general linear model with variance and covariance components 

L / j , ^ ) ^ ^ ! a) 

where y denotes the n-dimensional vector of observations; X is a given (n x k)-
dimensional design matrix; /? G Rk is the vector of unknown first order parameters; 
V(i?) is an (n x n) variance-covariance matrix which is linear combination of un­
known variance-covariance components tf = ( i? i , . . . , ^ p ) ' , tf 6 6 C Rp

} and known 
symmetric matrices K', i = 1> • • >P- In general, we do not assume normal distribu­
tion of the vector y. However, we assume the existence of the matrices of the third 
and fourth moments, i.e., 

E(e (g) eef) = $, E(ee' ® ee') = * , (2) 

where e = y — Xft, and ® stands for the Kronecker product of matrices. 
We are interested in quadratic (plus constant) estimation of the linear function 

of the variance and covariance components g'd, g being a p-dimensional vector of 
constants. 

The natural parameter space for variance-covariance components is 0 = {tf : 
V(i?) > 0}. We assume that 0 includes an open set in Rp. Here, we consider 
the situation when the additional information is available in the form of restricted 
parameter space 0 # C 0 defined by 

eE = {*? : 0? - d)'H(d - ti) < 1}, (3) 
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where tf 6 0 is the given center point of the ellipsoid, and H is a given symmetric 
positive definite matrix. This is the case of full ellipsoidal restrictions on variance 
and covariance components. 

If we denote by R a (p x p)-matrix such that H = R'R, then the restricted 
parameter space QE can be written also as QE = {t? : Rd G £2}, Q, being a unit ball 
in Rp centered at Rd. Note that if Q = Rfl, i.e. fi contains only one point, then 
QE = {t? : R(fl — i3) = 0}, what is the case of linear restrictions. This special case 
is of no great interest because the obvious reparametrization leads directly to the 
solution by classical estimation methods. Anyway, it is possible to give the explicit 
quadratic estimators of the variance components function with linear restrictions. 

The information given by ellipsoidal restrictions might be useful when we want 
to introduce prior information about variance and covariance components. This is 
frequently the case if we are working with repeated experiments, or experiments 
designed in several subsequent stages, etaps or epochs. For more details see e.g. 
Kubacek et al [4]. 

Maximum likelihood estimation and Bayes estimation are suitable approaches 
to find estimates which respect the restrictions. But unfortunately, in general, it 
is impossible to express such estimators in an algebraic form and thus it is also 
impossible to characterize their statistical properties. 

In the present paper we consider modified minimax quadratic estimation of the 
linear function of variance and covariance components g'd with ellipsoidal restric­
tions. The estimators are by definition quadratic (plus constant), but on the other 
hand, they do not necessarily fullfil given ellipsoidal restrictions. The good property 
is that such estimators improve the (modified) risk, if the additional information is 
given, if compared with the risk of the traditional unbiased quadratic estimators of 
variance components function, e.g. Rao's MINQE(U,I). 

Methodologically, we will adopt recent results of the linear theory by using the 
so called linear approach to estimation variance and covariance components. The 
results on linear minimax estimation (the linear theory) comes basically from the 
paper by J. Pilz [5], but see also J. Kozak [3], N. Gaffke and B. Heiligers [1], and 
B. Heiligers [2]. 

2. LINEAR APPROACH TO ESTIMATION VARIANCE COMPONENTS 

In the present section we give a short survey of the linear approach to estima­
tion of variance and covariance components. For more details see J. Volaufova and 
V. Witkovsky [14], J. Volaufova [13], and also F. Pukelsheim [6], and S.R. Searle 
et al [12]. 

The linearized model is a linear model based on the second tensor power of 
suitably chosen maximal invariant z, i.e. on the hypervector (z ® z) = vec(zzf). 
Here vec(A) denotes the vector which is composed from the columns of the matrix 
A arranged one below the other. 

The following notation will be used: Let i / 0 E 9 and $ 0 G {* : *(tfo)} b e fixed-
Then V0 = V(tf0) = £ - = i ^o.Ks T0 = VQ + XX1 \ U0 is defined by the equations 
7 * = U'QUQ and UQTQU'Q = / ; MQ = / - UQX(X'T+X)+X'U'Q\ and F0 is defined by 
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the equations Mo = FOFQ and FQF0 = I. _4+ denotes the Moore-Penrose ^-inverse 
of the matrix A. 

Then the vector z = F^Uoy stands for the maximal invariant with respect to the 
group of translations y •—• 2/ + X/3, for all (3 6 Rk. In the next we will consider the 
N-dimensional hypervector (z ® z) = vec(zz') for which the following holds true: 

E(vec(zz')) = Qod = [vec(F0U0Vi^Fo) : . . . : vec(F£UoVpU^Fo)]ti, (4) 

Var(vec(zz')) = X(tioJ,*) = (F^UO ® F^Uo)*(F^UO ® F^Uo)' (5) 

-l\ec(FlU0V(WoFo))fa 

Moreover, under normality assumptions 

Var(vec(zz')) = E(t?0)i?) = ( W ® F^Uo) (I + Tn)(V {#) <8> K(tf))(^t70 ® i^Clo)', 

(6) 
where Tn is such a matrix that Tnvec(A) = vec(A') for arbitrary (n x n)-matrix A. 
For more details see C. R. Rao and J. Kleffe [10], pp. 52-53. 

For fixed t/0 and tf0 we will denote E0 = S(i?o, t?o, *o). Under normality assump­
tions we get So = E(i?o,^o)- Moreover, for the sake of simplicity, we will assume 
that TZ(Qo) C 7J(Eo), where 11(A) denotes the linear space generated by the columns 
of A. 

The linear model 
(vec(zz'),Q0tf,£o) (7) 

is our working approximation to the true model 

(vec(2z'),Q0tf,£), (8) 

locally at the point (tfo, *o)- The model (7) will be denoted as a linearized model. 
Finally, we mention the important property of the model (7). J. Volaufova and 

V. Witkovsky [14] proved that under the assumption of normality distribution of 
the original vector of observations y the following identity holds true: 

Eo'Qo = 2(9o, (9) 

what means that 7£(EoQo) C H(Qo) holds true as well. This is, however, sufficient 
condition for OLSE (the ordinary least squares estimator) to be identical with BLUE 
(the best linear unbiased estimator) in the linear model (7). Because the model 
(7) coincides with the true model only locally at the point (i?o,*o), the BLUE, 
in general, is in fact only the WLSE (the weighted least squares estimator). See 
G. Zyskind [15], C. R. Rao and S. K. Mitra [11], and C. R. Rao [9]. 

Consider now the linear model (7). The linear function g'd is linearly and un-
biasedly estimable if and only if g 6 K(Q'oQo). The OLSE and the BLUE of the 
unbiasedly estimable function g'd in the model (7) are: 

S^OLSE = AQ'oQoYQXzz'), (10) 

O^BLUE = g'(Q'oVoQo)~QoVo™c(zz'). (11) 
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Considering the linear restrictions R(i) — d) = 0, g'fi is linearly and unbiasedly 
estimable if and only if g e Tl(Q'0Qo + R'R). If we assume Tl(R') C ft(<2'0), SO 
g e Tl(Q'oQo), then we get 

ifi>OLSE = ?' ( ^ ' Q o Q o M ^ ) + (Q'o vec(zz') - Q'0Qo^) + g% (12) 

9%BLUE = *' (Afe'OoSo QoMui)+ (Q'0E0 vec(zz') - Q0£0-Q0<?) + <M (13) 

where MR, = I - R+R = 1- R^RR'^R. 
Note that under normality assumptions, because of the identity EoQo = 2Qo, in 

the model (7), the OLSE is equivalent with the BLUE (WLSE). 
On the other hand, the Rao's MINQE(U,I), the minimum norm quadratic es­

timator, unbiased and invariant, of g'd, g e 7£(A'o), depending on a priori chosen 
point t?o e 0 , is given as 

9'0MINQE = 9'Ko<lo, (14) 

where the (p x p)-matrix Ko = Q'oQo and the p-dimensional vector of quadratics 
q0 = Q'0vec(zz'). The elements of Ko can be expressed as: 

{Kohj = tr ((MVoMpViiMVoMpVj) , i, j = 1 , . . . l P l (15) 

where M = 7 - XX+ = 7 - X ( X ' X ) " X and V0 = V(#0)- The elements of the 
vector of quadratics qo are: 

j 0 | . = t/(MVoM)+Vi(MV0M)+y9 i = 1 , . . . ,p. (16) 

The equations (10) and (14) shows that the OLSE of the function g'd in the 
model (7) is identical with Rao's MINQE(U, I). 

For more details see C. R. Rao [7], C. R. Rao [8], and C. R. Rao and J. Kleffe [10]. 

3. LINEAR MINIMAX ESTIMATION IN THE LINEARIZED MODEL 

In this section we will derive the @E~MILE - the minimax linear estimator of g'd, the 
linear function of variance and covariance components, subject to constraints given 
by 0E , in the the linearized model (7), i.e. the approximation to the true model 
which depends on prior choice of (t?o, ̂ o). Under given setup we can directly follow 
the results of the linear theory given by J. Pilz [5], and N. GafFke and B. Heiligers [1]. 

We consider the linearized model (7) with the restrictions (3). Moreover, we 
will assume that Eo and Q'0T,0

1Q0 are full ranked matrices. In the model (7), 
we are interested in the linear plus constant estimation of the linear function g'fl, 
i.e. g'd e LCE, where LCE is the class of estimators given by 

LCE = { 3 : 9% = g'Lvec(zz') + g'l, L G Rpx7V, / € Rp} . (17) 

The goodness of an estimator will be evaluated by the risk function based on the 
mean squared error function: 

W * . 9%) = E \(g% - g'0)2} = g'LXoL'g + (g'(I - LQQ) 0 - g'lf . (18) 
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According to J. Pilz [5], Lemma 1, it is sufficient to consider the class of estimators 
ICE with l = (I- LQ0)d, so 

R(9'#, <&) = 9'LV0L'g + (g'(I - LQ0)(d - dj)2 . (19) 

The minimax linear estimator of g'd subject to 0 # , i.e. the QE-MILE in the 

model (7), is defined as g'd MILE* s u c ^ *hat 

sup R(g'^,9^MILE) = _ i n f SUP R(J*,?*)• (20) 
#eeB g'0£LCE#e®E 

J. Pilz [5] established the duality between linear minimax estimation and least 
favorable prior distribution for linear Bayes estimation: For arbitrary prior distribu­
tion P on 0£7, which is characterized by the moment matrix IVp = f#e® (tf — ̂ )(^— 

d)'P(d'd)i we can derive, according to Pilz, the Bayes linear estimator g'^BLE °^ 
g'd as 

9'^BLE = 9'NPQ'o(QoNpQ'o + T,oY\vec(zz') - Q'0d) + g'd. (21) 

The estimator minimizes the Bayes risk function 

r(g'#, g%) = E {R(g'd, fd)] = g'LZQL'g + g'(I - LQ0)NP(I - LQ0)'g. (22) 

So, the g'^BLE *s defined by L = NpQ'o(QoNpQ'0 + So)"1 , and directly we get the 
Bayes risk 

r(g'd}fdBLE) = g'Npg - g'NPQ'o(QoNPQ'o + ^''QoNpg. (23) 

The QE-MILE is of the form (21) with the moment matrix IV* of the least favor­
able distribution on 0 # . The problem is to find the explicit form of IV*. This is not 
easy in general - for arbitrary compact and symmetric set of restrictions. However, 
in the case of ellipsiod restrictions QE it was found by Pilz that the least favorable 
distribution exists and is concentrated at a single point tf* £ 0E . 

Such a point is precisely 

ti^d + X^ + Q'oXo'Qoy'g, (24) 

with A2 = g'(H + Q'o^Qo)'1 H(H + Q^^o)"1 g. For more details see J. Pilz 
[5], Lemma 7, and N. Gaffke and B. Heiligers [1], Lemma 2 and Example 1. 

This implies that the explicit form of N* = (tf* — t?)(i?* — t?)' is given by 

N = (H + Q'o^Qo)'1 gg' (H + Q&^Qo)-1 

g'(H + Q'oEo^o)"1 H (H + Cy^Qo)'1 g' 

Now, we have the explicit form of the QE-MILE of g'd: 

9%MILE = 9'N.Q'0(Q0N.Q'0 + E o Y V ^ - V ) - Q'o0) + g'$. (26) 
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On the other hand, by using the identity 

(QoN.Q'o + Xo)-1 = (QotXQ'o + Xo)-1 

= S0
_1 - (1 + <QoZo-1QoU)-iZ0'

1QotXQ0Xo~\ (27) 

where i* = i?» — d, we get 

9^MILE = i + t'J^QoU < ^ o S o ' 1 ( v e c ( ^ ) - Q0tJ) + g'd. (28) 

Observing that (gft+)2/(l + t+Qf
0Y,oQoi*) is the Bayes risk of the least favorable 

distribution, see (23) and (27), which are equal to 

r(9'ti,ifi>MILE) = 9f(H + Qo^Qo)'1 9, (29) 

finally, we have 

SIMILE = 9,(H + Q'oT.o1Qo)~lQ'o^ol(vec(zz')-Q'0d) + g'd 

= g'(H + Q'o^o'Qo)'1 (Q'oXo'vec^z') + Hd) 

= g'(H + Q'^Qo)'1 ((Q'oX^QoW + Hd) (30) 

where d = (Qo-CrJ Qo)~~lQo^o vec(zzf). This is the Kuks-Olman type of estimator 
of the linear function gfd. 

Note, that if SoQo = 2Qo holds true, see (9), we have 

9^ MILE = 9'{H+ l-Ko) (H* + ±K0t) , (31) 

where Ko = 2Qo-Co lQo = QbQo is the critical matrix for MINQE(U,I) estimation 

given by (15). If A'o has full rank, then fl is unique and represents the MINQE(U, I) 

of 1?. The risk of 9* $ MILE ls ^ e n g i y e n by 

RWV^MILE) = r(9'#, 9^MILE) = 9'(H+ ±K0) g. (32) 

4. MODIFIED MINIMAX QUADRATIC ESTIMATION AND ITS 
APPLICATIONS 

The previous results can be directly used also in the context of the original model 
(1), however, the new interpretation should be established. 

The linearized model (7) is only approximation to the true model (8). So, the 
risk function R(g*'d,gf'd) given by (18) and (19) is only approximation to the true 
risk function. In the setup of the true model (vec(zzf),Qo'd)Il) the risk function 
R(g'd,gffl) given by (19) is considered as a modified risk function. Moreover, note 
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that the model (8), and also the associated modified risk function, depends on the 
prior choice of the point (i?o, ̂ o)- To emphasize this fact we will denote the modified 
risk function based on the model (8) as R(g,'dig

f'd\'doJ ^o)-

After all, in the context of the original linear model with variance and covariance 
components (1), we define the minimax linear estimator g'^MILE °^ ^ e estimable 
function g'd, subject to restrictions given by 0 £ , which is based on the linearized 
model (7), as the modified ($o, *o,©E)-MIQE - the modified minimax quadratic 
(plus constant) estimator. 

The results on modified minimax estimation are summarized in the following 
theorem: 

Theorem 1. Consider the linear model with variance and covariance compo­
nents (1). Let doEQ and tf0 G {* : # (*?o)} be fixed. 

Then the modified minimax quadratic estimator, (i?o,^o, ©E)-MIQE, of the es­
timable linear function g'd, with respect to the ellipsoidal restrictions 

6 s = {tf : (tf - d)'H{d - d) < 1}, (33) 

is given as 

9^MIQE = 9'(H + Q'o^Qo)'1 ((Q'oXo'Qorf + Hd) , (34) 

where d = (QQSQ 1 Q O ) " 1 Q U S U "
 1vec(zz'), and z is suitable maximal invariant, the 

matrix Qo is defined by (4) and So is defined by (5). 
The modified risk is 

W ^ J H I Q E I - J O , * O ) =9'(H + Q'0X0~
1Qo)~X9- (35) 

Moreover, if we assume that the vector of observations y is normally distributed, 
the (t?o, &E)-MIQE is given as 

9^MIQE = 9'(H + \I<O) (Hd + ±K0d), (36) 

where d is the MINQE(U,I) based on a prior value ??o- The modified risk is then 

ROM g^MIQEWo) = 9'(H+ ± * O ) 9, (37) 

where Ko is the critical matrix for MINQE(U, I) given by (15). 

At the end we mention two possible applications of the modified minimax quadrat­
ic estimation: 
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1. The computation oiMINQE(U, I) which is based on the prior value do requires 
computation of the matrix 

(MVoM)+ = V0
l - V0

lX(X'V0
lX)-X'V0\ (38) 

see (15) and (16). The computation tends to be very difficult if the model has 
complicated design and large number of observations. On the other hand, in 
many situations exists such d*0 G 0 that V0 = V(d*0) = I. The MINQE(U,I) 
based on such d0 is denoted as 0 — MINQE(U,I). Numerical evaluation of 
0 — MINQE(U, I) is considerably simplified. 

If the additional information 0 £ is given, we suggest to use the modified 
minimax quadratic estimator based on i/jj, which respects the information, 
and has simple numerical solution. The reason is that for any fixed i ) o G 0 
the modified minimax quadratic estimator improves the modified risk 
R(g''0)g^MIQE\'do) = 91 {H + \K0)~ g, see (37), according to the risk of 
the MINQE(U,I) estimator, R(g''d,g^MINQE^o) = V A ' o ' V 

2. The second application is based on the dual problem. Suppose now that we 
want to compute MINQE(U,I), (because of its good properties as e.g. unbi-
asedness). The problem is how to choose the prior tfn if we have the additional 
information 0 # . The possible solution is to take such tf0 that it minimizes 

the modified minimax risk R(g'fl,g'flMIQE\^0>) = -?' (H + 2^° )~ g through 
all i?o G 0E , i.e. such t?j$ that 

g' (H + ^I<{\ g<g'(H + i t f 0 ) <7, for all tf0 G 0E , (39) 

where the critical matrix A'o is defined by (15). 
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