
K Y B E R N E T I K A — V O L U M E 34 ( 1 9 9 8 ) , N U M B E R 2 , P A G E S 2 1 7 - 2 3 4 

ADAPTIVE CONTROL FOR DISCRETE-TIME 
MARKOV PROCESSES WITH UNBOUNDED COSTS: 
DISCOUNTED CRITERION1 

EVGUENI I. GORDIENKO AND J. ADOLFO M lNJAREZ-SoSA 

We study the adaptive control problem for discrete-time Markov control processes with 
Borel state and action spaces and possibly unbounded one-stage costs. The processes 
are given by recurrent equations x*+i = F(xtlati^t)) t = 0 ,1 , . . . with i.i.d. 9Rfc-valued 
random vectors & whose density p is unknown. Assuming observability of £t we propose 
the procedure of statistical estimation of p that allows us to prove discounted asymptotic 
optimality of two types of adaptive policies used early for the processes with bounded costs. 

1. INTRODUCTION 

The paper deals with finding of adaptive policies for Markov control processes of the 
following type: 

x t + 1 = F(x t , a t ,&) , * = 0 , 1 , . . . (1.1) 

defined on general state and action spaces. As a performance criterion we use 
asymptotic optimality with respect to discounted expected total cost with possi
bly unbounded nonnegative one-stage costs c(x, a). We suppose "driving process" £t 

in (1.1) to be independent and identically distributed random vectors in $lk having a 
density p which is unknown to a controller. For the latter, the adaptive policies given 
in this paper combine suitable estimation of p and choice of actions at as a function 
of "a history" (XQ, an, • • •, -Ct-i, a*-i, xt) and of an estimator pt of p. To provide a 
sequence of estimators pt, t = 1,2,... we suppose the random vectors &, as well 
as the states xt, are observable. These assumptions are satisfied in some applied 
problems, for instance in production-inventory systems, control of water reservoirs, 
some controlled queueing systems, etc. (see for example, [4,12,15]). 

A similar problem has been solved for Markov control processes with bounded 
one-stage costs in [3,7,8,14,16,17,22]. The adaptive policies called Principle of 
Estimation and Control (PEC) and Nonstationary Value Iteration (NVI) proposed in 
these works and some techniques of proofs of their optimality were the starting points 
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SIMAC/94/CT-005 and by Consejo Nacional de Ciencia y Tecnologia (CONACyT) under grant 
0635P-E9506. 
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for the present paper. On the other hand, unbounded costs impose serious additional 
obstacles. First, the operator in the optimality equation is no longer contractive 
in general, and so, we are forced to impose Lippman's like hypothesis [21,27] on 
transition probability of processes. Second, to be able to keep values of c(xtj at) from 
"escape to infinity" and to insure their uniform integrability when "quasioptimal" 
actions corresponded to the estimator pt are chosen, we use projection of some 
estimator pt on a certain "good" subset of densities in Lq(^ik)) q > 1. Also we need 
the convergence of pt to an unknown p in I^-norm. To meet the last condition we 
apply the recent results on density estimation in Lq [11]. Making of projection can 
be unpleasant operation when one tries to apply the control policies found here; but 
we do not known how overcome this difficulty. In any case, examples such as given 
in Section 6 make it reasonable that something as projection cannot be skipped 
completely. 

The assumptions beyond briefly discussed, allows us to prove asymptotic optimal
ity in the sense of [24] of both PEC and NVI adaptive policies for the unbounded cost 
case. To the best of our knowledge except of well-developed theory of linear stochas
tic systems, there are no papers which treat adaptive optimal policies for Markov 
control processes with unbounded costs. In adaptive control of systems given by 
linear equations the random vectors £t in (1.1) are interpreted as "disturbance" of 
the system, and optimal policies, as a rule, depend on two first moments of £t, but 
not on its distribution (if a cost is quadratic; see, for example, [20]). The situation 
is different for non-linear processes, as in the simple example of section 6, where 
a more refined information about a distribution of £t is crucial for construction of 
optimal policies. Moreover, methods of theory of linear system depend heavily on 
specific structure of linear processes, and so they are not applicable in our case. 

There are some new papers on adaptive control of Markov processes. We mention, 
for instance, [1,5,6,25,26]. All of them work with either finite state-action processes 
or Borel spaces and bounded cost functions. 

The remainder of the paper is organized as follows. In Section 2 we introduce the 
Markov control model we deal with, whereas in Section 3 we list the assumptions 
on control model together with some preliminaries results. Assumptions and results 
related to density estimation are given in Section 4. Next, in section 5, we present 
the adaptive policies and the optimality result. An example of a queueing system 
with controllable service rate that satisfies all hypothesis of the paper is described 
in Section 6. 

2. MARKOV CONTROL PROCESSES 

We consider a class of discrete-time Markov control models (X, A, 3J*, F, p, c) with 
Borel spaces X) A, of states and actions, whose dynamic is defined by system equa
tion (1.1). 

In (1.1) F : XA$lk —+ X is a given (known) measurable function and {&}, so-
called driving process, is a sequence of independent and identically distributed (i.i.d.) 
random vectors (r.v.'s) with values in lkk and a common unknown distribution. 

We suppose that the distribution of £t has a density p which is unknown, but 
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belongs to a given class described in next section. Moreover, we assume that realiza
tions £o,£i,£2.... of the driving process and the states #0, #i, £2, • • • a r e completely 
observable (see the discussion of this hypothesis in the Introduction and Section 6). 

For each x e X) A(x) denotes the set of admissible controls (or actions) when 
the system is in state x. The sets A(x) are supposed to be a nonempty measurable 
subsets of A. The set 

K = {(xya):x eX,aeA(x)} 

of admissible state-action pairs is assumed to be a Borel subset of the Cartesian 
product of X and A. The last element of the model is a given one-stage cost, c, 
which is a nonnegative real-valued measurable function on K (possibly unbounded). 

We define the spaces of admissible histories up the time t by Ho := X and 
Ht := (K ^kyXy t e N := {1,2 , . . .} . A control policy 7r = {7rt} is a sequence of 
measurable functions irt : Mt —» A such that irt(ht) G A(xt)y ht e Mt, t > 0. By 
II we denote the set of all control policies and by F C II the set of all stationary 
policies. Every stationary policy IT e F is identified with some measurable functions 
f : X —> A such that f(x) e A(x) for every x e Xj taking the form TT = {/, / , / , . . . } . 
In this case we use the notation / for 7r. 

For an arbitrary policy TV e II and initial state x e X, there exists a unique 
probability measure P£ on £2 := (XA$tk)°° (see e.g. [4,18]). Moreover, P£ satisfies 
P£[x0 = x] = 1 and for every ht e Mt) t = 0 ,1 ,2 , . . . , and Borel set B in X} 

P ; [ z t + 1 e B\ht] = J lB[F(xu aus)] p(s) ds, (2.1) 

3* fc 

where 1#( ) stands for the indicator function of the set B. 
The expectation operator with respect to P£ is denoted by E%, and for the 

stationary policy / G F we write 

c(xyf)~c(xj(x)) and F(x, f,s) := F(x,f(x),s), xeX, s e&k. 

For every policy ir G II and initial state x G X, let 

V{ҡ,x):=El Y^<^c{xt,at) 
ť=0 

be the a-discounted expected total cost, where a G (0,1) is discount factor. The 
function 

V*(x):= inf V(7Tix)i x G -X, 
7ren 

is the optimal a-discounted cost when the initial state is x. A policy 7r G II is said 
to be a-optimal (or optimal) if V*(x) = V(/ir) x) for all x e X. 

3. ASSUMPTIONS AND PRELIMINARY RESULTS 

For a given measurable function W : X —* [1, 00), Ljy denotes the normed linear 
space of all measurable functions u : X —-> 3? with 

M™:=I?XW)<O°- ( 3 , i ) 
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Assumption 3.1. 

a) For each u G L^ the set 

(x, a) : / u[F(xy a, s)] p(s) ds < r \ 

is Borel in K for every r G 9J; 

b) for every x E X, A(x) is a cr-compact set; 
c) s u p ^ ) \c(x} a)\ < W(x) for every x £ X. 

We suppose the function W to be fixed in what follows. Remark that the abridged 
notations: sup^, infx, sup^^j , i n f ^ ) we will currently use in place of complete 
ones: s u p r e X , i n f ^ x , supaGi4(a:), infaeA^x). 

A set Do, described below, of densities p of r.v. £t in (1.1) defines an admissible 
class of control processes for which adaptive policies constructed in Section 5 are 
applicable. 

Let us fix an arbitrary e G (0,1/2) and denote q := 1 + 2e. We will use these 
parameters throughout the paper without additional explanation. Also we choose 
and fix throughout the following a nonnegative measurable function p : 3ftfc —• 3ft 
which is used as a known majorant of unknown densities p. 

We define the set Do = .Do(p, L,/?o,6o,p, g) as a set consisting of all densities p, 
on $lk for which the following holds. 

a) ii e Lq(®
k); 

b) there exists a constant L such that for each z E 5ftfc, 

| | A , / i | | L f < L | x | 1 ' « , 

where Az/i(x) := ji(x + z) — /J>(x)y x G 9ftfc and |-| is the Euclidean norm in $lk. 

c) / i(5) !̂  p(s) almost everywhere with respect to the Lebesgue measure; 

d) for every x G X, a £ A(x) 

I Wp[F(x, a, s)] fi(s) ds < (30W
p(x) + 60; (3.2) 

3* fc 

where p > 1, 0o < I, bo < oo are arbitrary but fixed for the defined set Do 
constants. 

Remark 3,2. When k = 1 it is not difficult to show that a sufficient condition 
for part (b) is the following. There are a finite set G C 3ft (possibly empty) and a 
constant M > 0 such that: 

i) (i has a bounded derivative p,' on 3f \ G which belongs to Lq\ 

ii) the function |//'(-c)| is nonincreasing for x > M and nondecreasing for x < —M. 

Note that G includes points of discontinuity of p if such points exist. 
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Assumption 3.3. 

a) The density p of r.v. £t in (1.1) belongs to Do-

b) The function 

<p(s) := suptVVOc)]-1 sup W[F(xy a, s)] (3.3) 

X A(x) 

is finite for every s £ $ftfc. 

c) / ^ 2 ( 5 ) | p ( 5 ) | 2 ^ d , < c x ) . 
& fc 

Remark 3.4. The function <p in (3.3) can be nonmeasurable. In this case we 
suppose the existence of a measurable majorant Tp for <p for which Assumption 3.3 (c) 
holds. 

In Section 6 we give an example of a queueing system with a controllable service 
rate for which all assumptions presented in this section hold. 

Now we state two results that summarize simple but important facts to be used 
in the later sections. 

Lemma 3.5. Suppose that Assumptions 3.1 (c) holds and p G -Do- Then 

a) for every x E X , a € A(x) 

I W[F(x, a, s)] p(s) ds < PW(X) + 6, (3.4) 

JR fc 

where /3 = ^ / p
J b = b\lv\ 

b) s u p t > 1 ^ [ W ( x t ) ] < o o l *\tyt>iEl\W(xt)] < o o , for each TT G II, xEX; 

c) there exists constant B such that 

V*(x)<BW(x) xeX. (3.5) 

P roo f , a) By (3.2) we have 

1/P 

/ W[F(x, a, s)] p(s) ds< f Wp[F(x, a, s)] p(s) ds 

& fc Lg*fc 

< [PoWr(x) + bof
p<0l/pW(x) + bl/p. 

b) From (3.2) and (2.1) we get 

E'x[W(xt)\ht] = Jw[F(xt.uat.1>S))p(S)dS < PoWP(xt-i) + b0. 

fHk 
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Hence 
El[w?(xt)]<poE^w^xt-xj] + 60, ten. 

Iterating this inequality and using the fact ft < 1 we obtain 

E:[W(xt)] < p0W
v(x) + (1 + Po + • • • + $ " % < Wp(x) + 6o/(l - /?o). 

The proof of second inequality in b) is similar because of (3.4). 
c) The bound (3.5) for the value function V* was proved in [13], Lemma 4.2(d), 

provided to fulfillment of Assumption 3.1(c) and (3.4). D 

Proposition 3.6. Suppose that Assumption 3.1 holds and pGDo- Then, 

a) the value function V*(-) satisfies the a-discounted cost optimality equation, 
i.e. 

V*(x)= inf l^x.^ + a [ V*[F(x,a1s)]p(s)(ds)\ , x G X; (3.6) 
aeA(x) J 

V 3t* ) 

b) for each 6 > 0, there exist a stationary policy / G IF such that 

c(x, / ) + <* J V*[F(Xl / , s)] p(s) (ds) < V*(x) + 6 

for each x £ X. 

Under condition (3.4) the proof of equality (3.6) was given in [13], Theorem 
4.1(b), while the part b) can be easily derived from Corollary 4.3 in [23]. 

4. DENSITY ESTIMATION 

Denote by £0, £1, • • •, £t-i independent realization (observed up to the moment t — 1) 
of r.v. with the unknown density p G Do- Let pt := />t(s;fo,£i, • • • >&-i)> ^ G 3ffc be 
an arbitrary estimator of p belonging to Lqi such that 

E\\p~Pt\\l ~>0 as * ->co . (4.1) 

We do not assume estimators pt, t G N, to be densities and even to be nonnega-
tive. 

To be able to provide asymptotically optimal adaptive policies we estimate p by 
a projection pt from pt on the set of densities D in Lq defined as follows. 

We set D := DiC\D2, where 

D\ := {/i : // is a density on 9J*, ji G Lq and p,(s) < p(s) a. e.} ; (4.2) 

D2 := I p. : \i is a density on .ft*, p. G Lq, / W[F(x1 a, s)] fi(s) ds 

<(3W(x) + b, ( x , a ) G K j (4.3) 
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The constants /? and 6 were defined in Lemma 3.5. Assumption 3.3 and Lemma 
3.5 yields p E Do C D. On the other hand, Lemma A in the Appendix shows that 
the set D is convex and closed in Lq. Thus, by virtue of well-known facts about a 
best approximation in the space Lq (see, e.g. Propositions 2 and 3 in [19], p. 343) 
there is an unique density pt £ D satisfying 

\\pt-Pt\\,=M\\l*-Pt\\9, ' 6 N ; (4.4) 

i.e. the density pt is a best approximation of an estimator pt on the set D. 

Assumption 4 .1 . The density estimators pt(-) := pt(-\£o,£i,£2,.. .,ft-i), <GN, 
used in what follows, satisfy (4.1) and (4.4). 

Examples of estimators with property (4.1) are given in [11]. Let {zt} be a 
sequence of positive real numbers such that lim^oo zt /t = 0 and zt —• oo as t —> oo. 
Set 

t - i 

M*) = M«;^.&,6 , . . - ,6 - i ) := 7 53^(*-^) ' s E ^ > (4-5) 
1 1=0 

where Vz(y) is the kernel of Vallee Poussin type: 

v ( \ TT cos zyn - cos 2zyn k 
vz(v) = I ! 2 > w = (yi,y2,...,y*) e a r , Z>O. 

As it is shows in [11] relation (4.1) holds for estimator (4.5), provided that p E Do. 

Now we define the pseudo norm (possibly taking infinite values) on the space of 
all densities \x on 5tfc by setting 

||/i|| := sup[KV(x)]"1 sup / W[F(xt a, s)] ix(s) ds. (4.6) 
X A(x) J 

Proposit ion 4.2. Suppose that Assumptions 3.1, 3.3 and 4.1 hold. Then 

F7||pt — p|| —• 0 as t —»- oo. 

P r o o f . From (4.6) and (3.3) we have 

\\fH-p\\ < / s u p ^ x ) ] - 1 sup W[F(xtats)] \pt(8)-p{8)\ ds 
J X A(x) 

= J<p(8)\pt(8)-p(8)\d8t tef^. 

Thus, by Corollary A in the Appendix we obtain: 

\\Pt-p\\<M\\Pt-p\\f, ten. (4.7) 
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for some constant M. 
On the other hand, by (4.4) 

\\Pt-p\\f<y'2\\pt-p\\q
q

12, * e N . (4.8) 

Combining (4.7), (4.8) and taking into account (4.1) we obtain the desired result. • 

Remark 4.3. It can be that \\pt — p\\ are not random variables. If it occurs then 
Proposition 4.2 proves the existence of measurable upper bounds bt for \\pt — p\\ such 
that lim*—oo Ebt = 0 (see Remark 3.4). 

5. ADAPTIVE POLICIES 

For adaptive policies we use optimality criterion in the sense of the following defini
tion. 

Definition 5.1. a) [24] A policy 7r is said to be asymptotically discount optimal 
if, for each x G X) 

EZ[<b{xuat)]->ti as t -> oo, 

where at = nt(ht) and 

$(*,a) := c(x,a) + a f V*[F(x,a,s)]p(s)ds - V*(x), ( x , a ) e K (5.1) 

($ is a nonnegative function in view of Proposition 3.6.) 

b) Let 6 > 0. A policy n is 6-asymptotically discount optimal if, for each x E X , 

limsup EZ[Q(xt,at)] < 6. 
t-+oo 

Remark 5.2. $ is called the discrepancy function because it can be interpreted 
as measure of "deviation from optimality". For more details see e.g. [12]. 

For construction of suitable adaptive policies we replace an unknown density p 
by its estimations pt and exploit corresponding optimality equations [14]. For these 
purposes we need to extend some assertions of Section 3 on densities pt defined in 
Section 4 (belonging to D). 

Assumption 5.3. For each u 6 L^y and t G N, r £ 5ft, the set 

{(x,a) : / u[F(x,a,s)]pt(s)ds < r 

is Borel in K . 

The proof of Lemma 3.5 and Proposition 3.6 (partly given in [13]) show that the 
following assertions hold true (because only inequality (3.4) is used here). 
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Proposition 5.4. Under Assumption 3.1b),c) and Assumption 5.3 we have: 

a) For each t EN there is an unique function Vt e £Jy such that 

Vt(x) = jnf le(xta) + a J Vt[F(xta98)]/H(s)d8\ t x e X. (5.2) 

b) For each t e N, 6t > 0, there exists a stationary policy / t £ F such that 

•(*, /*) + < * / Vi[F(x,/«, s)] Pt(s) ds < Vt(x) + 6t, xeX. (5.3) 

c) There is a constant B* such that sup t>! HVtllw < B*. 

d) IfFo = 0and 

Vt(x) = jnf | c ( x , a ) + a [Vt-i[F(x,a,8)]pt(8)d8\t x 6 X , < 6 N , (5.4) 

then \\Vt \\w < ~B for some constant £ , and for every 6t > 0 there exists a stationary 

policy / t e IF such that 

c(xJ) + «Jvt-1[F(xJis)]pt(s)ds<Vt(x) + 6t} xeX. (5.5) 

»fc 

Now we introduce two adaptive policies n* and W that are slight extensions of 
"The Principle of Estimation and Control" policy [22] and of "The Non stationary 
Value Iteration" policy [16]. 

Definition 5.5. Let sequences of positive numbers {6t} and {6t} be arbitrary but 
fixed, and arbitrary sequences {ft} and {ft} of stationary policies be chosen such 
that (5.3) and (5.5) are satisfied. 

a) The policy IT* = {ir*} is defined as follows 

<(ht) = **t(htlPt):=ft(xt), htemty <eN. 

b) The policy ¥ = {Wt} is defined as follows 

7ft(ht) = Mht;pt)~7t(xt)} htemt} ten. 

(TTQ(X) and Wo(x) are any fixed actions). 

_ We are now ready to state our main results. Denote 6 := l imsup^^^ 6t\ 
6 := li.msup.j_oo 6t. 
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Theorem 5.6. Suppose that Assumptions 3.1, 3.3, 4.1 and 5.3 hold. Then the 
adaptive policy 7r* is 6-asymptotically discount optimal, and the adaptive policy 7r 
is 8-asymptotically discount optimal. 

In particularly, if 6 = 6 = 0 then the policies 7r* and W are asymptotically discount 
optimal. 

Remark 5.7, It is well-known fact that an optimal stationary policy exists if 
the minimum on the right-hand side of (3.6) is attained for each x € X. Thus to 
guarantee the existence of such policy one should impose rather restrictive continuity 
conditions on one-stage cost c and transition probability of process, and suppose 
something as compactness of A(x) (isee e.g. [12]). It can happen that under the 
assumptions made in this paper, stationary discount optimal policy do not exist for 
process (1.1) with a known density p> while Theorem 5.6 guarantees the existence 
of asymptotically optimal adaptive policies. 

Remark 5.8. In the remainder of this sections we will use repeatedly the following 
inequalities: 

u(x) < \\u\\w W(x) (5.6) 

and 

J u[F(x, a, s)] //(s) ds < \\u\\w [PW(X) + b) (5.7) 

ft* 
for all u G Lw, \i G D, x G l , a £ A(x). The relation (5.6) is a consequence of the 
definition of ||-||jy- and (5.7) holds because of (3.4) and the definition of D. 

The proof of Theorem 5.6 is based on the following result. 

Lemma 5.9. Under Assumption 3.1, 3.3, 4.1 and 5.3, for each x G X and n G II 

a) lim E*x\\Vt- V*\\w=0 and b) \imE:\\Vt-V*\\w=0. 

P r o o f , a) For every /i G D let us define the operator 

Tpu(x) = inf I c(x, a) + a f u[F(x, a, s)] fi(s) ds \ , (5.8) 
MX) I £ J 

x G X, wG Lw. By Assumption 3.1 (c), the definition of D and (5.7), T maps Lw 

into itself. 
Let us fix an arbitrary number 7 G (a, 1) and set W(x) := W(x) + d, x G X\ 

where d := b (7 /a — 1)~ . Also we define the space L ^ of measurable functions 
u : X —y 9£ with the norm 

И*)l 
Wx W(x) 

\u\\w := sup ~ ^ - ^ < 00. 
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It is easy to see 

IMIHT < \M\w < ll-llw(1 + d/inSx W(x)), (5.9) 

hence L^y = L~- and the norms ||||jy and ||-||pjr are equivalent. 

In Lemma 2 in [27] was proved that the inequality 

/ W[F(x, а, s)} ц(s) ds < W(x) + b 

3fc f c 

implies the operator T^ in (5.8) to be a contraction with respect to the norm ||-||jy , 
that is 

WT^v-TnuWjy < 7 II"-"Il ly, v,ueLw. (5.10) 

By virtue of (3.6) and (5.10) the function V* is an unique (in Ljy) fixed point of 
the operator Tp, while Vt are fixed points (unique in Lyy) of Tp<, <GN, that is 

TPV* = V\ TpVt = Vt (5.11) 

Because of (5.9) the part a) will be proved if we show that 

t K m ^ | | V l - H l H r - - 0 . (5.12) 

We have 

ir-^llvr = \T,v*-Tftvt\w<\Tfv-T,x\w+\T'X-T^Mw 
< \\TpV* -TPtV*\\W + l\\V* -Vt\\w, 

or 
\\v*-^Ww<^\\TPv*-Tpt

v*\\w> * G N - ( 5- 1 3) 
On the other hand, from definition (4.6), (3.5) and the fact [ W ( ) ] _ 1 < [W(-)]"\ 

we obtain 

|r^*-rP fr||--,<asup[W(x)]-18up [ V*[F(x,a,s)} ^ - ^ ( ^ I d s 
X A(x) J 

< ajBsuptVVOc)]-1 sup / W[F(x}a,s)] \p(s) - pt(s)\ds 
X A(x)J 

= aB\\p-pt\\, ten. (5.14) 

Observing that El ||p — pt\\ = E \\p — pt\\ (since pt do not depend on 7T and x) and 
combining inequalities (5.13), (5.14) with Proposition 4.2 we find that (5.12) holds. 

b) Using argument similar to the proof of the part a), from equations (3.6), (5.4), 
(5.10) and (5.14) we get 

l l ^ - ^ + i l f T 

< | | r p v - rP€ v* 11^+T | | v - vtn^r < aA ||p - ^H + T | | V - v tB^. 
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Therefore, 

E^\\V*-Vt^w<aBE:\\p-Pt\\ + jE:\\V*-Vt\\Wt (5.15) 

for each x G Xt w G II, t € N . 
In view of Lemma 3.5(c), Proposition 5.4(d) and equivalence of the norms ||||jy 

and \\-\\w we have A := limsup^oo E* \\V* — Vt\\w < oo. Taking limsup as t —> oo 
in both sides of (5.15) and applying Proposition 4.2 we see that A < 7A, so A = 0. 
This completes the proof of Lemma 5.9. O 

Proof of T h e o r e m 5.6. 
First, we define for each t £ N the following nonnegative functions K —» 9t by the 

formulas: 

$*(x,a) := c(xta) + a J Vt[F(xtats)]pt(s)ds-Vt(x)-t 

»fc 

$ t(x, a) := c(xt a) + a Vt-i[F(xt a,s)] pt(s) ds - Vt(x). 

»fc 

(see Proposition 5.4(a), (d) to verify that these functions are nonnegative). 
Using the definitions of $* and $ (see (5.1)) we get (by adding and subtracting 

the term a f^k Vt[F(xt a,s)] p(s) ds) 

\$*t(xta)-*(xta)\ 

< \V*(x)- Vt(x)\ + aJvt[F(xtats)] \pt(s) - p(s)\ ds 

»fc 

+a J \Vt[F(xtats)]-V*[F(xtats)]\p(s)ds 

»fc 

< \\V*-Vt\\wW(x)+aB* Jw[F(xtats)] \pt(s)-p(s)\ ds+a[/3W(x)+b] \\Vt-V*\\„ 

for each (x,a) €K , t G N (see Proposition 5.4(c) and Lemma 3.5(a)). Hence (see 
the definition of ||*|| in (4.6) and inequalities (5.13) and (5.14)) 

sup[W(x)]"1 sup |$*(x, a) - $(*, a)\ < B' \\pt - p\\, (5.16) 
X A(n) 

where B' = aB* + {1 + a [/? + b/mfx W(x)]} (1 - -r)~laB. 

On the other hand, by the definition of the policy ir* (see Definition 5.5) and of 
the functions / . in (5.3) we have $*(*, TT*(*)) < 6t, t G N. Thus 

*(xt,ir*(ht)) < Mxt,w*t(ht))-**(xt,n*(ht)) + 6t\ 

< sup |$(xt, a) - *J (xt, a) \ + 6t 
A(Xt) 
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< W(xt) sup[W(x)]~1 sup |*(x, a) - $*(x, a)\ + 6t 
X A(x) 

< W(xt)T)t + 6t , * e N , (5.17) 

where T)t := B1 \\pt — p\\. Inequality (5.17) implies the following one: 

Ef [$(xt, at)] < Ef [W(xt)r)t] + 6t, 

and therefore, to prove 6-optimality of the policy ir* (see Definition 5.1) it is enough 
to show that 

\imsup Ef[W(xt)T]t] = 0. (5.18) 
t—oo 

First, if /i G D2 then by (4.3), (4.6) 

||,t|| < s u p ^ ^ ) ] - 1 [0W(x) + b]<(3 + b/ inf* W(x). (5.19) 
x 

For this inequality sup f>1 \\pt — p\\ < B\ < oo with some constant B\. Proposition 
4.2 yields the convergence in probability: 

p*m 

T)t -2U 0 as t -^ oo. (5.20) 
Furthermore, from Lemma 3.5 (b) we get 

sup Ef [W(xt)Tjty < (B')p B{ sup Ef [Wp(xt)] < oo. 
t>i t>i 

This means that the sequence {W(xt)r)t} is P£ -uniformly integrable (see Lemma 
7.6.9, p. 301 in [2]). In this way, using the known criterion of convergence of integrals 

PW* 
(see for instance, Theorem 7.5.2 in [2]), we prove (5.18) if we show that W(xt)rjt ----• 

0 as t —• oo. But the latter follows from (5.20), Lemma 3.5(b) and the inequalities: 

Pf [W{*t)rit >i]< Pf [m >}} + Pf [W(xt) > i) < pf [m > I ] + El [™{xt)] 

with, 7, / being arbitrary positive numbers. 

The proof of the second part of the theorem is similar up to minor changes. First 
we can show that 

sup[VV(x)]"1 sup |<I>t+i(-E, a) - $(:r, a)\ 
X A(x) 

< \\V -VW\\W + aB\\pt+1 - p\\ + a[/? + &/infx W(x)] | |F, - V*\\w 

:= 9 t , *GN. 

Again, limt-̂ oo E^\fjt] = 0 (see Lemma 5.9 and Proposition 4.2), and the random 
variables rjt are uniformly bounded (due to Lemma 3.5(c), Proposition 5.4(d) and 
(5.19)). Repeating the arguments of first part we complete the proof. • 



230 E.I. GORDIENKO AND J.A. MINJAREZ-SOSA 

6. EXAMPLE 

We consider a particular control system of the form 

xt+i = (xt + at-£t)+y 4 = 0 ,1 ,2 . . . , (6.1) 

xo = x given, with state space X = [0,oo) and actions sets A(x) = A for every 
x £ X, where A is a compact subset of the interval (0,6] for some given 0 £ 5ft (with 
oeA). 

Relations (6.1) describe, in particular, some control models in storage system 
(see, for instance, [4,15]). Another interpretation of (6.1) which we have in mind is 
a model of control of deterministic service rate in a single server queueing system of 
type G/|F)|l|oo. In this example xt denotes the waiting time of the tth customer and 
£t denotes the interarrival time between the tih and the (t + l)th customers. Con
trol actions at, t = 0 ,1 ,2 , . . . , are service times chosen for corresponding customers 
among admissible a £ A. 

Nonnegative random variables fo,£i,£2 • • • • are supposed to be i.i.d with a com
mon density p £ Lq($l) satisfying the inequality 

\\AzP\\Lq<L\z\^, 

for some given constants L < oo, q > 1; or the hypotheses mentioned in Remark 3.2. 
In the spirit of setting of the problem chosen in this paper, we assume the density 

p to be unknown, but realizations of £o,£1,£ • • • ,£t-i and states xt to be observ
able at the moment t of taking decision at. The latter assumption is met in some 
communication and computer control system. 

The following assumption ensures ergodicity of the system when using the slowest 
services: at = 0, t > 0 . 

Assumpt ion 6.1. i?(fo) exists, and moreover 

E(£o)>e. (6.2) 

Considering the function tf (s) := e9sE(e~sZ°) we find that (6.2) implies tf'(0) < 0, 
so there is A > 0 for which \P(A) < 1. Also by continuity of \P we can choose p > 1 
such that 

tf(pA) = / ? o < l . (6.3) 

Let us set W(x) = beXx, x £ [0,oo), where 6 is an arbitrary constant. Then 

Wp(x)=(b)Pex?x. 

In [9] was show that (6.3) implies the inequality 
oo 

j b0e
Xp(x+a-s^p(s) ds < (3oboeXpx + bo, 

o 

where bo := (6) . 
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Thus Assumption 3.3 will be satisfied if we find a suitable majorant p with the 
properties as in Assumption 3.3(b), (c). 

Straightforward calculations show that (p(s) = max {l, eA^~5)} , s E [ 0 , oo), thus 
it is a bounded function. Therefore, to satisfy Assumption 3.3(c) we can take, for 
example, 

p(s) : = M m i n { l , l / V + r } , «e[0 ,oo) , (6.4) 

where r > 0. 
For v < 1 in (6.4), Assumption 6.1 implies p < p (choosing enough large M) in a 

wide class of densities. The fulfillment of measurability conditions from Assumption 
3.1(a) and Assumption 5.3(a) can be checked easily. Finally, we meet Assump
tion 3.1(c) if we endow the considering control model with arbitrary nonnegative 
measurable one-stage cost function c : [0, oo) x A —> [0, oo) for which 

supc(x,a) < beXx, x E [0,oo). 
A 

7. CONCLUDING REMARKS 

The difficult part of application of the adaptive policies 7r* and W is making a pro
jection of estimator pt as in (4.5) on the set D defined in (4.2) and (4.3). Notice 
in view of it that D can be replaced by any closed convex subset of D containing 
p. Thus, sufficient conditions of (4.3) could be used (as in the above example). We 
are going to present some algorithms of projection in next publications. Also we 
plan to propose adaptive policies optimal with respect to the average cost criteri
on with unbounded one-stage costs. Such criterion seems more natural in adaptive 
control problems, and the findings on exponentially fast approximation of average 
optimal policies [10] are suitable techniques here. Finally, observe that from the 
proof of Theorem 5.6, some estimation of rate of convergence of El $(xt)at) and 

l€\ 

Ex$(xt) at) can be made if one uses the estimations of E \\p — pt\\
q/ in [11]. 

APPENDIX 

Lemma A. The set D = D\ D D<i defined in (4.2) and (4.3) is closed and convex 
subset of Lq. 

P r o o f . We start proving that D is closed. Let fin £ D be a sequence such that 

l*n —^ p, € Lq. Suppose /i ^ Di, i.e. there is A C 5ft* with m(A) > 0 such that 
p(s) > p(s), s e A (m is the Lebesgue measure on 9ftfc). Then, for some 6 > 0 and 
A! c A with m(A!) > 0 

fi(s) >p(s) +6, 5E-4 ' . (A.l) 

Since \in E -Di, n G N, there exists H C $k with m(H) = 0 such that 

t*n(s)<p(s), s£Kk\H, neE. (A.2) 
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Joining (A.l) and (A.2) we get 

Ws)-fn(s)\>6, seA'r)(ftk\H), raGN. 

Since m(At C\ ($lk \ H)) > 0 we see that fin does not converge to /i in measure, 
that contradicts to the convergence in Lq. 

Now, to prove that p G -D2, using the fact 

/ W[F(x, a, s)] \in(s) ds < PW(X) + 6, (x, a) G K, n G N, 

it suffices to show that 

ÍW[F(x,a,s)]џn(s)ds-*fw[F(x,a,s)]џ(s)ds as n 0 0 , 

3 ř f c »fc 

for all (a:, a) GK . By (3.3) W[F(x,a,s)] < W(x)<p(s), (x,a) €K , s 6 ft*. Hence, 
for any fixed (x, a) €K , and e = (q— l)/2 

Jw[F(x,a,s)][џn(s)-џ(s)]ds < W(x) \ J <p(s)[џn(s) - џ(s)]ds 

зг f c З ř f c 

< W(x)y*^)K(*)-M*)l(1"2°/2|Pn(5)-^)l(1+2£)/2d* (A-3) 
** 

Applying the Holder Inequality and taking into account that /.,/.., € Di we obtain 

I < W(x) 

< W(x) 

яtk 

< MW(x) 

J <p2(s) \»n(s) - ^(s)^ ds J \»n(s) - »(s)\1+2e ds 

Rfc J LsRfc 
i -
2 

J ^(sjVrts)?-2* ds j\»n(s)-n(s)\1+2e ds 

J\»n(s)-»(s)\1+2°ds 

Lзî fc 

ì 
2 

(A-4) 

due to Assumption 3.3(c). 

Since q = 1 + 2e and \xn —̂> /i, the right-hand side of inequality (A.4) vanishes 
as n —» oo. 

To complete the proof of closeness of D we have to check that /i is a density on 
9J*. It is evident that \i > 0, almost everywhere. 
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On the other hand, similarly to (A,4) 

1 - / fi(s) ds < / \pLn(s) - fi(s)\ ds 

< 

дtъ 
1 2 

J\Џn(s)-џ(s)\1+2eds 
Lзг* 

< M, / \p,n(s) - p.(s)\1+2e ds 

SR f c 

0, a s n - ^ co, 

because (p(s) > 1, s G ^ f c -

The convexity of D i a n d Di is verified directly by using definitions (4.2) and (4.3), 
D 

Taking into account the inequalities (A.3) and (A.4) we get the following. 

Corollary A. Under Assumptions 3.3 and 4.1 

J <p(s) \Pt(s) - p(s)\ ds < M\\pt - P\\f, t € N. 

зг* 
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