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ROTATION TO PHYSIOLOGICAL FACTORS REVISED 

MIROSLAV KÁRNÝ, MARTIN ŠÁMAL AND JOSEF BÓHM 

Reconstruction of underlying physiological structures from a sequence of images is a 
long-standing problem which has been solved by factor analysis with a success. This paper 
tries to return to roots of the problem, to exploit the available findings and to propose an 
improved paradigm. 

1. INTRODUCTION 

Analysis of image series is a frequent task in nuclear medicine. Reconstruction 
of underlying physiological structures represents an important class of problems 
addressed in this research/application area. 

Analysis of a dynamic scintigraphic study represents a prototype of the task ad
dressed. The patient is administered by a radioactively marked tracer and a sequence 
of planar images is taken above the inspected part of his body. These images are 
supposed to represent projections of a few compartments each characterized by its 
specific dynamics of the tracer. The compartments (factors) should be separated for 
the medical inspection in spite of the fact that their projections overlap. 

The start up of the processing by factor analysis is relatively simple. The counts 
registered above ith pixel of ith picture are put into the entry Da of the data matrix 
D. Using principal component analysis or singular value decomposition, this data 
matrix is well approximate by a matrix whose rank nj coincides with the number 
of the underlying compartments. Thus it is much lower than dimensions of D. This 
approximator can be written as a product of two full rank rectangular matrices. 
The left-hand one M should ideally contain factor images: the brightness above 
each entry is proportional to the volume of the individual compartment projected to 
the corresponding pixel. The right-hand matrix multiplier C should ideally contain 
factor curves: time responses of respective compartments to the applied tracer. 

There is, however, infinitely many decompositions with the identical ability to 
approximate the given data as the joint multiplication of M from right by a regular 
(rotation) matrix T and C by T"1 from left keeps the product unchanged. Majority 
of the "equivalent" factors is useless for medical interpretation. The choice of a 
proper T (called rotation problem) is the key obstacle in the discussed applications. 

A substantial progress can be recorded in this respect, e.g. [4, 5, 6]. However, 
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as it happens with any outcome of long-term research, the number of layers forming 
the current solution is relatively high and mixed from various concepts, ideas and 
algorithmic steps. As it should be done with any (successful) outcome of such 
research, a time moment comes to stop, to revise results and to get rid off unnecessary 
layers. This paper tries to make this in the addressed area and brings a simple 
and efficient algorithm for solving the important problem of rotation to so called 
physiological factors. 

2. DATA AND BACKGROUND SUBTRACTION 

A sequence of images is organized in an (n, m)-matrix D of measured data, consisting 
of counts above particular pixels, i.e. Da G {0,1,2, . . .} . Its tfth column corresponds 
to tth image (tfth time) and ith row contains data collected above fth pixel of the 
linearly ordered images. 

Discrete data values measured above particular pixels have the Poisson distri
bution truncated by a finite sensitivity window of the recording apparatus. The 
expected value E of the data D is unknown and non-negative (E > 0: this and sim
ilar matrix inequalities are understood entry-wise). For a given F7, the individual 
entries of D are conditionally independent. 

The overall estimation algorithm to be designed analyses a finer structure of the 
expected value. Here, we deal with the background subtraction only. It means that 
the following form of the expected value is assumed. 

Eit = Eit + Bt) i= l , . . . , n ; * = l , . . . , m ; £ > 0, B > 0. (1) 

This decomposition is not unique. We are, however, searching for the decomposition 
in which the highest possible part of E is attributed to the background (curve) J5. 

Applied doses are kept as low as possible so that we can assume that the trun
cation effect can be neglected. Due to the assumed conditional independence of the 
observed data and form of the expected value we can treat the problem column-wise 
(image-wise). Thus, for each fixed £, we observe n-vector with entries rf,- = Da with 
the expected value e,- = e,- + 6 = Ea + Bt, i = 1 , . . . , n. The conditional probability 
of the (conditionally independent) entries is 

P ( ^ | e ) = r ( ^ + 1 ) e x p [ - - e , ] (2) 

where T is Euler gamma function. 

We need the following simple proposition. 

Proposition 1. (Bayesian prediction of Poisson data) Let e,- = /i for i = 1 , . . . , k 
for some k < n and the conjugate (self-reproducing) prior probability density func
tion (pdf) assigned to \i be chosen. It has the form 
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It is given by prior "statistics" K(0) > 0, d(0) > 0. 
Then, the predictive probability of dk has the form 

r,(du A . - [" (* - - )1**- 1 ) + 1 r(rf(*) + i) 

with 
rc(jfc) = K(k - 1) + 1, d(k) = d(Jfc - 1) + d*. (5) 

For A: = 1, the formula (4) gives a prior prediction of data determined by the prior 
"statistics" K(0) > 0, d(0) > 0 that otherwise initiate the recursions (5). 

Proof . A direct application of the chain rule and of the formula for predictive 
pdfs [3]. • 

Let us consider a pair of data d\y d2 from a single image. They have a common 
expectation if they reflect just background, cf. (1). Their expectations differ if just 
one of them reflects background. This simple observation lies in the root of the 
proposed test. We formulate two hypothesis: 
H: expected values of di, d2 coincide with the prior probability 0.5 
7i: expected values of d\} d2 differ with the prior probability 0.5. 

It holds: 

Proposition 2. (Bayesian test on equality of expected values of Poisson data) Let 
the prior pdf assigned to all considered expected values be in the conjugate form 
(3). 

Then, the test ratio £ is given by 

( E P(И|-1,<Í2) 
p(H\di,d2) L«(2)J 

«(-)' i -t-)+- г_.mi -W+- Г(d(2) + l)Г(d(0) + 1) «(1) 

K(O) J r(d(i) + i)r(d(o) + d2 +1) 

Proof. A direct application of Bayesian identification [3] and the formula (4).D 

The Proposition 2 gives a direct hint how to estimate the background value 6: 

1. Take the smallest value among observations as d\. 

It is expected to have background as its mean value. 

2. Find such a value d2 for which the ratio £ in (6) is small enough. 

Often, C = 1 suffices. 

3. Take the mean value of the data in the range [tfi, cfe] as the point estimate of 
the background. 

By construction, all data in this range have (with high probability influenced 
by Q a common expectation equal to the background. Then, the problem re
duces to estimation of it from conditionally independent data with the Poisson 
distribution 
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Remarks . 

1. The described algorithm is applicable to typical dimensions (n « 4000 m w 
100) of the considered application. 

More sophisticated hypothesis could be formulated at the prize of the increased 
computational burden. The possible gain is conjectured as negligible. 

2. Let our prior guess of mint- dt- be some 6 > 0 and we admit that 100% uncer
tainty of this guess. With this knowledge we should choose the following prior 
values of statistics 

K(0) = 1/6, d(0) = 0. (7) 

3. The solution of the equation for d2 attaining the critical value can be made 
before-hand and tabulated. At this moment, a simple straight line d2 = 5 + 
1.5di seems to be sufficient for C ~ 1-

3. DATA AND THEIR DENOISING 

For the background removal, the Poisson character of observed data is important as 
we have to analyze pixels with low expected values. Hereafter, we concentrate on 
pixels with higher expected values. Thus, we can approximate the data distribution 
by a normal one. Recall that entries of the data matrix are assumed to be indepen
dent when conditioned on parameters of their distribution. We assume, moreover, 
that the variance of data is constant. Quality of this approximation can be influ
enced by a proper normalization of data which is not elaborated here. The simplest 
initial balance can be gained by normalizing columns of D to a common value. In 
the context of this paper, it is important that it corresponds to a multiplication of 
the data matrix from right. 

For a notational simplicity, the symbols D, E are preserved even after background 
removal and the discussed normalization. Thus, the observed data can be written 
in the form 

D = E + M oDit = Eit+Mit, i = 1 , . . . , n; t = 1 , . . . , m (8) 

where N is a zero mean (matrix) noise with independent (approximately) normal 
entries with a constant variance. Let the matrix of expected values E have rank 
nj where nj < min(n,m) is the number of different dynamic structures (factors) 
considered. The estimation of the number of factors is discussed in [2]. Here, this 
number is assumed to be known. 

It is well known, e.g. [1], that the maximum-likelihood estimate of a low-rank 
E can be gained from singular value decomposition of the data matrix D = SVV 
where S is an orthogonal (n, n)-matrix, V an (n, m)-matrix containing only nonzero 
(non-negative) values on its main diagonal and V is an orthogonal (m, m)-matrix. 
The constructed estimate is E = SVV where V keeps just nj largest values of V. 
Practically it is reasonable to compute this estimate without an explicit use of the 
singular value decomposition as follows. 
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1. Compute the positive semidefinite symmetric (m,m)-matrix D'D. 

2. Find orthogonal eigenvectors corresponding to its n/ largest eigenvalues and 
store them into (m,n/)-matrix, say V. 

3. Evaluate the desired estimate according to the following formula 

E = DVV. (9) 

For further considerations, it is important that this procedure multiplies the original 
data from right only. Let us assume that the noise is suppressed sufficiently by this 
procedure, i.e. we can practically assume 

E = EVV' **E = DVV. (10) 

Possible negative entries of E may be attributed to the imprecisely determined 
background. It may be and will be corrected in this stage by subtracting the mini
mum value from each column. With this step, we have E > 0. 

4. THE KEY PROBLEM 

The structure of the expected value E makes the addressed problem specific. We 
assume that E has rank n$ < n,m as it is a superposition of n/ compartment. 
Both underlying volumes (factor images) and flows of the traces (factor curves) are 
non-negative by their physical nature. This explains why we assume (similarly as 
other authors inspecting the problem) that 

E = MC, M > 0 , C > 0 , rank(M) = rank(C) = n , (11) 

where M = [M;*] is the (n,n/)-matrix of non-negative factor images; C = [Ckt] is 
the (n/, m)-matrix of non-negative factor curves. 

The decomposition (11) is not unique. The non-unicity represents the key prob
lem addressed within the research reported. Formally, the problem is caused by 
the fact that any regular rotation (n/ , n/)-matrix T, such that M = MT > 0, 
C = T~lC > 0 defines the decomposition indistinguishable from (11). 

We want: 
1. To propose conditions with a clear and physiologically acceptable meaning under 
which the decomposition (11) is unique. 
2. To propose a computationally feasible algorithm that provides estimates of M, C 
in a reasonable computational time for realistic dimensions n « 4000, m « 100, 
nf « 5. 

5. UNICITY 

The proposed solution relies on the widely (but not universally) acceptable assump
tion that the factor images M do not overlap completely. In other words, there are 
pixels in which just a single factor image manifests itself. It means that we adopt: 
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Assumption 1. The matrix M in (11) contains a regular diagonal sub-matrix. 

Proposition 3. (Rotational Unicity) The matrix M in (11) fulfilling Assumption 
1 is unique up to a positive scaling and permutation of its columns. 

Proof . Let M = MT = MT > 0 where M,M > 0 contain diagonal matrices. 
Thus T, T > 0. We can assume that the diagonal matrix in M is unit matrix I. This 
special case can be reached by the same permutation and scaling of both matrices 
M, M. Let A > 0 be the (square) submatrix of M at the position where the unit 
matrix is in M and J.et A >J) be the submatrix of M at the position where the 
diagonal submatrix D is in M. Then, T = AT and AT = DT. A combination of 
these equalities leads to (D — AA)T = 0. This identity and regularity of T imply 
that the non-negative matrix AD"1 = A"1. Thus both A and A have to be diagonal 
matrices as the non-negative matrix with non-negative inversion has to be diagonal 
(see below). It implies the claimed unicity M = MTT"1 = MA"1, i.e. equality up 
to normalization. 

It remains to show that the non-negative regular matrix A with a non-negative 
inversion has to be diagonal. Let us make a complete induction over the dimension 
/ of the matrix A. 

For / = 2, 

A-1 = ИГ1 -A22 — -4l2 
-A21 Aц 

If the determinant |_4| is positive then A12 = A21 = 0 in order to guarantee the 
non-negativity of both A and A"1. If \A\ < 0 then An = A22 = 0 and A becomes 
diagonal after a suitable permutation. 

For a general /, the matrix A and its inversion are split into blocks 

Л C 
Ь' d A-* = e 9 

where dye are non-negative scalars and ; denotes transposition. The formula for 
inversion of the block-split matrix implies that 

e = (d - b'A-xc) > 0, /' = -b'E/d > 0, g = -A-xc/e. 

Consequently, / = 0 and thus E = A"1 is a diagonal matrix by induction and g = 0. 
D 

In the rest of the paper, the assumed diagonal matrix is normalized to unit matrix. 

6. SOLUTION 

First, we describe the algorithm DIAMAX whose complexity is well within the ac
ceptable range. Then we prove that it provides information needed for obtaining 
the desired solution. 
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Algorithm DIAMAX 

1. Drop non-positive rows of E. 

2. Normalize rows of the gained matrix so that sum of their elements equals to 
unity. 

The resulting matrix is denoted G. 

3. Define the row vector with nj entries 

1 m 

n *—** n , = l 

where G,* denotes ith row of G. 

4. For / = 1 , . . . , n/ select 

cle Arg max V \\Gim - &~x\ 

where | |x| | = max i 6 { 1 B / } \XJ\. 

5. Define estimate C of the normalized filtered curves C = CW 

- C 1 

C'= : 

Cnt 

(12) 

Note that the algorithm is finite and requires « n * m * nj operations. Only 
the step 2 contains operations corresponding with (diagonal) multiplication of data 
from left, i.e. up to this minor and recoverable distortion, the factor images M are 
untouched during the processing proposed. 

With the gained results, it is straightforward to find the desired estimates: 

1. Define the estimate M of factor images M by the formula 

M = EC(CC')-1- (13) 

2. Find the final estimate B of the background B as the mean of the difference 
(the original data — estimate of the expectation E)) i.e. mean of the rows in 
the matrix D — MO. 

3. Compute the final estimates of C from the regression on original data without 
background 

D-lnB' = MC' + AT. (14) 

where l n denotes n-vector of units. 
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Proposition 4. (Properties of DIAMAX algorithm) Under assumptions of Propo
sition 3, DIAMAX determines the filtered curves C corresponding (uniquely) to the 
matrix of the factor images M that is searched for. 

Proo f . The definition of G and non-negativity of M imply that rows of G are 
convex combinations of the rows of the matrix C normalized to unit row sums. 
These normalized rows we denote C\ I = 1 , . . . , n/. Moreover, the vector C° is by 
construction strictly in the non-degenerated (due to the full rank of C) convex hull 
spanned over C. 

For any (•?»•*, i = 1 , . . . , ra, it holds 

HO..-O°ii = J2a)C>-C< 
J'=I 

X>j(O>'-Co) 
i=i 

"/ 
< $>;| |(O ' -C°)| |< max \\Ck-C°\\ 

where aj are the weights of the convex combination creating G,+ from C7, j = 
1 , . . . ,n / . Their non-negativity and unit sum are exploited in the second equality 
and the both inequalities. Otherwise just the triangle inequality is used which holds 
for the norm chosen. 

If we take such G,> that coincides with the maximizer in the last inequality we 
see that the upper bound is reached for this vector. Thus, the first step of DIAMAX 
selects a row in the normalized C. 

For a generic. / and any G,*, i = 1 , . . . , ra, G,* ^ { C ° , . . . , C1"1} let us consider 
the quantity 

£lK?..-c * - Ц 

J b = l * = i j = i 

Ï * - І I < max V HO' - O fc-ll 

The same properties of the convex weights and of the norm are used as above. And 
again, the upper bound is reached for a still unselected vertex for a still unselected 
row of the normalized matrix C. This determines the position of the filtered curves 
in the normalized vdata (the position where M contains diagonal matrix) as the 
applied normalization does not change position of diagonals in M. The rest of the 
computation consists just of least squares solutions of a set of linear equations. The 
full rank of the involved matrices makes this step simple. • 

7. CONCLUSIONS 

This paper brings a new view on the problems of background removal and of rotation 
in factor analysis that provides an improvement of contemporary solutions. 

An additional improvement can be reached by normalizing data before using 
the singular value decomposition. It should help to overcome the weak point we 
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see: the real noise variance depends on the level of the signal. The solution of 
the rotation problem proposed in the paper can be enriched by any scaling (even 
iterative) procedure whenever it keeps factor images M untouched, whenever it 
reduces to right-matrix multiplication. 
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