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ON FACTORIZATIONS OF PROBABILITY 
DISTRIBUTIONS OVER DIRECTED GRAPHS 

FRANTISEK MATUS AND B E R N H A R D S T R O H M E I E R 

Four notions of factorizability over arbitrary directed graphs are examined. For acyclic 
graphs they coincide and are identical with the usual factorization of probability distribu
tions in Markov models. Relations between the factorizations over circuits are described in 
detail including nontrivial counterexamples. Restrictions on the cardinality of state spaces 
cause that a fact oriz ability with respect to some special cyclic graphs implies the factoriz-
ability with respect to their, more simple, strict edge-subgraphs. This gives sometimes the 
possibility to break circuits and get back to the acyclic, well-understood case. 

1. INTRODUCTION 

During the last two decades graphs have been intensively employed to specify models 
for associations among random variables. Vertices of the graphs correspond to the 
variables and various types of edges give usually rise to assumptions on conditional 
independences or on the form of factorizations of probability distributions, see [4], 
[10] and [2]. Though the focus has been mainly on acyclic or modularly acyclic 
graphs, a progress has been reported also on models with feedback, see [7]. Even 
an elegant generalization of the close relation between the Markov properties and 
Gibbs factorizations, see [5] and [6], was achieved for a very general class of graphs. 

For acyclic directed graphs, the widely accepted models are defined by the recur
sive factorization formula that consists of the product of Markov kernels depending, 
in the condition, on parental vertices. The formula does not necessarily provide a 
probability distribution when extended mechanically on arbitrary directed graphs. 
The starting point of this note was our endeavour to understand those cases when a 
probability distribution does come out and to describe the class of probability dis
tributions obtained in this way; they are called recursively factorizable here. On the 
way, three other kinds of factorizations were found to be of some interest, namely a 
marginal, consistent and projective one. 

By absence of cycles, the four kinds of factorizations coincide and bring nothing 
new. The marginal and consistent factorizations lead sometimes to trivial classes of 
models, see Lemma 2.3. The relation between the projective and recursive factoriza
tions reminds the old classical question about the existence of a positive eigenvector 
of a stochastic matrix, cf. Example 3.3. 

The main attention is focused here on circuits. Under binarity restrictions on 
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cardinality of the state spaces of variables, factorizability over a circuit is proved to 
imply factorizability over a path in the circuit, see Theorem 4.3. This phenomenon, 
called here arrow erasure, occurs also for noncircuits, cf. Lemma 4.6. 

2. BASIC OBSERVATIONS 

Let V be a finite nonempty set of vertices and E C {(u,v) £ V x V; u ^ v} be a 
set of arrows. The pair G = (V, E) is called here graph; usually one speaks about 
the "directed graph without loops and multiple edges". Two opposite arrows (u,v) 
and (u,ti) are allowed at the same time. For every v £ V the elements of the set 
pa(v) = {u E V; (ti, v) E E} are the parents of v and cl(v) = v U pa(v). We make 
no difference between elements v and singletons {v} of V. 

With every vertex v E V, a finite nonempty state space Xv is associated and XA 
stands for the Cartesian product of Xv over v E A where A C V is any vertex set. 
Elements of XA are denoted by XA ; for A = V the subindices are omitted and for 
A = 0 the set X% is supposed to have only one element x$. The coordinate projection 
of X on XA works as x -* xA. Marginals of a probability distribution PA on XA are 
denoted as Pf , B C A. 

Definition 2 .1 . A probability distribution P on X factorizes w.r.t. G = (V, E) 

recursively if P(x) = Y\veV lM*vl*pa( ,°)> x e X> 

for some nonnegative functions ipv on Xv x Xpa(v^, henceforth 

kernels, such that YlyveXv ^v(yv\xPa(v)) — 1» x
Pa(v) € -Xpa(v)> 

projectively if P(x) = Uvev [Qv(x^v))/Qla{v)(xp<v))}, * E X, 
for some probability distributions Qv on Xd(v), v E V, such 

that the projectivity conditions QSa = C T̂ £ale 

piace for any u, v E V, 

consistently i/ P(x) = n , € v [Qcl(v)(xcl^v))/Qp<v)(xPa^)] ,xeX, 

for some probability distribution Q on X, 

marginally if P(x) = \\v£V [pd^\xd^)/ pP<-)(xP<-))] )X£X, 

where 0 in a denominator occurs only with 0 in the corresponding numerator and 
the ratio is then taken as equal to 0. 

If a probability distribution P is marginally factorizable w.r.t, a graph then it 
has obviously a consistent factorization w.r.t. the same graph via Q = P. If P 
is consistently factorizable via Q then it must be also projectively factorizable via 
Qv zz Qcl(v\ v E V. In symbols, MF=>CF=>PF. For (everywhere) positive probability 
distributions the implication PF==>RF holds, defining the kernels ipv obviously as 
(xv\xpa(v)) -* Qv(xv,xpa(v))/Qla(<v)(xpa(v)) for all v E V. 

The following lemma describes factorizations w.r.t. acyclic graphs; G = (V, E) is 
called acyclic if every its path v\,..., vn+\, n > 1, has v\ ^ vn+\. Here the path is 
a sequence of vertices such that (v,-, t>i+i) E E, 1 < i < n. 
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Lemma 2.2. The four kinds of factorizations w.r.t. any acyclic graph coincide. 

P r o o f . It suffices to show PF^RF-^MF and this will be done by induction on 
the cardinality n of the vertex set. For n = 1 every probability distribution on X is 
factorizable in any of the four ways. Let us assume that the implications are valid 
for all acyclic graphs with n > 1 vertices and let G = (V, E) be an acyclic graph 
with n + 1 vertices. A terminal vertex u £ V ((u, v) £ E for all v £ V) of G exists 
and is fixed arbitrarily. 

Let a probability distribution P be PF w.r.t. G via some distributions QVi v £ V. 
Then Pv"u(xv-u) for xv-u £ Xv-u equals 0 or 

pv.u(Xv.u)= n Qvi4{:l)/Qi<v\^) 
vev-u 

according to whether Qu (x^l^) equals zero or not, respectively. We are going to 
show that Qu (^V)LV) = 0 implies Pv-u(xv-u) = 0. In fact, in the opposite case 
we would have J2xex ^ ( x ) < ZCXV-«GXV-U P(XV-U) and, continuing with Pv-u 
over (V — u,E D(V — u)2), a repetition of this reasoning would lead to 1 < 1. We 
conclude pv~u = Pv-U whence the marginal P v " u is PF via QV) v £ V — u. By 
induction, Pv~u is RF via some ^ , v £ V — u. Adding the kernel ipu defined by 
$u(xu\xPa(u)) = Qu(xu,xpa(u))/Qu (xPa(u)) if the denominator is positive and by 
il>u(xu\xPa(u)) = l-^ul""1 otherwise, the probability distribution P is RF w.r.t. G via 

itf> vev. 
If P is RF w.r.t. G via some kernels ^„, v £ V, then the marginal distribution 

Pv~u factorizes recursively with respect to (V — u, E C\ (V — u)2) through the k-
ernels ipv,veV-u. Obviously, P(ar) equals PK~u(xv"u) i / ) t i(xw |^ a( t i)) and then 
pc/(ti)(xci(ti)) = p'«(«)(xpa(ti))^l|(xt«|xPfl(ti))j x G x , by marginalization. The induc
tion assumption implies that P v ~ u is MF and this factorization combined with the 
previous two equalities yield the MF of P w.r.t. G. Note that PP<U)(XP<U>>) = 0 
entails P(x) = Pv~u(xv-U) = 0. D 

Due to Lemma 2.2 all factorizations from Definition 2.1 are generalizations of 
the usual recursive factorization in the Markov models over acyclic graphs, see [4]. 
Whereas the way to the definitions of MF and RF was straightforward, the defini
tions of CF and PF emerged later as alternatives to the MF behaving sometimes 
"pathologically". An example of this behaviour follows. 

Lemma 2.3. Let Kn = (V, E) where V = {1,2, . . . , n } , n > l , and let E contain 
all arrows (u,v) with different endpoints u,v £ V. A probability distribution P on 
X is MF w.r.t. Kn if and only if P is CF w.r.t. Kn and this is equivalent to the 
marginal factorization P(x) = l\veV

 pv{xV)> x 6 X, of P w.r.t. (1^,0). 

P r o o f . The only nontrivial claim is that CF implies the product formula. If 
P is CF w.r.t. the graph then P = YlvevQ/QV~V f° r s o r n e distribution Q on X. 
Since Q is absolutely continuous w.r.t. P the /-divergence I(Q\\P), see [9], [10], 
is a nonnegative real number. This yields (n — l)h(V) > Ylvev M ^ "~ v) w h e r e 
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h(A) is the Shannon entropy of QA , A C V. The set function h is submodular, i.e. 
h(A) + h(B) > h(A UB) + h(A fl P) , for any A, B C V, whence h(V) < "£veV h(v). 
We will prove in a moment that the latter inequality cannot be strict what means 
that P equals the desired product. 

Let Ck denote the sum of h(A) over all A C V of cardinality &, 1 < k < n. We 
know that (n — \)cn > cn_i and want to show that cn > c\. The number 2k(n — k)ck, 
1 < k < n, can be casted into 

Y, {h(u UA) + h(v U A)] A C V, |i4| = k - 1, u, v G V - A} u ± v} 

>(n-k + \)(n - k) cfc_i + k(k + 1) Cfc+i 

owing to the submodularity of h. Thus we see that the inequality 

is valid for £ = 1. If it is valid for some 1 < -? < n — A: — 1 then we combine it with the 
previous one for k —» k+£+1, exclude Ck+t and obtain it also for £+1. By induction, 
the inequality holds for £ = n — 2 and fc = 1, i.e. (n — l)cfc_i > ci + (n — 2)cn and 
we arrive at the desired inequality cn > c\. D 

Informally rephrased, MF = CF over Kn) n > 1, and this amounts the mutual 
stochastic independence. On the other hand, every probability distribution P is RF 
w.r.t. Kn\ even w.r.t. any graph G = (V, E) with V = { 1 , . . . , n} and E containing 
E< = {(i.j); 1 < i < j < n}, n > 1. It is namely always possible to factorize 
P w.r.t. (V, E<) via some kernels xf><, v G K, and then define the new kernels 
^v(yv\xpa(v)) = Vtf(i/t/|yt/<), v e K, where i;< = {w E K; w < v} and yv< is 
the coordinate projection of xpa(v) on Xv<. The new kernels x/>v, v G V, factorize 
projectively P w.r.t. the graph G. 

In the case of K2 every probability distribution is PF, too. In fact, if P is a 
probability distribution on X\ x X2 we set Qi = P and Q2 = P X P 2 . The probability 
distributions Q\ and Q2 satisfy the projectivity conditions Q\ = Q2, Q\ = Q} and 
P factorizes projectively via Q\ and Q2- So that MF = CF=>PF = RF over K2 and the 
implication cannot be reversed. We conjecture that over K3 there exists a probability 
distribution that is not PF (and is RF as we saw above); its construction might be 
similar to the construction of Example 3.3 below. 

Note that if the intriguing projectivity conditions in Definition 2.1 had been 
stated, maybe more naturally, as Qu " ^ n c ^ = Ql^u'nc{<v\ u,v G V, we would have 
had even the pathology by the "projective factorization" over Kny n > 2. 

3. EXAMPLES OF FACTORIZATIONS 

Let V = { l , 2 , . . . , n } , n > 2, and E = {(V,v) G V2]v e V} where t r = v - 1 for 
1 < v < n and v~ = n for v = 1. The graph Cn = (V, i£) is called a circuit. In 
this section all factorizations are w.r.t. C3. The situation is more interesting than 
over C2 = K2. Namely, in the chain of implications MF=>CF=->PF=->RF, the last 
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one owing to Lemma 4.1 to be proved in the next section, no reversion occurs. The 
following three examples and figures demonstrate it, respectively. 

Example 3.1. (CFy^MF) Let X\ = X2 = X3 = {0,1} and the probability dis
tribution P o n I = {0, l } 3 be given by P(x\x20) = 1/s for xi,x2 E {0,1} and by 
P(001) = V2, see Figure 1 left. Obviously, this distribution P is not MF because 
P(00l)P1(0)P2(0)P3(l) equals V2-3/4-3/4--/2 whereas P 1 2 (00)P 1 3 (01)P 2 3 (01) equals 
5/B • V2 • 1/2- However, P factorizes consistently through the probability distribution 
Q given by Q(000) = Q(110) = 1/16, Q(100) = Q(010) = 3/16, and Q(001) = 1/2, 
see Figure 1 right. Indeed, owing to Q 1 2 = Q 1 • Q 2 , Q 1 3 = P 1 3 , and Q 2 3 = P 2 3 the 
equality 

P = Q^/Q1 • Q23/Q2 • Q13/Q3 

is equivalent to P • P3 = P13P23 what is the case. 

Њ 

A 

0 a 
1 

/s 

Њ / / 

3/16 

0 

/ / 
/16 

1/8 Vs Vie 3/l6 

F i g . 1. The left distribution is CF via the right one, but not MF. 

Example 3.2. (PF-^CF) Let the state spaces be exactly as in Example 3.1 and 
let us take P(x) = 1/4 for x equal to 000, 100, 101 and 111, see Figure 2. The 
probability distribution P is PF via Qi = P 1 3 , Q 2 = PlP2 and Q 3 = P 2 3 by the 
same argument as in the previous example. We claim that P is not CF; if it were 
through some probability distribution Q on X then Q2 3(10) = 0 and Q1 3(01) = 0. 
Further, 

P(100) _ Q 2 3(00)Q 1 3(10)Q 3(1) Q1 3(10) = Q(100) 

" P(101) ~ Q 2 3(01)Q 1 3(11)Q 3(0) ~ Q2 3(01) " Q(101) 

whence Q(100) = Q(101) = b. From 

Q(000) _ Q(000) 
P(000)= 

Q2(0) Q(000) + 26 
= P(Ш) = 

Q(lll) _ Q(lll) 

QҶl) Q(lll) +26 

we deduce Q(000) = Q ( l l l ) = a. Then 2a + 26 = 1 and P(000) = Vi = a/(a + 26) 
imply a = 1/5 and 6 = 3/io. But, i/4 = P(100) -i (3/5 • 1/2 • 3 / I O ) / ( 4 / S • 4/s • 1/2), 
a contradiction. 
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/ / 
V4 

0 

/ / 

A 

V4 V4 
Fig. 2. This probability distribution is PF but not CF. 

Example 3.3.* ( R F ^ P F ) Let Xx = X2 = X3 = {0,1,2} and let a distribution P on 
X be given by P(x) = i/8 for x E {000,222} and P(x) = 1/4 for x G {100,010,001}, 
see Figure 3 left. Let us suppose that three kernels ip\)ip2,ip3 factorize recursively 
P as ipiift2 fa. Then 

V64 = p(ioo)p(oio)E(ooi) = n V»«(i|o)^(o|o)^„(o|i) < n i/4V»(0|l) 
vev vev 

and we obtain tf?v(0\l) = 1 and ^„(1|0) = ^v(0|0) = l/2, v E V = {1,2,3}. 
On the other hand, if a triple of kernels satisfies the previous nine equalities and 
Yivev ^«(2|2) — Vs t n e n P — ^1^2^3, as in Figure 3 right. Hence, P is RF and we 
found even all triples of kernels providing this kind of factorization. 

If the probability distribution P were PF via some Qi, Q2l and Q3 then the 
marginals Q\ = Q\, Q\ = Q\, and Q\ = Q | must be positive probability distribu
tions and tpi = Q\/Q\) ip2 = Q2/QI, and ^3 = Q3/Q3 are three well-defined kernels 
factorizing P recursively into ipiip2ip3. But then we can compute 

Ql(xs) = J2 fo(x3\x2)Ql(x2) = X! ^3(^3^2) J ] ^2(a?2ki)0l(-ci) 
x2ex2 x2ex2 .^iGXi 

= X.̂  Mx*\x2) J2 2̂(̂ 1̂ 1) Y Mxi\ys)Q33(y3) = Y, tfalysWlto) 
x2ex2 xxexx y3ex3 ysex3 

where 
<f>(x3\y3)= Y Y ^1(^1^3)^2(^21^1)^3(^31^2) 

x^eXi x2ex2 

is a kernel on X3 x X3. If </> is considered for a 3 x 3 matrix with its rows indexed 
by t/3 = 0,1, 2 and columns by #3 = 0,1,2, then 

5 /8 3 /8 0 
3 /4 V4 0 
a b Vs 

where a > 0 and 6 > 0 depend on ipi>ip2) and ^3 and a+6 = 7/s. Hence, we know that 
(Qi(0)>Ql(l)>Qi(2)) is a positive left eigenvector of the stochastic matrix <j>. This 
matrix has, however, no positive left eigenvector what contradicts the assumption 

*Cf. Theorem 8 in [8], p. 33, where the assumption of positivity is missing. 
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P be PF. In fact, a or 6 is positive whence 0,1 are its transient states, see [1], 
Theorem 3.10, p. 40. 

V4 

V8 V4 

V8 
/ / 

/ / / 
/ / / 

V4 
Ż / 

Њ 

Њ 

^3(2|2) 

ЫФ) 

V>l(0|2) ^ i ( l | 2 ) t/>!(2|2) 

1 0 

V2 V2 

V-2(2|2) 

l / 2 1 T / , 2 ( 0 | 2 ) 

F i g . 3 . T h e left probability distribution is RF but not PF. 

4. FACTORIZATIONS OVER CIRCUITS 

In this section the implication PF=>RF w.r.t. Cn announced earlier will be demon
strated. Under restrictions on cardinalities of the state spaces also the reversed 
implication appears to be true. Stronger restrictions of this kind cause the arrow-
erasure-phenomenon as exhibited in Theorem 4.3 and in Lemma 4.6. 

Lemma 4.1. The projective factorization w.r.t. a circuit implies the recursive 
factorization w.r.t. the same circuit. 

P r o o f . If P is PF w.r.t. C n , n > 2, then P = Y\vev Qv/Ql f° r some distri

butions Qv on X{v,v-}) v G V, satisfying the projectivity conditions Ql = QJJ-, 

v G V. Let us denote by Yv = {xv G Xv\ Qv

v(xv) > 0}. One defines 

Фv(xv\xv-) = < 

Qv(xv,xv-)IQV

V (xv-), 

lni-1, 
. o, 

xv— t : Yv— y 

xv- ţ Yv-, xv G Yv, 

xv - (jE Yv -, xv ţ Y v . 

We claim that P factorizes projectively via ^ i , . . . , ipn. For x G Yi x • • x Yn, this is 
obvious. If x G X has its coordinate xv in Xv —Yv for some v G V then P(x) = 0. In 
this case also tj)v(xv\xv-) is equal to zero when xv- G Xv- — Yv- (by the definition 
oirpv). Otherwise ipv(xv\xv-) does not exceed Qv

v(xv)IQv
v-(xv-) = 0. • 

Proposition 4.2. If a probability distribution P on .K is RF w.r.t. Cn, n > 2, and 
|XV | < 2 for at least one v eV then P is also PF w.r.t. Cn. 

P r o o f . Without any loss of generality we can assume \Xn\ < 2. Let P have a RF 
over Cn = (V,E) via ^ i , . . . , ^ „ . If ^i(xi\xn) = i>i(xi\yn), xx G Xu XrnVn G X n , 
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i.e. tpi does not depend on its condition, then P has a RF over (V, E — {(n, 1)}) 
and then by Lemma 2.2 P is MF over the latter acyclic graph. Hence, P is PF over 
Cn via Qv = PvUv , 1 < v < n, and Q\ = P1 • Pn. From now on we can suppose 
X„ = {Ofl}. 

Let <j) be the Markov kernel on Xn x Xn given by 

<Kxn\Vn)= ^2 " X ) 1>l(xi\yn)ll>2(x2\xi)--ll>n(Xn\Xn-l) 

and let us assume first <f)(l\0) = 0. We set ip[(x\\xn) = "0i(.ri|0) for x\ G Xi , 
-Cn € Xni and claim that the kernels fa, ^2, • - •, fa provide a RF of P over (7n. This 
is obvious for x G X such that x" = 0. In the opposite case, xn = 1, we observe that 
the product fa - • •</>„ sums to 1 whence 0 = 0(O|O) + ^(1|1) - 1 = <£(1|1) = Pn(l) 
and thus P(x) = 0. At the same time, 0 = <£(1|0) > ^ ,

1(x1 |xn) • • -fa(xn\xn'1). We 
conclude that P has also the RF fa fa '"fa with the factor fa not depending on 
its condition and that P is therefore PF. In the case <£(1|0) = 0, or symmetrically 
0(O|1) = 0, we are done. 

Let both a = <̂ >(110) and b = ^(0|1) be positive. The positive distribution Rn 

on Xn given by Rn(0) = a/(a + b) and Rn(l) = b/(a + b) is stable for the kernel tf>. 
That means Rn(xn) = J2ynexn <P(xn\yn)Rn(yn), xn G Xn. We define recursively 
Qv =z faRv- and iZ„ = Qv

v for 1 < t; < n and Qn = faRn-\. These Qv, v G V, 
are claimed to provide a PF of P. Namely, the projectivity conditions are satisfied 
by the definition and by the stability, Qn = Rn = Qn. Further, P = rpi---fa 
equals (Q\/Rn) (Q2/R\) • • • (Qn/Rn-i) obviously for x G X such that the product 
R^x1) • • Rn(x

n) is positive. In the opposite case, we take the smallest 1 < v < n 
such that Rv(x

v) = 0 and deduce the inequality 0 = Qv
v(x

v) > fa(xv\xv')Rv-(x
v"), 

i.e. fa(xv\xv ) = 0. Note that the positivity of Rn was crucial. • 

As a consequence we see that Example 3.3, witnessing RF̂ -> PF over C3, is minimal 
not only because the underlying graph has the smallest possible number of nodes 
and arcs but also because all its state spaces have minimal possible cardinalities. 

Let us remark that the assumption on the binarity of a state space in Proposi
tion 4.2. can be replaced by the assumption on positivity of P. The proof then works 
similarly (the Markov kernel <j) is now positive and does have therefore a positive 
stable distribution Rn). 

Theorem 4.3. If a probability distribution P on X is RF w.r.t. Cn> n > 2, through 
some kernels fa, v G V, and \XV\ < 2 for all v G V then fa(xv\xv-) = fa(xv\yv~), 
xv G XV1 xv-,yv- G Xv- for at least one v G V. 

P r o o f . When some state space Xv is a singleton, the assertion is valid trivially. 
We can take therefore Xv = {0,1}, v G V. If P = fa fa over C2 then 

0 = 1 - £ ^i(0|x2)^2(«2|0) + [1 - ^i(0|x2)] V^2(X2|1) 
x2£X2 

= [1M0I0) - tf 1(010] fø(o|o) - ifc(o|i)l 
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so that either ipi or \\)2 does not depend on its condition. 
If P = xpi • • • V>n over Cn , n > 3, the kernel ipn on Xn x X\ defined by 

^°n(xn\xi)= J2 " 5Z to(x2\xl)'~1>n(xn\xn-i) 

suits to the factorization P^1**1} = il>itl>n w.r.t. ({ l ,n} , {(l,n)(n, 1)}). Hence, being 
over C2i either ^ (^ l .O) = ipi(xi\l), x\ G X\, and we are ready or necessarily 
ip°n(xn\0) = ^n(a?n|l), *n G X n . In the second case, ^n(0|0) + C ( 1 l 1 ) = 1 a n d t h e 

product Q = <5î 2 * • m*I>n sums to one over X. Here 6i(-Ci|xn) = 1 or 0 according to 
xi = xn or not. This argumentation is repeated cyclically doing the next step with 
the probability distribution Q. If every kernel rpV) v E V, depended on its condition 
then the product R = 6\ • • -<5n would sum to one, a contradiction to the obvious 
£ * e x *(*) = -.. D 

No single restriction on the cardinality can be relaxed in Theorem 4.3. 

Example 4.4. Let X\ = {0,1,2}, X2 = X3 = {0,1} and the probability distribu
tion P be given by P(000) = V2 and P ( l l l ) = P(211) = V4, see Figure 4 left. This 
probability distribution is RF w.r.t. C3 via the kernels given in Figure 4 right. Each 
of the kernels depends on its condition. 

ІA Î/4 

V2 

y2 Vt V* 

1/2 1/2 

1 0 0 

Fig. 4. A projective factorization w.r.t. C3 without ctrivialVkernels. 

Theorem 4.3 can also be verbally reformulated as follows: under the binarity 
restrictions on all state spaces any of the RF, PF, CF and MF over a circuit implies 
any of the RF, PF, CF and MF over a path contained in the circuit, cf. Lemma 4.1 
and Lemma 2.2. In other words, at least one arrow of the circuit can be erased 
gaining the acyclicity. It seems also worthwhile to comment the reverse direction 
under the binarity: it is not difficult to see that RF(=PF = CF = MF) over a path 
in Cn implies only RF(=PF) over Cn and not MF and CF over C n , n > 2, cf. 
Example 3.1 and Example 3.2, respectively. 

Example 4.5. Let Xi = X2 = {0,1,2}, X3 = {0,1} and P be given by P(x) = 1/4 
for x equal to 000, 101, 211 and 220, see Figure 5. This distribution is MF w.r.t. C3, 
but since no conditional independence is present, P is not factorizable w.r.t. a path 
in C3. We do not know whether such an example with two two-element state spaces 
exists. 
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V4 

1 l4 Л 
/ / 

/ 

74 

/ 

74 

/ / 
V4 

Fig. 5. A distribution that is MF w.r.t. C3 but not w.r.t. any path. 

If instead of RF even MF is assumed in Theorem 4.3 then the assertion can be 

reformulated equivalently as plv>v ) = Pv • Pv for at least one v £ V. Here, a 
special attention deserves the graph C3 because this pairwise independence takes 
place even for at least two v £ V. In fact, if for example the kernel ^3 = P23/P2 is 
trivial then P23 = P2 • P3 and P = p™p™/pi and this entails, by Theorem 8.3 
of [3] on p. 615, P = P12P3 or P = P 2 P 1 3 . This observation is employed in the last 
lemma to show another instance of the arrow-erasure. 

L e m m a 4 .6 . If a probability distribution P is MF w.r.t. the graph G = (V, E) of 
the Figure 6 and \XV \ < 2 for all v £ V then there exists v £ {1 ,2 ,3} such tha t P is 
MF w.r.t. the acyclic graph G = (V, i? — {(v~, ^)}) (at least one arrow of the outer 
circuit C3 can be erased). 

T " 2 -

Fig. 6. A graph admitting the arrow erasure. 

P r o o f . We can suppose tha t the marginal P° is positive on Xo = {0,1} otherwise 
P = p ° p 1 2 3

 a n d one can immediately apply the arrow erasure over C3. Knowing 
that 

p013 p012 p023 
pO 

pOЗ pOl p02 

we fix XQ = 0 from XQ and set Q(0)(xiX2Xs) = P(XOXIX2XS)/P°(XQ) for all a?i, #2 

and #3. The probability distribution Q ( 0) on X\ x K2 x X3 is MF w.r.t. C3 and 

thus, for at least two v £ {1.2,3}, QJ0) 
{ü,V } 

Q(o) * Qr'o) • This consideration is 
repeated with XQ = 1 and its corresponding conditional distribution Q(1) getting 

again another two vertices v £ {1 ,2 ,3} such tha t Q\x 
{v,v } 

QVi) ' QVi) • Hence, we 

arrive at P * 0 ' ^ > = pi0>»}p{°>» ) / P ° for at least one v £ { 1 , 2 , 3 } . This equality, 
subst i tuted into the start ing MF of P , gives the MF of P w.r.t. the acyclic graph 
G = (V,E-{(v-,v)}). 

a 
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5. CONCLUSION 

The following diagram summarizes our knowledge about relations among the four 
kinds of factorizations. 

marginal factorization consistent factorization] 

recursive factorization projective factorization 

A full arrow means the implication and a dotted arrow existence of a counterex
ample to the implication. We do not know whether MF=-.>RF, CF=.>RFand PF=.>RF. 
Note that over Cn or Kn by n > 2 or over a graph with at most three vertices the 
three missing arrows were full. To clarify the three open implications, cyclic graphs 
with at least four vertices must be examined. 

Under the binarity restrictions and a fixed kind of factorization, another open 
and difficult question is to find all graphs that admit the arrow erasure for this kind 
of factorization. 
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