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ESTIMATION AND TESTING OF COINTEGRATION
RELATIONSHIPS WITH STRONGLY SEASONAL
MONTHLY DATA!

EMILIo CAMINERO? AND IgNAcio Diaz-EMPARANZA

This paper extends the method proposed in [8] for quarterly nonstationary data, consid-
ering the estimation and testing for seasonal cointegration relationships when dealing with
strongly seasonal monthly data. The testing procedure is based on the maximum-likelihood
estimation of the ‘error correction mechanism’ for the vector of series considered. Finite
sample critical values for the cointegration test statistics at every frequency of interest are
obtained by Monte Carlo simulations. Finally, tests are applied to Spanish production
indexes data.

1. INTRODUCTION

The concept of cointegration defined in [4] allows us to describe the existence of a
stationary or equilibrium relationship among individually nonstationary time series.

In economic applications, series that are integrated of order one, I(1), are fre-
quently found an.ong which the existence of possible cointegration relationships is
analyzed. On the other hand, many economic series exhibit a strong seasonality
which can be characterized by the presence of seasonal roots with modulus one.
Series of this type show peaks in their spectra at the corresponding seasonal fre-
quencies. *

In [6] (HEGY) the standard cointegration technique is extended to include the
possibility that the data present unit roots at seasonal frequencies, suggesting the ap-
plication of an Engle & Granger type two-step testing procedure to the appropriately
filtered series. [8] extends the method developed in [7], which tests for the existence
of cointegration relationships among different time series (annual data) as well as
the number of possible cointegrating vectors. In his extension [8], Lee considers
quarterly data and the possible presence of unit roots at seasonal frequencies as well
as at zero frequency. His method is based on the maximum-likelihood estimation of
the error cc.rection mechanism for the observed vector of series, and cointegration

1We acknowledge financial support from the U.P.V. through Research Project 038.321-
HB232/95.

2Grant Holder of the Research Training Program awarded by the Education, University and
Research Department of the Basque Government.
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tests are set out at each frequency individually with no prior knowledge about the
presence of unit roots at the remaining frequencies. These cointegration tests are
developed on the basis of the coefficient matrices of the error correction model.

The aim of the present paper is to extend the testing procedure based on the
maximum likelihood estimation developed in [8] to monthly processes.

Section 2 of this paper presents a generalization of the integration and cointe-
gration issues for the definitions of seasonal integrated process and seasonal cointe-
gration. The appropriate error correction mechanism for strongly seasonal monthly
data is set out in Section 3. Section 4 extends the general framework of the testing
strategy for cointegration considering processes that present unit roots at zero fre-
quency and/or at any seasonal frequencies of interest. The likelihood ratio statistics
are derived in each case. A particular case of full cointegration, where all cointe-
grating vectors coincide, is included in subsection 4.4. In Section 5 the finite sample
distributions of the statistics are analyzed by simulation. An example illustrates the
implementation of the tests in Section 6. Section 7 presents our conclusions.

2. GENERAL DEFINITIONS OF INTEGRATION AND COINTEGRATION

In recent time series literature the concepts of integration and cointegration have
been frequently used to describe the permanent behavior of many macroeconomic
time series. However, less attention has been devoted to data series of smaller peri-
odicity than a year. These series exhibit seasonal fluctuations that, in many cases,
are of a nonstationary nature. The structure of these series can be characterized
by the existence of unitary modulus roots at seasonal frequencies corresponding to
peaks in the pseudo-spectrum at the same frequencies (seasonal integration). Con-
sequently, it is also interesting to consider the existence of possible common factors
between different series, at any of the seasonal frequencies (seasonal cointegration).
This section presents a set of definitions that generalize the ideas of integration
and cointegration, presented in [5] and [3], which were originally formalized in [8].

Definition 2.1. Let S(L) be a polynomial in the lag operator3 that has a root
with modulus one at frequency w — i.e., S(L) = (1 —€¢*“L) — for w € (-, 7], and
also let D(L) be another polynomial collecting all the unit roots, if any, at seasonal
frequencies as well as at zero frequency, which are different from w. A vector (n x 1)
of series z; with no deterministic component is said to be integrated of order d at
frequency w, and denoted as z; ~ I,(d), if d is the smallest integer for which the
representation S(L)?D(L)z; = C(L)e: has the following properties:

(i) The spectrum of C(L) ¢, is bounded away from zero and infinity at all frequen-
cies,

(i1)- {e¢} is a sequence of serially uncorrelated random vectors with finite and con-
stant unconditional variance,

(iii) the initial values are zero, for both ¢; and z;, for t < 0.

3 As usual, L denotes the lag operator.
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Due to the presence of D(L), this general definition allows a series z; to be
integrated of a different order at each frequency. Hence, the well known definition
of integrated process at zero frequency can be achieved as a particular case when
D(L)=1and w = 0. :

Assuming that z; ~ I,(1) and D(L) = 1, the following implications are obtained
from this definition:

(i) the variance of z; tends to infinity as t — oo;

(i1) innovations have a permanent effect on the seasonal pattern of z; (z; has ‘long
memory’);

(iii) the pseudo-spectrum of z, takes on asymptotically the form f(p) = A(p—w)~?
for ¢ near w, showing an infinite peak at frequency w;

(iv) z; is asymptotically uncorrelated with processes which have unit roots at other
frequencies? .

Example: An example of seasonal integrated processes for monthly data is
(1—L12).'L't = &y, (1)

which has roots with modulus one at every seasonal frequency as well as at zero
frec uency. The seasonal difference polynomial (1 — L12) = A can be factorized as

(1-L%) = (1-L)YA+ L)Y +iL) (1 —iL) (1 + V3 +4)L/2) (1 + (V3 —14) L/2)
(1-(V3+9)L/2)(1 - (V3—14)L/2)(1 + (iV3+1)L/2)
(1-(V3-1)L/2) (1 - (V3 + 1) L/2) (1 + (iV3 - 1) L/2). (2)

The unit roots ot this polynomial are:

b =1, o b=-1 03 = +1;
1 1
0, = —i; 05 :——2—(1+i\/§); 06 :—5(1—1'\/5);
1 1 1 .
0, = 5(1—}-1'\/5); s = 5(1_i\/§); 09:—5(\/5-}%);

010 = —%(\/?-,— i); 611 = %(\/g'*l' i); f12 = %(\/g_ ).

The frequency associated with a particular root is the value of w in Re*! — the
polar representation of the root. A root is seasonal if w = 27j/S, j=1,...,5-1,
where S is the number of observations per year (assuming S to be even). When
S = 12, the seasonal frequencies associated with the seasonal (unit) roots are w =
7, +7/2, £27/3, £7/3, £57/6 and £7/6; corresponding to 6,3,9,8,4,2,10,7,5,
and 11 cycles per year, respectively. Summarizing, Definition 2.1 can be used to

4The conditions under which the correlation coefficients approach zero as T' — oo are given in
detail in [6].
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point out that the process z; is I,(1) at these seasonal frequencies and at w = 0,
1.e., ; has twelve unit roots. ‘

Analogously, the idea of cointegration presented in Engle & Granger’s articles
can be generalized to define the concept of seasonal cointegration.

Definition 2.2. Let all components of z; be integrated of order one at frequency
w, l.e., z; ~ I,(1). The components of z, are said to be cointegrated at frequency
w, and denoted as z; ~ C1,(1, 1), if there exists a vector a(# 0) so that z; = o'z, ~

L,(0).

This definition is not at all restrictive, in the sense that it allows different coin-
tegrating vectors at each of the frequencies where unit roots are present.

However, it could be the case that for a vector of nonstationary series with unit
roots at some seasonal frequencies and at zero frequency, a single cointegrating vector
could eliminate all the unit roots in the series. This situation is formalized in the
following definition of full cointegration.

Definition 2.3. Let each component of z, be integrated of order one at soine
frequencies, not necessarily at the same frequencies for all components. The com-
ponents of the vector z; are said to be fully cointegrated, and are denoted as
z, ~ CI(1,1), if there exists a vector a(# 0) so that z; = o'z, is stationary.

These definitions contain concepts that are quite similar to those derived from the
idea of cointegration established in [3]. Hence, if there is cointegration at seasonal
frequency w each of the series contains the same factor 1, (1) and an innovation may
have a permanent effect on the seasonal behavior of z;, but only a temporary effect
on the seasonal pattern of z; = o’z;. '

3. ERROR CORRECTION MODEL FOR A STRONGLY SEASONAL
PROCESS

Based upon the parallelism between cointegrated VAR models and error correction
models (ECM) established® in [3], a seasonally cointegrated variables system may
be represented through either an autoregressive vector (VAR) or, equivalently, using
an error correction mechanism.

In this section, we set out the ECM equation that corresponds to a vector of
series presenting unit roots at all seasonal frequencies as well as at zero frequency.
This equation may be considered as the adaptation for monthly data of the annual
and quarterly models presented in [7] and [8], respectively. The model presented
sets up a basis on which cointegration tests can be carried out when analyzing the
existence of cointegration relationships on autoregressive vectors formed by monthly
time series.

5 Adapted from Granger’s Representation Theorem.
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The data set considered is a monthly sequence of n-dimensional random vectors

{z;}. We consider a general VAR(p) model. The dynamic of the process is described
by the following model

mt:CI)ll't—l+(I)21't—2+~--+q)pl;t—p+€t, t:l,?,...,T, (3)

where ¢; ~ NID,(0,%) and the ®;,...,®,,% are (n x n) matrices of parameters to
be estimated on the basis of T observations.

Since the process z; is allowed to have unit roots at seasonal frequencies as well as
at zero frequency, the determinant of the autoregressive matrix polynomial ®(z) =
I —®;z—~...— ®,2° may have roots on the unit circle at these frequencies. 1t will
be assumed that all the remaining roots of |®(z)| = 0 satisfy® |z| > 1.

Following a procedure parallel to that of the univariant case developed in [2],
from equation (3) the ECM representation can be obtained:

Az = Ihiyi—1 4 Moy +ayse—1 + - -+ liayi2,0-1
+A1A T+ AsAratia 4+ Ap_12A1Tprizt e, (4)

where
vt = Zi(L)z

= (I4+L+LP+LP+L + L+ I8 4 L7+ L34 L° + L' + L)z,
Y20 = Zo(L)xy

= —(I—L4L [P+ L =S4+ L8~ LT+ L5~ L4+ LY — L)z,
ysg = Za(L)wy=—(L—-LP+L°—L"+L°—L'")a,
var = Za(L)a=—-(1-L*+ 1" =[5+ L° ~ L")z,

ysy = Zs(L)ry
= —%(1+L—2L2+L3+L4—2L5+L6+L7—2L8+L9+L1°—2L“)xt,
V3

Yo = Za(L):ct:7(1—L+L3—L4+L6—L7+L9—L“’)x1,
Yyre = Z7(L)-'L’t
1

= 5(1~L—2L2—L3+L4+2L5+L6—L7—2L8—L9+L1°+2L“)x,,
V3

ys; = Zs(L)z, = —7(1 + L3 =L+ L84+ L7~ 1° - L'z,
Yo,y = Zo(L)x,
- _%(\/”— L+ L3 =V3LA+ 205 —BLS + L7 — L% + V3L — 2L 4,
viog = Zio{L)
1

= 5(1—\/§L+2L2 ~VBLA+ L* — L +V3L7 - 2L + V3L - L'%) z,,

8 The straight implication is that the nonstationarity of the process will come from unit roots at
seasonal and zero frequencies but not from other frequencies.
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v,y = Zu(l)z

- %(\/g+ L—L*—3L* = 2L° = 3L — L7 + L° + V3L + 2Ly z,,
vi2e = Ziza(L)zy

- _%(1+V/§L+2L2+\/§L3+L4—-L6 ~VBLT-2L8 3L~ L)z,  (5)

The interesting feature in this representation of model (3) is that it makes the set of
regressors mutually orthogonal, with each of them collecting the process z; filtered
so that it eliminates, each time, all unit roots except the one associated with one
particular frequency”. The Z;(L)’s (for k = 1,...,12) will be filters performing the
function previously described, the II;’s are (n x n) coeflicient matrices related to the
filtered vectors and the A;’s (for i = 1,...,p — 12) are (n x n) matrices related to
the elements included in the regression model to whiten the error €; and represent
the stationary structure of the model.
The ECM representation (4) will be employed to estimate and test for cointegra-

tion relationships between the components of a VAR.

4. COINTEGRATION TESTS

In this section the testing strategies for the different frequencies of interest will
be detailed. It should be pointed out that in the ECM (4) the coefficient matri-
ces II1,II,,...,II;2 convey information concerning the permanent behavior of the
series®; so if the coefficient matrix II; has full rank, then the series do not contain
unit roots at the corresponding frequency. If the rank of Il is zero, no cointegration
relationship will be found at that frequency. However, if there are linear combina-
tions between columns of matrix Il, i.e. 0 < rank(Ilz) = r < n, it can be said that
cointegration relationships exist at that frequency. Given that the rank of matrix
Iy is r, it can be shown for a suitable pair of (n x r) matrices y; and o, satisfying
Iy = yra}, that despite yi -1 itself being nonstationary, afyk —1 will be station-
ary. This would mean that the vector process z; is cointegrated at the associated
frequency whose unit modulus root has not been eliminated in yg ¢—1.

The proof is straightforward from the ECM (4) if we consider, for instance, k = 2.
If I, has incomplete rank r, the term Il2y2 ;-1 may be rewritten as (v2eh) y2.¢—1,
which must be stationary due to the stationarity of the left member in the equal-

ity, (A12z¢). The implication described above is obvious substituting y2:-1 for
Zy(L) Lz,.

v2Z2(L)Labz, ~ I (0) < abz; ~ Ix(0) <= z; cointegrated at w = 7.

"For frequencies associated with complex roots the two filters that leave the two conjugated unit
roots must be simultaneously applied.

8Each matrix II; informs about the behavior of the series at the frequency whose associated
root has not been eliminated in the corresponding yx,:—1- Note that for every pair of seasonal
frequencies associated with conjugated complex roots the information concerning the permanent
behavior of the series is included jointly and inseparably through the corresponding pair of matrices.
That is, [Ix_; and ITx (k = 4,6,8,10,12), in each case.
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The columns of ay are the cointegrating vectors of the series at that frequency. The
space spanned by the columns of aj, which at the same time coincides with the
space spanned by the rows of matrix IIx, will be called vhe seasonal cointegration
relationships space at that frequency.

The natural hypothesis of the cointegration rank test comes from this. Generally,
it can be formulated as the hypothesis that at most ry cointegration relationships
exist at the corresponding frequency, rank(Ilx) < 7y, against the alternative that
rank(Ilx) > rx. The main advantage of this procedure is that several null hypotheses
can be tested for each case of interest with no prior knowledge of the existence of
cointegration relationships at other frequencies, due to the asymptotic uncorrelat-
edness between any two series with unit roots at different frequencies.

4.1. Cointegration at zero frequency

To test the existence of at most r; cointegrating vectors (at least n — ry unit roots)
at zero frequency in the presence of unit roots at some seasonal frequencies, the
hypothesis can be formulated as Hy, : rank(Il;) < 1, (ry < n) vs. Hy, : rank(Il;) >
r1; which can be expressed alternatively as Hi, : II; = y10]. Since neither y; nor
«; is observable, the test must be based upon estimates of them. Nevertheless, as
pointed out in [7] these parameter matrices cannot be estimated, since they form an
overparametrization of the model. Therefore the estimates of the spaces spanned by
71, P(71), and by a1, 5§p(a;) will be used to test hypothesis Hi,.

Equation (4) will be estimated by maximizing the likelihood function with re-
spect to the parameters (IIy,...,I;2) and (X, A;,..., Ap_12). Since the way the
parameters take part in the likelihood function is independent®, we can concentrate
it sequentially, obtaining an expression depending solely on the parameters of inter-
est II; of the testing hypothesis. The estimates of II; are substituted, recursively, in
the corresponding expressions to obtain the estimates of the remaining parameters.

Firstly, for fixed values of [y, ..., II;5 the maximum-likelihood estimates of Ay, ...
..., A,_12 can be obtained by an OLS regression of (Alza:, - 2,162:1 Hkyk’,_l) on the
lagged seasonal differences Ajox;—q,...,A12%¢_p412. Alternatively, we can obtain
the OLS residuals R; by first regressing Ajax; on the lagged seasonal differences
giving the residuals Rg¢, then regressing each y .1 (k=1,...,12) on the lagged
seasonal differences giving the residuals Ry for £k = 1,2,...,12, and finally forming
Ry = Rot — Y 2y i R

Then, the ML estimates of II’s can be achieved by the following OLS regression

Roy =1 Ryy + HoRoy + ..+ i1 Ry + s Rygs + €. (6)

Since the parameter matrices Ilo,...,II;2 in equation (6) are independent, the
likelihood function can be concentrated on II;. Thus regressing Rg; and Rj: on
(Ra2t, Rat, ..., Ri2t), we obtain the residuals Uy, and Uiy, respectively; thus finally

9Due to the asymptotic uncorrelatedness between any two series with unit roots at different
frequencies, y1,:—1 and y; t—1, and the fact that both are at once asymptotically uncorrelated with
(stationary) lags of Ajpz:.
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forming U; = Uy — II1U1:. The concentrated likelihood function can be rewritten
as

T
- 1
L0, 2) o |77/ 2 exp (-5 > U{Z‘lUt> . (M
t=1

.

The ML estimation of the parameter matrix II; 1nay be obtained by the OLS regres-
sion Ug; = MUyt + €1:. Since our hypothesis imposes the restriction II; = v, o, for
a fixed value of &y the ML estimation for v; and ¥ are equivalent to the LS reduced
rank estimation in the regression Uy, = 7;(@}Ui:) + 7m1¢, obtaining

Y1 (1) = Doroy (o) Dyyog) ™ (8)

i(al) = D()O — D()lal(a’lDllOtl)_lO/lDlo. : (9)

where D;; = T! Zle UitU;t.

Now the likelihood function is proportional to |§(011)|—T/2 and hence, its maxi-
mization with respect to «; is equivalent to minimizing IDOO — Dpray(af Dllal)'l
o Dio| with respect to ;. Using commonly known results (see [1] or [7]), the
expression to be minimized remains

/ / -1
min |a1D11a1 - alDloDOO Dglclq’
7 .
(a1) |01D11(11l

(10)

Based upon [7] and [8], a1 can be estimated by choosing the first r; eigenvectors of
D10D601D01 with respect to Dy1, @ = (v1,1,v1,2,...,v1,r, ). Thatis, the eigenvectors
corresponding to the r; largest eigenvalues, Xli, i = 1,...,7 solving |A\ D1 —
D1oDyy Do1| = 0.

Without a priori information, a variety of possible optimum choices!® of the
matrix a; can be obtained from the resulting @; that solves the eigenvalue problem
above. However, we can always infer the cointegration space of vector z; at that
frequency. '

The inference about the number of cointegration relationships at the zero frequen-
cy can be carried out through the likelihood ratio test statistic or trace statistic. This
tests the hypothesis Hy, : II; = 714, through!?

n
—2In(Q)=-T 3 In(1-2X,) (11)
i=ri+1 -
where 3\\1,,.”_1, . ..,’):1,,, are the (n — r1) smallest eigenvalues of D10D601D01 with

respect to Diy, corresponding to the (n — r1) smallest squared partial canonical
correlations of U; with respect to Up.

10Given that T; = ~v1e} is satisfied, for any (r1 x r1) nonsingular matrix P it is true that
H1 Z’YIQQ :'ylPP‘la;.

11 The asymptotic distribution of the test statistic is a function of the distribution of several
stochastic matrices, involving integrals of multivariant Wiener processes of dimension (n — r1).
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4.2. Cointegration at seasonal frequency =

Let us now set up the test for the hypothesis that there arz at most ry cointegrating
vectors at seasonal frequency 7. In this case, the matrix that conveys the informa-
tion about the behavior at seasonal frequency = is the one related to y2:—1. The
confronted hypotheses are Ha, : rank(Ilz) < 7y (r2 < n) vs. Ho, : rank(Il3) > rs.

Analogously to the previous section, the hypothesis that IIs does not have full
rank can be formulated as the expression: Hy, : II; = y2a4. The testing procedure
is very similar to the one developed above except that the role played by the vectors
of residuals Rj; and Ro; is reversed.

Given the hypothesis of interest, for a fixed value of ay the ML estimation for
72 and ¥ are equivalent to the LS reduced rank estimation in the regression Up; =
Y2(ahUa) + 121, causing

Y2(@2) = Dogas(ahDagaz)™t, (12)

E(az) = Dgo — Dozaz(agDzzaz)_lalzDzo. . (13)
The likelihood function is proportional to |£(ag)|~7/2
to ay is equivalent to minimizing the expression

. Maximizing 1t with respect

min ﬁDzzaz — ayDag Dy Dogars| (14)
(a2) |y Dagas]

The trace statistic for the hypothesis that there are at most ry cointegrating vectors
— (n — r2) unit roots — at seasonal frequency = is

—2I(Q)=-T 3 In(1-2y) (15)
. i=ro+1
where :\\2,r2+1) . ..,Xz)n are the (n — ry) smallest eigenvalues of DzoDo_olDog with

respect to Djy, which correspond to the (n — ry) smallest squared partial canonical
correlations of Uy with respect to Up.

4.3. Cointegration at the remaining seasonal frequencies

The cointegration analysis at each pair of seasonal frequencies +7/2, +27/3, +7/3,
+57/6 and +7/6 — all associated two by two with conjugated complex unit roots —
must take into account simultaneously the information provided by two parameter
matrices, in each case. This means that the information about permanent behavior
of the series at each pair of conjugated frequencies #+wy, for £ € {4,6,8,10,12}
(where it must be noted that ws = 7/2, ws = 27/3, wg = 7/3, wio = 57/6 and
wye = 7/6) . conveyed jointly and inseparably through the matrices II,—; and II,.
Therefore, we need to look at the two matrices, II,_; and II;, simultaneously to
test the hypothesis of seasonal cointegration at each pair of conjugated frequencies
(:i:wl).

In a more general context, the testing procedure might imply that we need to
consider polynomial cointegrating vectors (PCIV), since one vector is sought to
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eliminate two unit roots from two different filtered vectors, ys—1 :—1 and ye,—q. If
PCIV are employed, both the cointegrating vectors and the error correction term
coefficients may be different at different lags.

Henceforth, this paper will assume that cointegration, if any, is contemporaneous.
Under this assumption the testing procedure is simpler than that which results from
a general framework such as the one described above.

Using the above generic notation, the test of interest for either of the five pairs
of seasonal frequencies can be formulated by means of the joint hypothesis

Heo : {Ilemy = yeor0} N {Il = yeay} .

Obviously, the restriction of contemporaneous cointegration imposes that the coin-
tegrating vectors must coincide at different lags.

As above, we can develop the testing procedure for each case £ € {4, 6,8,10,12}.
For fixed values of Il; and II,_1, the maximum-likelihood estimation of the remain-
ing matrices Il is equivalent to an OLS estimation in the regression of (Rp: —
Hl—lRl—l,t — llgRgt) on (th,RQt,Pg), where Pg = P - {R[_l,t,Ru} and P =
{Rst, Rat, ..., Ri2t}.

If we consider the series of residuals from the OLS regressions of Roy, Re—1,
and Ry on (Ryi, Ray, P¢) consecutively and denote them as Up:, Up—1,; and Up

respectively, we can obtain the MLE of the parameter matrix [[I;—; :1I,] from the
regression

Ust = Hp1Upor o + WelUps + o1

Given the restriction under the joint hypothesis of contemporaneous cointegration,
H,,, for a fixed value of ay,

~ 0 '
E(aﬁ) = Dqgo —‘( DO,Z—l Doy ) < (C)Y[i ar > . .
« a; 0 De_1e-1 Di_1p ar 0\]7!
0 o Dye—1 Dy, 0 o
a0

. -T/2
Now the likelihood function is proportional to lE(aO‘ and its maximization

is equivalent to minimizing the determinant of expression (16) with respect to ay.
The trace statistic for the hypothesis that there are at most ry seasonal cointe-
grating vectors — (n — ry) unit roots — at each pair of frequencies +w, is'2

n

-2In(Q)=-T Z In(1 - Xﬁ—l,i - Xu) (17)

i=rg+1

12The asymptotic distribution of the test statistic is a function of the distribution of several
stochastic matrices involving integrals of two mutually independent Wiener processes of dimension
{n ~r¢) [A proof for seasonal frequencies /2 can be found in [8]].
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where X[_lyrl_*.l, e Xg_ll,, are the (n—r;) smallest eigenvalues of Dg_l’ngol Do,e-1
with respect to Dy_1 ¢..1; and on the other hand, Xl,n+1, .. .,X[,n are the (n —re)
smallest eigenvalues of Dg,oDaol Dy ¢ with respect to Dy .

In practice, it is useful to consider a simpler performance of the testing procedure
with very little effect (see [8]) on the test when cointegration is contemporaneous.
This simplification is based upon the structure of the error correction model consid-
ered and consists of assuming v, = 0 (= II, = 0), £ € {4,6,8,10,12}.

Under this assumption we can restrict our attention to the matrix II,_; to test
for cointegration relationships. The hypothesis of interest will be formulated as

Huo1yy oy = yem10_y.

Thus, the testing strategy is similar to that for the zero or seasonal frequency =
except that the series of residuals R,_;; — in each particular case — takes the role
of Ry; or Ry, respectively. So, we obtain that the likelihood ratio test statistic for
the hypothesis that there are at most r,_, seasonal cointegrating vectors at seasonal
frequencies Fwy is

n
—2In(Q)=~T > In(l-Ag-1) (18)
i=rp_1+1
where X(g_l),”_lﬂ, e ,X(t—l),n are the (n—r;_1) smallest eigenvalues of Dy_; o D5y

Dy,.—1 with respect to Dyp_1 ¢_1.

4.4. Full Cointegration

In some data series, especially economic series, behavior at different frequencies may
be similar due to seasonality in the time series — or even the behavior of the trend
— having the sa.me source. This will be reflected in the fact that some (though
not necessarily all) cointegrating vectors may coincide. That is, a single cointegrat-
ing vector, say ap, (aF = a1 = ay = ay, £ € {4,6,8,10,12.}) might remove all
unit roots in the system at all frequencies. This i1s defined as full cointegration in
Definition 2.3. In this case the ECM (4) will be reduced to

Ajgzy =Up(L) 21+ A1 Az 1+ AsArozy o+ + Ap 128122 pr12+€¢, (19)

where the hypothesis of full cointegration implies that IIp(L) = y#(L)a’s must be
satisfied. Thus a single vector a% may eliminate all the unit roots in the system and
vr(L) is a polynomial matrix having potentially eleven lags.

By arguments similar to those in the previous subsection, we will restrict our
attention to the case when cointegration relationships, if any, are contemporaneous.
So it is assumed that yr(L) = vr,, L'! so the ECM can be written as

Arpzy = p, 212+ A1A19Ti 1 + AgA1oZi_o+ -+ Ap_12A12%py12 + €1 (20)

Then, we can get the series of residuals Rp; from the OLS regression of z;_15
on the lagged seasonal difference Ajzz¢—1,...,A12Z¢—p412 50, with the series of
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residuals Rp;, we can obtain the likelihood ratio test statistic for the hypothesis
HFO . Hp = 7pa}~.
The trace statistic to test the hypothesis that there are at most rg full cointe-

grating vectors is!3

. n .
—2In(Q)=-T Y In(1-2Ap;) (21)
i:Tp+1
where /A\F,Tp-l—l) cey Xp’n are the (n — rr) smallest eigenvalues'? of SFOSO_OISOF with

respect to Spp.

5. FINITE SAMPLE CRITICAL VALUES. MONTE CARLO SIMULATIONS

The aim of this section is to analyze the finite sample behavior of trace statistic distri-
butions. This will be achieved by Monte Carlo simulations under the null hypothesis
considered — several values of 7, — at any frequencies of interest individually as
well as in the full cointegration case.

We then study the power of the test statistics by generating the distribution
under several alternative hypotheses.

The simulation experiments are designed for a sequence of random (n x 1)vectors

{z:} generated by
Ty = Ti-12+ €, t:—99,...,0,1,.‘.,T (22)

where each €, is a (n x 1) vector from a sequence of vectors NID(0, ,,).

Given the way the series are generated in this paper and since we consider that
the cointegration relationships, if any, are contemporaneous, the ECM (4) will take
the following simpler form to carry out the simulation exercise:

Arazy = Myyy s Hlayz i1+ 03y3 -1+ 5 ys 1+ 7y 1 +Hloye 1+ 11 y11 11464
(23)

By construction, the dynamic (22) of the vector sequence {z;} imply that there
is no cointegration relationship between the elements of the vector z; at any fre-
quencies. It is then clear that the true II}’s are null matrices. Hence the empirical
distributions of the test statistics will be obtained, in each case, under the null hy-
potheses that rp = rank(Ily) = 0, £ = 1,2,3,5,7,9, 11, respectively. The critical
- values are reported in the Appendix.

To study the power of the test at any frequency we simulate several alternative
hypotheses, where only cointegration relationships that are contemporaneous have
been imposed, and confront them with the correspondent null hypotheses. All these
cases indicate that the power of the test for cointegration in rejecting the false null
hypotheses increases with 7', so tests do not seem inconsistent. In Table 1 we report

the results for one of the cases.

13The asymptotic distribution of the test statistic is a function of twelve standard mutually

independent Wiener processes.
14Remark: The matrices Sor and Spp correspond to the product matrix of the residuals Ry and

Rp, thatis, Sop = T™' 5" RotRlp, and Spp = T3 " Rp(Rj,.
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Table 1. Power of Trace Statistic. True Model: (n —r) =(2-1) =1,
z¢ = 2z, + €, where z; = z,_12 + (.

H, . n—r=2 Frequencies

Quantil T o n *n/2 *2n/3 £n/3 Ltsmw/6 1=x/6
100({41.4% 41.8% 88.2% 87.1% 87.8% 87.1% 87.9%

95 % 300199.8% 99.9% 100% 100% 100% 100% 100%

500| 100% 100% 100% 100% 100% 100% 100%
100(20.3% 18.7% 66.1% 63.2% 63.3% 63.1% 66.1%
99 % 300198.1% 99.3% 100% 100% 100% 100% 100%
5001 100% 100% 100% 100% 100% 100% 100%

6. EMPIRICAL APPLICATION: PRODUCTION INDICATORS
IN THE SPANISH ECONOMY

In this section we estimate the cointegration rank at each frequency in a set of
variables related to Spanish production data from different economic sectors. The
existence of cointegration relationships at each frequency implies that the series in
the system fluctuate around a cyclical component at that frequency.

Our intention is to include in the variable set considered not only production se-
ries rom the Industrial Production Index (IPI) but also series from other industrial
sectors that are not reflected in this index, and series from the services sector. Thus
we try to take into account a more representative se of data on Spanish production.
The common element of these series is that they all feature a strong seasonal compo-
nent. The data are collected from the Boletin de Indicadores Econémicos published
monthly by the Spanish Ceniral Bank (Banco de Espana).

BIECO: IPI. Consumption Goods. Base 1990 = 100.

ESMEYCA: IPI Investment Goods. Metal structures and Boﬂermakmg
Base 1990 = 100.

MATTRA: IPIL Investment Goods. Transport Material (except cars and motorbikes).
Base 1990 = 100.

MAQYBEQ: IPI. Investment Goods. Machinery and other Capital Goods.
Base 1990 = 100.

BIEINT: IPI Intermediate Goods. Base 1990 = 100.

ACERO: Domestic Steel Production. In Thousands of Tons.

VENGRA: Multiples Sale Index. Base 1983 = 100.

PERNOCVI: Tourism and Travelling. Nights spent by Travellers in Hotels.
In Thousands of People. .

We analyze monthly data for the period between january 1975 and March 1995.
Figure 1 shows the logarithmic transformations of the series. The series show strong
components 1n their seasonal and trend pattern, so we can expect to find unit roots
at seasonal frequencies as well as at zero frequency. Hence, we can test and estimate
cointegration relationships in the system at different frequencies.
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To carry out the unit roots tests for each individual series, we use the critical
values reported in Table A.1 in the Appendix. These tests corroborate the impression
reflected by the graphics of the series as to the existence of a unit root at every
frequency in each series. Once we have analyzed the individual structure in each
series, the cointegration tests for the different frequencies are applied.

Rank and cointegration relationships are estimated in the system formed by
the variables BIECO, ESMEYCA, MATTRA, MAQYBEQ, BIEINT, ACERO,
VENGRA and PERNOCVI. For the choice of the lag length p in the VAR, the
usual model selection methods such as the Akaike Information Criterion (AIC) and
Schwarz Criterion (SC) are used and Box-Pierce Q-statistics are also examined to
test for uncorrelatedness of residuals. The ECM representation is adjusted for a
VAR(22). Table 2 reports the results for the trace statlstlcs to test the number of
cointegration relationships at every frequency.

Table 2. Cointegration Tests.

Ho :n —r(I1}) Trace Statistic at Frequencies
n=28 T =214 0 r *xw/2 +27/3 +£x/3 +57/6 *m/6
n—r=28 ’I‘(Hk) =0 | 334.0* 195.4* 159.4 162.6* 151.6 182.5* 182.8*
n—r=7 T(Hk) =11 229.6* 120.8 104.3 103.3 95.0 114.3 101.6
n—r==~6 ’r(nk) =2 | 153.4* 72.2 60.3 67.3 54.4 61.8 56.6
n—-r=235 T(Hk) =3 98.1* 41.8 37.7 37.7 26.2 32.4 24.7
n—r=4 T(Hk) =4 59.52 20.3 21.2 17.8 12.4 12.8 4.7
| n-r= 3 T(Hk) =5 28.4% 10.0 8.0 6.7 3.3 4.8 2.0
n—r=2 r(l‘[k) =86 12.4 4.2 4.0 3.2 1.5 1.8 0.3
n—-r=1 T(Hk) =7 2.1 0.0 0.7 1.1 0.0 0.0 0.0

2Significant at the 5% level.

The results show no cointegration at seasonal frequencies +7/2 and +7/3. How-
ever, it seems tha¢ there is evidence of cointegration relationships at the remaining
frequencies. The estimated cointegration ranks are 1o = 6 and rn = ria2s/3 =
Tisn/6 = T+r/6 = 1.

The optimum estimates of the cointegrating vectors at each frequency can be
obtained by the method explained in Section 4. These estimates are:

927 283 -239 268 462 4.00
251 =342 235 -239 -0.63 1.58
—1.85 1.64 —-1.57 —-062 —-1.00 -1.65
0.17 -1.28 -0.25 3.79 0.64 142

M=t = | 000 _463 653 —444 081 4 | D
1.66 028 —-3.00 149 —0.58 0.05
—061 052 —051 —0.62 —0.58 —0.32
| —046 183 025 —028 —144 —0.26

@ = (%p1)=[-11.96 —2.21 128 -3.18 23.78 —133 930 7.27]

¥ = (U51)=[ -16.96 898 048 6.78 —4.16 —11.63 —7.50 20.06 |’
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dg = (o1)=[19.90 —7.86 238 2.02 —23.72 6.03 —245 4.62 ]
@1 = (Bna)=[640 —11.79 267 -2.89 3231 —097 4.18 2.93 ]

Summarizing, the ECM that describes the dynamic of production is

A2z = m10Y1-1 + 7205Y2,0—1 + Y505Ys -1 + YoXgYe,e—1 + Y1107 Y11,1-1 +
+A1A1321 + -+ A1oAi2zi—10 + &, (25)

where 71, o1 are (8 x6) matrices and 72, az, v5, a5, Y9, &g, Y11, @11 are (8x 1) matrices.
Estimation of 41, 72,75, ¥9,v11 can be carried out as described in Sections 4.1,4.2
and 4.3. '

7. CONCLUDING REMARKS

The main result of this study is the provision of a testing framework for the coin-
tegration ranks in a system of nonstationary monthly processes. Its particularity
is that it allows these tests to be implemented at each frequency of interest in the
presence of unitary modulus roots at other frequencies. The extension made here —
from the research in [8] — provides the empirical distributions of the test statistics
for finite samples with different numbers of observations.

The statistical properties of these distributions seem to coincide with those found
in previous similar studies, and are not far from those w» would have desired at the
beginning of our work. In particular, the power experiments show that the testing
procedure presented is not inconsistent.

The method is applied to Spanish economic data in the form of monthly produc-
tion indicators, which illustrates the implementation of the testing procedures. The
results enable the error correction mechanism describing the dynamic of the system
formed by these production variables to be identified.

We would expect inclusion of a constant term to affect — similarly to previous
studies — the distribution of the test statistics for cointegration at zero frequency,
and inclusion of seasonal dummies to change the distributions of the test statistics
for cointegration at seasonal frequencies.

Finally in practice, the assumption mentioned above, Iy = Il = Ilg = M1 =
II;5 = 0, hardly affects the distributions of the test statistics from the point of
view of contemporaneous cointegration analysis. However, this contemporaneous
cointegration analysis is included in a more general context that implies considering
polynomial cointegrating vectors (PCIV) which are difficult to find in practice, and
a much more complicated testing procedure will be required to study cointegrating
relationships.

—

8. APPENDIX: TABLES OF TRACE STATISTICS

These tables report the critical values of the empirical distributions for the different
test statistics presented in Section 4; i.e., for the trace statistics (11),(15),(18)
and (21). ’ : .
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The distribution of probabilities for each test statistic has been approached by the
distribution of frequencies resulting from calculating repeatedly the trace statistic
under the null hypotheses of no cointegration (r = 0) for valuesof n = 1,2,3,4,5,6,7
and 8, respectively. The number of observations for the finite sample considered is
T = 100, 200, 300 and 500. The number of replications is 20,000 except in the cases
(n—7)=26,7,8, where 3,000 replications are employed.

Each table reports the critical values for the cointegration tests at each frequency
individually and for the particular case of full cointegration. We use the statistics

program RATS.

Table A.1 Quantiles in the distribution of Trace Statistics Hp:n —r = 1.
n-r=1 Quantiles

Frequency T|1% | 5% [ 10% | 50% | 90% | 95% | 97.5% | 99%
100 | 0.00 | 0.00 | 0.02 | 0.55| 3.20 | 4.54 595 | 7.86

200 | 0.00 | 0.00 | 0.02| 062 | 3.23| 4.52 571 | 7.45

w=0 300 | 0.00 | 000 | 002 | 061] 3.04 | 4.29 546 | 7.23
500 | 0.00 | 0.00 | 0.02| 060 299 | 4.15 5.35 | 6.91

100 | 0.00 | 0.00 | 002 | 054 | 3.16 | 4.50 582 | 7.97

200 | 0.00 | 0.00 | 002 062 3.21| 4.44 576 | 7.52

w=m 300 | 0.00 | 0.00 | 0.02| 062 3.10 | 4.40 5.66 | 7.29
500 | 0.00 | 0.00 | 002 | 062 306 | 4.22 5.40 | 6.99

100 | 0.00 | 0.00 | 0.02 | 0.57 | 3.23 | 4.61 6.00 | 7.73

200 | 0.00 | 0.00 | 001 | 056 | 322 | 4.48 5.86 | 7.69

w=7/2 300 | 0.00 | 000 | 001 | 057 | 317 | 4.44 566 | 7.40
500 | 0.00 | 000 | 001 | 058 516 | 4.39 5.54 | 7.30

100 | 0.00 | 0.00 | 0.01 | 0.55 ] 3.20 | 4.52 592 | 7.88

200 | 0.00 | 0.00 | 001 | 056 312 | 4.39 571 | 7.52

w=2r/3 300 [ 0.00 | 000 | 001 | 056| 311 | 4.35 560 | 7.34
%00 | 0.00 | 0.00 | 0.01| 056 ]| 3.11| 4.34 549 | 7.8

100 | 0.00 | 0.00 | 0.01 | 0.53 | 3.20 | 4.54 5.96 | 7.64

200 | 000 | 0.00 | 001 | 056 | 3.16 | 4.44 567 | 7.54

w=m7/3 300 { 0.00 | 0.00 | 0.01 | 055 | 312 | 4.33 563 | 7.18
500 | 0.00 | 000 | 0.01 | 056 | 299 | 4.18 5.46 | 7.10

_ 100 | 0.00 | 0.00 | 0.0l | 0.54 | 3.28 | 4.68 6.14 | 8.12
200 | 0.00 | 0.00 | 001 | 057 | 320 | 452 586 | 7.67

w=57/6 300 | 0.00 | 0.00 | 0.01 057 | 3.14 | 441 566 | 7.10
500 | 0.00 | 0.00 | 001 | 055| 3.03| 4.23 552 | 7.33

100 | 0.00 | 0.00 | 0.02 | 056 | 3.29 | 4.68 592 | 7.93

200 | 0.00 | 0,00 | 001 | 056 | 318 | 4.47 5.87 | 7.64

w=m/6 300 | 0.00 | 0.00 | 001 | 056 | 314 441 561 | 7.32
500 | 0.00 | 0.00 | 001 | 056 | 306 ]| 4.28 560 | 7.21

100 | 0.00 | 0.00 | 0.01 | 0.51 | 3.08 | 4.33 5.70 | 7.33

Full 200 | 0.00 | 0,00 | 001 | 047 | 2.86 | 4.08 5.33 | 6.97
Cointe- 300 | 000 | 0.00 | 001 | 045 | 274 | 3.86 5.06 | 6.76
gration 500 | 0.00 | 0.00 | 001 | 042 | 286 | 3.76 4.90 | 6.53
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Table A.2 Quantiles in the distribution of Trace Statistics Ho :n —r = 2.

n—-r —=2 L Quantiles

Frequency T 1% 5% | 10% | 50% 90 % 5% | 97.5% 99 %

100 9.30 | 21.78 | 36.97 | 152.22 | 264.82 | 293.15 315.16 | 337.97
200 1.26 2.07 2.63 5.93 11.40 13.38 15.39 17.72
w=0 300 1.22 2.03 2.61 5.73 11.07 12.96 14.80 17.10
500 1.31 2.05 2.62 5.68 10.80 12.72 14.47 16.87

100 9.06 | 22.00 | 37.85 | 153.48 | 266.23 | 292.95 | 317.13 | 341.79
200 1.89 2.06 2.66 5.90 11.36 13.42 15.29 17.81
w=m 300 1.27 2.08 2.63 5.75 11.01 12.95 14.62 17.01
500 1.27 2.04 2.60 5.60 10.70 12.71 14.60 17.05

100 | 11.10 | 19.25 | 26.36 90.88 | 223.64 | 258.64 288.35 | 316.00
200 0.44 1.04 1.56 4.69 10.30 12.38 14.24 16.54
w=m/2 300 0.48 1.07 1.59 4.68 10.07 11.97 13.81 16.16
500 0.48 1.12 1.65 4.72 9.90 11.82 13.53 15.83

100 | 10.96 | 19.27 | 26.30 89.36 | 225.85 | 262.44 289.15 | 319.47
200 0.45 1.07 1.60 4.71 10.26 12.20 14.12 16.60
w=2m/3 300 0.43 1.056 1.60 4.70 10.12 12.02 13.78 16.01
500 0.50 1.11 1.63 4.75 9.95 11.93 13.77 16.21

100 | 10.95 | 19.48 | 26.94 89.43 | 222.33 | 259.82 287.83 | 316.83

200 0.42 1.06 1.58 4.64 10.11 12.13 14.20 16.64

w=m/3 300 0.45 1.07 1.60 4.70 9.93 12.04 15.90 16.41
© 500 0.48 1.12 1.66 4.71 9.93 11.85 13.78 16.35

100 | 11.01 | 19.40 | 26.44 | 90.16 | 226.47 | 263.56 | 290.75 | 321.04
200 | 043 | 1.06 | 1.58 476 | 1031 | 12.32 14.24 | 16.80
w=57/6 300 0.44 1.09 1.62 4.71 10.20 12.29 14.22 16.39
500 | 043 | 1.12 | 1.65 473 | 10.03 | 11.95 13.72 | 16.16

100 | 10.73 | 19.17 | 26.09 88.97 | 225.73 | 260.24 286.51 | 316.27
200 0.43 1.06 1.56 4.68 10.19 12.28 14.39 16.68
w=m/6 300 0.45 1.07 1.57 4.63 9.96 11.94 14.13 16.85
500 0.47 1.10 1.61 4.65 9.84 11.84 13.67 16.25

100 0.34 0.79 1.21 3.86 8.98 10.88 12.80 15.55
Full 200 0.31 0.75 1.12 3.57 8.32 10.20 11.85 14.32
Cointe- 300 0.28 0.70 1.08 3.44 8.08 9.81 11.75 14.21
gration 500 0.27 0.70 1.05 3.37 7.81 9.59 11.28 13.58
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Table A.3 Quantiles in the distribution of Trace Statistics Ho :n —7r = 3.

n-r=3 N Quantiles

Frequency T 1% 5% 10% 50 % 90 % 95 % | 97.5% 29 %

100 | 66.87 | 137.38 | 178.44 | 306.75 | 400.61 | 423.55 442.64 | 462.97
200 6.52 8.56 9.85 15.62 23.72 26.64 29.20 32.27
w=20 300 6.38 8.35 9.53 15.12 22.88 25.66 28.00 30.82
500 6.34 8.21 9.44 14.93 22.44 24.95 27.37 30.68

100 | 69.63 | 137.94 | 179.38 | 306.22 | 401.14 | 424.37 443.91 | 464.18
200 6.57 8.59 9.88 15.71 23.78 26.47 29.20 32.08
w=m 300 6.44 8.47 9.70 15.21 23.00 25.60 28.12 31.24
500 6.33 8.23 9.45 14.92 22.55 25.09 27.33 30.69

100 | 50.56 87.78 | 119.37 | 272.07 | 388.35 | 414.60 435.84 | 458.37
200 4.84 6.72 7.92 13.54 21.58 24.51 27.16 30.21

w=m/2 300 4.79 6.64 7.80 13.11 20.85 23.46 25.88 28.91
500 4.85 6.60 7.69 12.87 20.41 22.98 25.35 28.12

100 | 51.24 | 88.33 | 120.34 | 271.35 | 387.82 | 415.12 | 435.22 | 459.21
200 | 4.98 6.71 7.87 | 13.46 | 21.34 | 24.11 26.59 | 30.06
w=2m/3 300 | 4.75 6.57 7.74 | 13.10 | 20.76 | 23.34 25.74 | 28.49
500 | 4.76 6.47 7.61 | 12.91 | 20.38 | 22.79 25.21 | 28.21

100 | 50.80 86.81 | 119.04 | 272.23 | 388.52 | 415.38 436.06 | 459.82
200 4.92 6.74 7.91 13.47 21.42 24.24 26.78 29.94
w=m/3 300 4.80 6.53 7.68 13.10 20.79 23.46 25.97 28.70
500 4.83 6.49 7.62 12.97 20.43 22.88 25.01 28.01

100 | 48.77 84.36 | 117.01 | 269.21 | 384.04 | 410.96 430.86 | 453.14
200 4.96 6.70 7.89 13.46 21.26 24.05 26.53 29.90
w=57/6 300 4.78 6.58 7.76 13.10 20.63 23.19 25.78 28.69
500 4.72 6.46 7.66 12.88 20.38 22.97 25.16 27.94

100 | 49.83 84.77 | 116.41 | 269.45 | 385.37 | 411.47 430.74 | 453.74
200 4.88 6.66 7.80 13.43 21.48 24.25 26.67 29.83

w=m/6 300 4.85 6.60 7.79 13.11 20.77 23.39 25.80 28.92
500 4.71 6.54 7.69 12.95 20.44 23.00 25.42 28.48
100 2.40 3.91 4.91 9.82 17.11 19.66 22.19 25.58
Full 200 2.21 3.56 4.48 8.97 15.78 18.40 20.65 23.28
Cointe- 300 2.13 3.45 4.32 8.69 15.40 17.77 19.92 22.79

gration 500 2.10 3.37 4.22 8.49 15.01 17.24 19.34 21.74
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Table A.4 Quantiles in the distribution of Trace Statistics Hp:n —r = 4.
n-r =4 Quantiles

Frequency T 1% 5% 10 % 50 % 90 % 95% | 97.5% 99 %
100 126.68 | 192.17 | 228.15 | 343.39 | 435.87 | 459.00 478.37 | 498.32

200 16.41 19.60 21.58 29.92 40.73 44.02 47.51 51.71

w=0 300 15.63 19.00 20.95 28.90 39.14 42.65 45.66 49.78
500 15.56 18.71 20.45 28.24 38.32 41.56 44.60 48.71

100 126.43 | 191.81 228.14 | 342.28 | 437.77 | 461.50 481.92 | 502.51

200 16.30 19.64 21.54 29.88 40.70 44.32 47.44 51.51

w=m 300 15.92 19.06 20.95 29.00 39.13 42.37 45.45 49.55
500 15.61 18.83 20.59 28.38 38.18 41.32 44.32 48.14

100 96.55 | 163.29 | 206.19 | 338.22 | 438.92 | 463.58 483.71 | 506.56

200 13.49 16.63 18.51 26.75 37.60 41.25 44.53 48.65

w = 7r/2 300 12.87 16.06 17.96 25.89 36.06 39.24 42.31 46.02
500 13.02 15.92 17.75 25.30 1 34.92 38.15 41.14 44.83

100 97.09 | 155.99 193.56 | 324.47 | 426.08 | 451.92 470.87 | 494.06

200 13.47 16.64 18.47 26.83 37.41 41.09 44.59 48.47

w=2m/3 300 12.85 16.10 17.92 25.92 36.05 39.25 42.04 45.74
500 12.93 15.88 17.68 25.23 35.01 38.32 41.06 44.51

100 85.42 145.57 183.82 313.30 | 414.67 | 440.66 460.97 | 485.63

200 13.39 16.56 18.56 26.88 37.78 41.29 44.53 48.30

w=7/3 300 13.20 16.23 18.02 25.97 35.96 39.38 42.35 46.07
500 12.94 15.88 17.63 25.33 35.18 38.31 41.35 45.07

100 88.88 | 146.72 185.10 | 314.99 | 416.07 | 441.62 462.51 484.53

200 13.43 16.64 18.63 26.83 37.55 41.03 44.39 48.59

w=57/6 300 12.99 16.26 18.09 25.90 36.20 39.48 42.52 46.47
500 12.92 15.95 17.72 25.27 35.16 38.50 41.64 45.55

- 100 86.07 | 145.46 184.15 314.27 | 415.48 | 441.53 463.04 | 483.69

200 13.36 16.67 18.61 27.02 37.71 41.26 44.63 48.59

w=m/6 300 12.81 16.15 | 18.02 | 25.93 | 35.93 | 39.27 42.27 | 45.96
500 12.64 15.71 17.60 25.16 34.90 38.19 40.81 44.52

100 6.98 9.55 11.21 18.48 28.38 31.91 34.97 38.75

Full 200 6.31 8.64 10.18 16.88 25.95 28.91 31.81 35.36
Cointe- 300 6.24 8.48 9.79 16.35 25.27 28.39 31.09 34.85
gration 500 5.91 8.21 9.65 15.91 24.71 27.42 30.17 33.31
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Table A.5 Quantiles in the distribution of Trace Statistics Hp:n —r = 5.
n-r=235 Quantiles
Frequency T 1% 5% | 10% 50 % 90 % 95% | 97.5% 99 %
100 39.70 49.18 56.41 293.47 | 437.17 | 467.93 494.26 520.82
200 30.89 | 35.42 | 38.11 49.28 63.04 67.51 71.54 76.41
w=0 300 29.79 | 34.16 | 36.73 47.33 60.08 64.20 67.84 72.42
500 29.17 | 33.27 35.71 45.86 58.36 62.29 65.78 70.27
100 39.72 | 49.00 | 55.71 | 293.63 | 434.43 | 465.38 490.50 | 517.76
200 30.42 | 35.29 | 38.18 49.39 63.35 67.70 71.77 76.63
w=m 300 29.58 | 34.07 | 36.70 47.24 60.14 64.32 68.11 72.79
500 29.07 | 33.26 | 35.65 45.97 58.26 62.24 65.75 69.86
100 35.75 | 44.65 51.26 | 264.89 | 413.82 | 445.29 470.65 | 500.58
200 26.81 31.29 | 34.09 45.17 58.48 62.55 66.22 71.04
w=m7/2 300 25.88 | 30.12 | 32.67 43.12 55.73 59.63 63.50 68.16
500 25.18 | 29.33 | 31.84 41.84 54.09 58.00 61.63 66.16
100 36.11 45.04 | 51.58 | 265.57 | 414.71 446.53 470.90 | 500.51
200 26.90 | 31.43 34.15 45.08 58.48 63.18 67.23 71.95
w.:27/3 300 | 25.61 | 30.10 | 32.71 | 43.01 | 5553 | 59.82 63.68 | 68.04
500 25.28 29.44 | 31.92 41.68 53.81 58.07 61.35 65.54
100 36.11 44 .87 51.38 | 265.97 | 413.30 | 445.73 471.62 501.92
200 26.58 | 21.33 | 34.05 45.24 58.36 62.51 66.30 71.30
w= '”/3 300 25.56 | 30.11 32.65 43.03 55.73 59.61 63.42 68.00
500 25.49 | 29.56 | 31.90 41.75 53.86 57.71 61.18 65.37
100 | 36.66 | 45.64 | 52.16 | 266.46 | 415.18 | 446.90 472.50 | 501.18
200 26.51 | 31.16 | 33.99 45.24 58.84 63.08 66.88 71.48
w=57/6 300 25.63 | 30.21 32.69 43.11 55.95 60.08 63.86 68.32
500 25.27 29.38 31.90 41.90 53.89 57.86 61.38 65.92
100 36.57 | 46.03 52.56 | 266.15 | 414.52 446.88 471.10 499.77
200 26.69 | 31.33 | 34.12 45.14 58.76 63.38 67.23 72.15
W= 7"/6 300 25.77 | 30.24 32.74 43.06 55.82 60.01 63.62 68.11
500 25.21 29.47 | 31.89 41.80 54.08 57.82 61.32 65.71
100 13.80 | 17.74 20.00 29.63 41.89 45.92 49.66 54.36
Full 200 12.56 | 16.05 18.09 26.79 37.91 41.62 44.67 48.94
Cointe- 300 12.26 | 15.51 17.45 25.94 36.87 40.44 43.61 47.98
gration 500 11.85 15.11 17.07 25.30 35.83 39.37 42.27 45.92
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Table A.6 Quantiles in the distribution of Trace Statistics Ho:n —r1 = 6.

n—-r==6 Quantiles

Frequency T 1% 5% | 10% | 50% 90 % 5% | 97.5% 99 %

100 | 62.27 | 70.58 | 75.46 | 96.07 | 121.18 | 129.90 136.47 | 144.21
200 | 50.35 | 56.06 | 59.40 | 73.73 90.81 96.32 101.00 | 106.67
w=0 300 | 48.43 | 53.47 | 56.85 | 70.02 85.25 90.41 94.68 99.77
500 | 47.07 | 51.99 | 55.23 | 67.36 82.13 87.43 91.03 94.63

100 | 60.21 | 69.45 | 74.80 | 96.36 | 120.41 | 127.93 136.43 | 145.12
200 | 49.55 | 55.48 | 59.37 | 73.54 90.63 95.45 99.77 | 104.99
w=mr 300 | 47.56 | 53.27 | 56.88 | 69.99 85.34 91.07 95.62 | 100.05
500 | 46.25 | 52.19 | 55.59 | 68.11 83.28 88.76 92.52 96.95

100 | 55.99 | 64.78 | 69.63 | 90.18 | 114.80 | 122.32 129.67 | 139.17
200 | 45.32 | 50.92 | 54.23 | 67.98 85.12 90.33 94.73 | 100.30
w=m/2 300 | 42.60 | 48.18 | 51.65 | 65.08 80.15 84.91 89.81 95.57
500 | 42.24 | 47.25 | 50.55 | 62.79 77.55 82.20 86.26 90.70

100 | 55.32 | 64.34 | 69.89 | 90.35 | 115.52 | 122.68 129.85 | 138.30
200 | 45.54 | 50.84 | 54.53 | 68.21 84.72 89.10 93.60 99.42
w=27/3 300 | 43.10 | 48.52 | 51.86 | 64.55 80.45 84.39 88.01 94.17
500 | 41.85 | 47.18 | 49.91 | 62.83 77.00 81.81 86.63 92.48

100 | 55.76 | 64.76 | 69.98 | 90.46 | 116.12 | 123.99 132.06 | 140.02
200 | 44.67 | 51.61 | 54.83 | 68.69 84.93 90.21 95.66 | 100.21
w=m/3 300 | 42.27 | 48.55 | 51.70 | 64.84 80.84 85.36 89.19 94.57
500 | 41.70 | 47.37 | 50.43 | 62.77 77.65 82.94 87.23 91.77

100 | 56.79 | 65.21 | 71.04 | 91.76 | 118.76 | 127.85 135.01 | 144.29
200 | 43.87 | 50.33 | 54.23 | 68.64 85.74 91.11 96.04 | 101.97

w=57/6 300 | 42.70 | 48.17 | 51.74 | 64.57 80.52 85.32 88.97 93.49
500 | 42.09 | 46.92 | 50.39 | 62.63 76.63 80.69 84.82 89.49

100 | 57.44 | 66.69 | 71.72 | 92.41 | 116.69 | 124.00 133.38 | 143.68
200 | 45.47 | 50.92 | 54.51 | 68.22 85.34 98.86 96.16 | 101.54
w=mr/6 300 | 43.57 | 48.00 | 51.37 | 64.99 81.01 85.88 90.21 95.85
500 | 42.04 | 47.14 | 50.62 | 63.21 76.78 81.81 85.57 89.86

100 | 23.91 | 28.89 | 31.62 | 43.31 58.01 61.89 66.43 71.30
Full 200 | 21.03 | 25.32 | 28.06 | 38.68 52.20 56.76 59.81 64.21
Cointe- 300 | 20.73 | 24.30 ; 27.00 | 37.38 50.32 54.92 57.55 62.18
gration 500 | 19.52 | 24.06 | 26.56 | 36.48 48.69 52.66 55.28 60.60
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Table A.7 Quantiles in the distribution of Trace Statistics Ho:n—7=1T.

n—-r=7 . Quantiles

Frequency T 1% 5% 10 % 50 % 90 % 5% | 97T.5% 929 %

100 | 99.70 | 112.42 | 119.82 | 149.32 | 183.38 | 195.67 204.27 | 217.13
200 | 74.61 81.94 86.42 | 103.83 | 124.17 | 129.93 135.96 | 143.33
w=0 300 | 71.13 77.96 81.75 97.79 | 115.85 | 121.13 127.13 | 133.83
500 | 69.47 75.44 79.50 94.25 | 110.87 | 116.53 121.38 | 126.69

100 | 98.51 | 111.58 | 119.47 | 149.73 | 183.71 | 194.92 204.18 | 217.69
200 | 75.08 81.43 85.99 | 103.83 | 125.01 | 130.79 135.56 | 141.96
w=mr 300 | 71.52 77.94 81.75 97.63 | 115.55 | 120.87 126.35 | 132.87
500 | 69.36 76.40 79.74 93.78 | 111.22 | 116.51 120.97 | 126.64

100 | 91.75 | 105.70 | 113.04 | 142.37 | 176.57 | 186.57 195.02 | 206.89
200 | 68.05 76.34 80.60 97.17 | 116.99 | 123.07 128.98 | 134.10

w=m/2 300 | 64.80 71.18 74.86 90.84 | 109.17 | 114.57 119.66 | 126.59
500 | 61.96 68.91 73.40 87.74 | 105.27 | 110.45 113.99 | 119.58

100 | 90.96 | 104.73 | 111.59 | 140.86 | 176.50 | 187.63 197.00 | 206.19
200 | 68.32 75.78 79.85 97.45 | 116.70 | 122.48 128.78 | 135.34
w=2mr/3 300 | 64.25 71.00 75.09 | -90.76 | 108.92 | 114.56 120.58 | 125.66
500 | 61.68 68.61 73.10 87.39 | 105.11 | 110.89 115.58 | 121.69

100 | 94.02 | 107.20 | 114.10 | 142.79 | 175.90 | 186.46 197.59 | 208.37
200 | 69.24 76.97 80.54 97.60 | 117.16 | 124.37 129.07 | 136.18

w=m/3 300 | 63.54 70.93 75.48 91.48 | 108.89 | 114.72 120.80 | 127.28
500 | 63.02 70.40 73.71 87.82 | 104.78 | 110.49 115.04 | 119.77

100 | 95.19 | 107.62 | 115.12 | 145.60 | 180.70 | 191.78 202.45 | 213.53
200 | 68.82 76.50 81.13 98.69 | 118.26 | 125.09 130.59 | 136.58
w=57/6 300 | 64.03 72.37 76.59 91.85 | 108.70 | 115.49 120.33 | 125.76
500 | 62.51 68.97 72.97 88.12 | 104.73 | 110.38 115.32 | 122.85

. 100 | 96.71 | 107.74 | 115.34 | 144.75 | 179.84 | 190.31 201.87 | 213.77
200 | 69.89 76.55 80.87 98.05 | 117.82 | 123.11 129.78 | 136.94

w=m/6 300 | 64.62 71.64 76.25 91.24 | 108.62 | 114.22 119.94 | 126.94
500 | 62.18 68.65 72.92 87.56 | 105.24 | 109.93 113.80 | 118.30

. 100 | 36.95 42.38 45.81 60.23 77.20 81.80 87.03 91.59
Full 200 | 31.54 37.54 40.50 53.33 68.68 73.69 77.15 82.24
Cointe- 300 | 30.76 36.31 39.22 51.61 66.45 71.20 74.51 80.60
gration 500 | 29.96 35.42 38.52 50.15 64.11 68.71 72.44 77.18
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Table A.8 Quantiles in the distribution of Trace Statistics Hp:n —r = 8.
n-r =28 Quantiles

Frequency T 1% 5% 10% | 50% 90 % 95% | 97.5% 99 %
100 | 157.12 | 174.66 | 185.64 | 227.49 | 275.12 | 290.29 | 302.60 | 317.88

200 | 104.00 | 113.60 | 119.14 | 139.16 | 163.34 | 170.94 | 176.73 | 185.58

w=0 300 | 97.56 | 106.56 | 111.46 | 129.56 | 151.17 | 157.96 | 164.64 | 172.07
500 | 95.22 | 103.22 | 107.59 | 124.76 | 143.61 | 149.83 | 155.98 | 161.73

100 | 157.02 | 175.24 | 185.53 | 227.01 | 276.66 | 291.29 | 303.59 | 319.93

200 | 105.32 | 113.73 | 118.85 | 139.70 | 164.10 | 171.18 | 177.02 | 184.94

w=m 300 | 99.18 | 106.99 | 111.77 | 130.11 | 152.04 | 158.30 | 163.81 | 170.59
500 | 94.62 | 102.74 | 107.58 | 124.45 | 144.14 | 150.17 | 156.14 | 161.42

100 | 150.11 | 165.85 | 177.05 | 218.37 | 266.43 | 281.46 | 294.93 | 310.43

. 200 | 97.71 | 106.91 | 111.92 | 132.12 | 155.32 | 162.64 | 168.83 | 175.62
w=m/2 300 | 92.37 | 99.71 | 104.16 | 122.37 | 142.88 | 149.09 | 155.55 | 161.66
500 | 88.13 | 95.26 | 100.40 | 117.33 | 136.88 | 142.59 | 146.94 | 151.81

100 | 149.15 | 167.37 | 178.04 | 220.66 | 269.63 | 285.31 | 297.69 | 315.31

200 | 97.80 | 106.52 | 111.16 | 132.35 | 155.34 | 161.99 | 167.42 | 175.02

w=2r/3 300 | 90.81 | 99.52 | 104.31 | 122.40 | 144.11 | 150.45 | 156.44 | 162.63
500 | 88.22 | 96.24 | 100.09 | 117.70 | 136.31 | 142.50 | 148.01 | 154.55

100 | 148.69 | 168.79 | 177.83 | 220.22 | 268.27 | 285.19 | 299.51 | 314.36

200 | 97.72 | 106.81 | 112.26 | 132.81 | 155.65 | 163.11 | 169.45 | 179.25

w=m/3 300 | 91.37 | 99.58 | 104.35 | 122.52 | 143.11 | 149.31 | 154.34 | 161.30
500 | 87.81 | 96.08 | 100.22 | 117.86 | 136.99 | 143.03 | 148.02 | 153.70

100 | 151.70 | 171.58 | 183.76 | 225.41 | 276.15 | 290.47 | 305.08 | 319.15

200 | 96.82 | 107.20 | 112.26 | 133.27 | 157.21 | 164.69 | 170.44 | 177.44

w=57/6 300 | 90.42 | 99.67 | 105.01 | 122.88 | 143.75 | 150.24 | 156.59 | 163.30
500 | 87.50 | 95.59 | 100.11 | 117.60 | 137.62 | 143.54 | 148.79 | 154.04

100 | 152.20 | 171.95 | 183.19 | 226.10 | 275.32 | 292.48 | 306.62 | 323.91

200 | 97.60 | 107.94 | 113.28 | 13391 | 157.63 | 164.80 | 171.97 | 181.18

w=r7/6 300 | 90.43 | 99.28 | 104.58 | 123.22 | 144.46 | 150.86 | 156.25 | 163.84
500 | 88.35 | 95.93 | 100.26 | 117.91 | 136.57 | 142.52 | 147.62 | 154.43

100 | 51.73 | 59.10 | 62.91 | 79.56 | 98.79 | 104.82 | 110.98 | 116.49

Full 200 | 45.34 | 51.43 | 5535 | 70.52 | 88.37 | 93.59 98.17 | 104.17
Cointe- 300 | 43.96 | 49.89 | 53.12 | 68.07 | 84.91 | 89.93 94.73 | 99.24
gration 500 | 43.06 | 4824 | 5193 | 66.01 | 82.04 | 86.48 91.96 | 96.73
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