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ESTIMATION AND TESTING OF COINTEGRATION 
RELATIONSHIPS WITH STRONGLY SEASONAL 
MONTHLY DATA1 

E M I L I O C A M I N E R O 2 AND IGNACIO D Í A Z - E M P A R A N Z A 

This paper extends the method proposed in [8] for quarterly nonstationary data, consid­
ering the estimation and testing for seasonal cointegration relationships when dealing with 
strongly seasonal monthly data. The testing procedure is based on the maximum-likelihood 
estimation of the 'error correction mechanism' for the vector of series considered. Finite 
sample critical values for the cointegration test statistics at every frequency of interest are 
obtained by Monte Carlo simulations. Finally, tests are applied to Spanish production 
indexes data. 

1. INTRODUCTION 

The concept of cointegration defined in [4] allows us to describe the existence of a 
stationary or equilibrium relationship among individually nonstationary time series. 

In economic applications, series that are integrated of order one, 1(1), are fre­
quently found among which the existence of possible cointegration relationships is 
analyzed. On the other hand, many economic series exhibit a strong seasonality 
which can be characterized by the presence of seasonal roots with modulus one. 
Series; of this type show peaks in their spectra at the corresponding seasonal fre­
quencies. * 

In [6] (HEGY) the s tandard cointegration technique is extended to include the 
possibility that the da ta present unit roots at seasonal frequencies, suggesting the ap­
plication of an Engle & Granger type two-step testing procedure to the appropriately 
filtered series. [8] extends the method developed in [7], which tests for the existence 
of cointegration relationships among different time series (annual data) as well as 
the number of possible cointegrating vectors. In his extension [8], Lee considers 
quarterly data and the possible presence of unit roots at seasonal frequencies as well 
as at zero frequency. His method is based on the maximum-likelihood estimation of 
the error correction mechanism for the observed vector of series, and cointegration 

1We acknowledge financial support from the U.P.V. through Research Project 038.321-
HB232/95. 

2 Grant Holder of the Research Training Program awarded by the Education, University and 
Research Department of the Basque Government. 
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tests are set out at each frequency individually with no prior knowledge about the 
presence of unit roots at the remaining frequencies. These cointegration tests are 
developed on the basis of the coefficient matrices of the error correction model. 

The aim of the present paper is to extend the testing procedure based on the 
maximum likelihood estimation developed in [8] to monthly processes. 

Section 2 of this paper presents a generalization of the integration and cointe­
gration issues for the definitions of seasonal integrated process and seasonal cointe­
gration. The appropriate error correction mechanism for strongly seasonal monthly 
data is set out in Section 3. Section 4 extends the general framework of the testing 
strategy for cointegration considering processes that present unit roots at zero fre­
quency and/or at any seasonal frequencies of interest. The likelihood ratio statistics 
are derived in each case. A particular case of full cointegration, where all cointe-
grating vectors coincide, is included in subsection 4.4. In Section 5 the finite sample 
distributions of the statistics are analyzed by simulation. An example illustrates the 
implementation of the tests in Section 6. Section 7 presents our conclusions. 

2. GENERAL DEFINITIONS OF INTEGRATION AND COINTEGRATION 

In recent time series literature the concepts of integration and cointegration have 
been frequently used to describe the permanent behavior of many macroeconomic 
time series. However, less attention has been devoted to data series of smaller peri­
odicity than a year. These series exhibit seasonal fluctuations that, in many cases, 
are of a nonstationary nature. The structure of these series can be characterized 
by the existence of unitary modulus roots at seasonal frequencies corresponding to 
peaks in the pseudo-spectrum at the same frequencies (seasonal integration). Con­
sequently, it is also interesting to consider the existence of possible common factors 
between different series, at any of the seasonal frequencies (seasonal cointegration). 

This section presents a set of definitions that generalize the ideas of integration 
and cointegration, presented in [5] and [3], which were originally formalized in [8]. 

Definition 2.1. Let S(L) be a polynomial in the lag operator3 that has a root 
with modulus one at frequency u> — i.e., S(L) = (1 — elwL) — for u> 6 (—IT, IT], and 
also let D(L) be another polynomial collecting all the unit roots, if any, at seasonal 
frequencies as well as at zero frequency, which are different from u>. A vector ( n x l ) 
of series xt with no deterministic component is said to be integrated of order d at 
frequency u>, and denoted as xt ~ Iw(d), if d is the smallest integer for which the 
representation S(L)dD(L)xt = C(L)et has the following properties: 

(i) The spectrum of C(L) et is bounded away from zero and infinity at all frequen­
cies, 

(ii) {et} is a sequence of serially uncorrelated random vectors with finite and con­
stant unconditional variance, 

(iii) the initial values are zero, for both et and xt, for t < 0. 

'As usual, L denotes the lag operator. 



Estimation and Testing of Cointegration Relationships . . . 609 

Due to the presence of D(L), this general definition allows a series xt to be 
integrated of a different order at each frequency. Hence, the well known definition 
of integrated process at zero frequency can be achieved as a particular case when 
D(L) = 1 and CJ = 0. 

Assuming that xt ~ Iw(l) and D(L) = 1, the following implications are obtained 
from this definition: 

(i) the variance of xt tends to infinity as t —*• oo; 

(ii) innovations have a permanent effect on the seasonal pattern of xt (xt has 'long 
memory'); 

(iii) the pseudo-spectrum of xt takes on asymptotically the form f(<p) = A(<p—u>)~2 

for ip near u>, showing an infinite peak at frequency u; 

(iv) xt is asymptotically uncorrelated with processes which have unit roots at other 
frequencies4 . 

Example: An example of seasonal integrated processes for monthly data is 

(\-Ll2)xt=et, (1) 

which has roots with modulus one at every seasonal frequency as well as at zero 
free aency. The seasonal difference polynomial (1 — L12) = A12 can be factorized as 

(1-L12) = (l-L)(l + L)(l + %L)(l-iL)(l + (Vl+i)L/2)(l + (Vl-i)L/2) 
(1 - (VI + i) L/2) (1 - (V3 - 0 L/2) (1 + (n/3 + 1) L/2) 
(1 - (iV3 - 1) L/2) (1 - (iVz + 1) L/2) (1 + (iV3 - 1) L/2). (2) 

The unit roots ot this polynomial are: 

0i = l; e2 = -\; 03 = +*'; 

04 = - t ; h = -\(l + iVz)\ 06 = - i ( l - «V3); 

97 = 1(1 + iVt); 08 = 1(1 - iVs); 99 = -1(V5+1); 

0io = - l (v / 3- i ) ; <?n = l(v/3 + i); 012 = 1 ( ^ 3 - 0 . 

The frequency associated with a particular root is the value of u> in Re"% — the 
polar representation of the root. A root is seasonal if u> = 2-KJ/S, j = 1 , . . . , S — 1, 
where S is the number of observations per year (assuming S to be even). When 
S = 12, the seasonal frequencies associated with the seasonal (unit) roots are to = 
-, ±7r/2, ±27r/3, ±7r/3, ±57T/6 and ±7r/6; corresponding to 6,3,9,8,4,2,10,7,5, 
and 11 cycles per year, respectively. Summarizing, Definition 2.1 can be used to 

4 The conditions under which the correlation coefficients approach zero as T —+ 00 are given in 
detail in [6]. 



610 E. CAMINERO AND I. DÍAZ-EMPARANZA 

point out that the process xt is 1^(1) at these seasonal frequencies and at u> — 0, 
i.e., xt has twelve unit roots. 

Analogously, the idea of cointegration presented in Engle h Granger's articles 
can be generalized to define the concept of seasonal cointegration. 

Def in i t ion 2 .2. Let all components of xt be integrated of order one at frequency 
u>, i.e., xt ~ IUJ(1)- The components of xt are said to be cointegrated at frequency 
u>, and denoted as xt ~ CIW(1,1), if there exists a vector a(^ 0) so that zt = a'xt ~ 

L(0). 

This definition is not at all restrictive, in the sense that it allows different coin-
tegrating vectors at each of the frequencies where unit roots are present. 

However, it could be the case that for a vector of nonstationary series with unit 
roots at some seasonal frequencies and at zero frequency, a single cointegrating vector 
could eliminate all the unit roots in the series. This situation is formalized in the 
following definition of full cointegration. 

Def in i t ion 2.3 . Let each component of xt be integrated of order one at some 
frequencies, not necessarily at the same frequencies for all components. The com­
ponents of the vector xt are said to be fully cointegrated, and are denoted as 
xt ~ CI(1,1), if there exists a vector a ( / 0) so that zt = a'xt is stationary. 

These definitions contain concepts that are quite similar to those derived from the 
idea of cointegration established in [3]. Hence, if there is cointegration at seasonal 
frequency u> each of the series contains the same factor Iw(l) and an innovation may 
have a permanent effect on the seasonal behavior of xt, but only a temporary effect 
on the seasonal pat tern of zt = a'xt. 

3. ERROR CORRECTION MODEL FOR A STRONGLY SEASONAL 
PROCESS 

Based upon the parallelism between cointegrated VAR models and error correction 
models (ECM) established5 in [3], a seasonally cointegrated variables system may 
be represented through either an autoregressive vector (VAR) or, equivalently, using 
an error correction mechanism. 

In this section, we set out the ECM equation that corresponds to a vector of 
series presenting unit roots at all seasonal frequencies as well as at zero frequency. 
This equation may be considered as the adaptat ion for monthly da ta of the annual 
and quarterly models presented in [7] and [8], respectively. The model presented 
sets up a basis on which cointegration tests can be carried out when analyzing the 
existence of cointegration relationships on autoregressive vectors formed by monthly 
time series. 

'Adapted from Granger's Representation Theorem. 
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The data set considered is a monthly sequence of n-dimensional random vectors 
{xt}. We consider a general VAR(p) model. The dynamic of the process is described 
by the following model 

xt = $1xt-1 + $2xt-2 +... + $pxt-p+et, t = l , 2 , . . . , T , (3) 

where et ~ NID n (0 , E) and the _» i , . . . , _»p, X. are (n x n) matrices of parameters to 
be estimated on the basis of T observations. 

Since the process xt is allowed to have unit roots at seasonal frequencies as well as 
at zero frequency, the determinant of the autoregressive matrix polynomial $(z) = 
I — $ i z — . . . — $pz

p may have roots on the unit circle at these frequencies. It will 
be assumed that all the remaining roots of |$(2)j = 0 satisfy6 \z\ > 1. 

Following a procedure parallel to that of the univariant case developed in [2], 
from equation (3) the ECM representation can be obtained: 

A12xt = I I i y M _ i + II 2y 2 ] t_i + n 3 ? / 3 , t - i + h i l i 2 y i 2 ] t _ i 

+A1A12xt-1 + A2A12xt-2 H h ^p_i 2 Ai 2 a; < _p + i2 + et, (4) 

where 

y1}t = Zx(L)xt 

= (1 + L + L2 + L3 + L4 + L5 + L6 + L7 + L8 + L9 + L10 + L11) xt, 

y2,t = Z2(L)xt 

= - ( 1 - L + L2 - L3 + L4 - L5 + L6 - L7 + L8 - L9 + L10 - L11) xt, 

y3>t = Z3(L)xt = -(L-L3 + L5-L7 + L9-Lll)xt, 

y4)t = Z4(L)xt = -(l-L2 + L4-L6 + L8-L10)xt, 

y 5 ] t = Z5(L)xt 

= - 1 ( 1 + L - 2L 2 + L3 + L4 - 2L 5 + L6 + L7 - 2L 8 + L9 + L10 - 2L 1 1 ) xu 

ye,t = Z6(L)xt = ^ - ( l - L + L3-L4 + L6-L7 + L9-L10)xt, 

y7,t = Z7(L) xt 

= 1(1 - £ - 2L 2 - L3 + L4 + 2L 5 + L6 - L7 - 2L 8 - L9 + L10 + 2L 1 1 ) xt, 

y8,t = Zs(L)xt = - ^ - ( \ + L-L3-LA + L6 + L7-L9-L10)xt, 

yg,t = Z9(L)xt 

= - 1 ( V - L + L3 - v^ L4 + 2L5 - v^ L6 + L7 - L9 + v̂  L10 - 2L11) xt 

Уio.t = Z10(L)xt 

= 1(1 - УДL + 2L 2 - v^ L3 + L4 - L6 + v̂  L7 - 2L 8 + v^ L9 - L10) xt, 

6 The straight implication is that the nonstationarity of the process will come from unit roots at 
seasonal and zero frequencies but not from other frequencies. 
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yu,t = Zu(L)xt 

= hVZ + L-L3 - v^L4 - 2L5 - \/3L6 - L7 + L9 + v^L10 + 2L11) xt, 

yi2,t = Z12(L)xt 

= -i(l+v^L+2L2+v /3L3 + L4-L6-v/3L7-2L8-v/3L9-L10)^. (5) 

The interesting feature in this representation of model (3) is that it makes the set of 
regressors mutually orthogonal, with each of them collecting the process xt filtered 
so that it eliminates, each time, all unit roots except the one associated with one 
particular frequency7. The Zfc(L)'s (for k = 1 , . . . , 12) will be filters performing the 
function previously described, the nVs are (n x n) coefficient matrices related to the 
filtered vectors and the ylj's (for i = 1 , . . . ,p — 12) are (n x n) matrices related to 
the elements included in the regression model to whiten the error et and represent 
the stationary structure of the model. 

The ECM representation (4) will be employed to estimate and test for cointegra-
tion relationships between the components of a VAR. 

4. COINTEGRATION TESTS 

In this section the testing strategies for the different frequencies of interest will 
be detailed. It should be pointed out that in the ECM (4) the coefficient matri­
ces IIi, n.2, • • •, II12 convey information concerning the permanent behavior of the 
series8; so if the coefficient matrix I h has full rank, then the series do not contain 
unit roots at the corresponding frequency. If the rank of I h is zero, no cointegration 
relationship will be found at that frequency. However, if there are linear combina­
tions between columns of matrix n^, i.e. 0 < rank(H)k) = r < n, it can be said that 
cointegration relationships exist at that frequency. Given that the rank of matrix 
n^ is r, it can be shown for a suitable pair of (n x r) matrices jk and cvj;, satisfying 
J[k = lka'k> that despite yk,t-i itself being nonstationary, a'kyk>t-i will be station­
ary. This would mean that the vector process xt is cointegrated at the associated 
frequency whose unit modulus root has not been eliminated in yk,t-i-

The proof is straightforward from the ECM (4) if we consider, for instance, k = 2. 
If n2 has incomplete rank r, the term n2y2,t-i may be rewritten as (72*^2) y2,t-i, 
which must be stationary due to the stationarity of the left member in the equal­
ity, (Ai2#t). The implication described above is obvious substituting y2,t-i for 
Z2(L) Lxt. 

-y2Z2(L)La'2xt ~ I-(0) <=> ot'2xt ~ 1^(0) <=3> xt cointegrated at u> = w. 

7 For frequencies associated with complex roots the two filters that leave the two conjugated unit 
roots must be simultaneously applied. 

8 Each matrix n^ informs about the behavior of the series at the frequency whose associated 
root has not been eliminated in the corresponding yk,t—l- Note that for every pair of seasonal 
frequencies associated with conjugated complex roots the information concerning the permanent 
behavior of the series is included jointly and inseparably through the corresponding pair of matrices. 
That is, n * _ i and Uk (k = 4,6,8,10,12), in each case. 
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The columns of o^ are the cointegrating vectors of the series at that frequency. The 
space spanned by the columns of a*;, which at the same time coincides with the 
space spanned by the rows of matrix _Ifc, will be called ihe seasonal cointegration 
relationships space at tha t frequency. 

The natural hypothesis of the cointegration rank test comes from this. Generally, 
it can be formulated as the hypothesis that at most rk cointegration relationships 
exist at the corresponding frequency, rank(IIjk) < rk, against the alternative tha t 
rank(IIjfc) > rk- The main advantage of this procedure is that several null hypotheses 
can be tested for each case of interest with no prior knowledge of the existence of 
cointegration relationships at other frequencies, due to the asymptotic uncorrelat-
edness between any two series with unit roots at different frequencies. 

4 .1 . C o i n t e g r a t i o n at zero f requency 

To test the existence of at most r\ cointegrating vectors (at least n — r\ unit roots) 
at zero frequency in the presence of unit roots at some seasonal frequencies, the 
hypothesis can be formulated as Hi0 : rank(II i) < r i , (r\ < n) vs. Hitt : rank(II i ) > 
j*i; which can be expressed alternatively as Hi0 : 111 = J\a[. Since neither 71 nor 
a\ is observable, the test must be based upon estimates of them. Nevertheless, as 
pointed out in [7] these parameter matrices cannot be estimated, since they form an 
overparametrization of the model. Therefore the estimates of the spaces spanned by 
71, p(7i ) , and by ot\, sp(a\) will be used to test hypothesis Hi0. 

Equation (4) will be estimated by maximizing the likelihood function with re­
spect to the parameters ( l h , . . . , I h 2 ) and (E, .*4i , . . . , Ap-12). Since the way the 
parameters take part in the likelihood function is independent9 , we can concentrate 
it sequentially, obtaining an expression depending solely on the parameters of inter­
est III of the testing hypothesis. The estimates of 111 are substituted, recursively, in 
the corresponding expressions to obtain the estimates of the remaining parameters. 

Firstly, for fixed values of I h , . . . , II12 the maximum-likelihood estimates of A\,... 

. .., AP-\2 can be obtained by an OLS regression of (Ai2_t — z_fc=i l-jb|f*,t-i) on the 

lagged seasonal differences A i 2 - t - i , • • • »_-i2-t_p+i2- Alternatively, we can obtain 

the OLS residuals Rt by first regressing Ai2~t on the lagged seasonal differences 

giving the residuals Hot, then regressing each yk,t-\ (k=l,... ,12) on the lagged 

seasonal differences giving the residuals Rkt for Jb = 1 ,2 , . . . , 12, and finally forming 

Rt — Rot ~ Z_fc = l IhHjtt-
Then, the ML estimates of I h ' s can be achieved by the following OLS regression 

HOt = EElRlt + n2H2t + • • • + I - u H n t + II i2H i2 < + €t. (6) 

Since the parameter matrices II2, - - •, I-12 i n equation (6) are independent, the 
likelihood function can be concentrated on Di . Thus regressing Hot and R\t on 
(H2«, H3i, • . . , R\2t), we obtain the residuals Uot and U\t, respectively; thus finally 

9 Due to the asymptotic uncorrelatedness between any two series with unit roots at different 
frequencies, yi,t —1 and yj,t—i, and the fact that both are at once asymptotically uncorrected with 
(stationary) lags of Ai2~t-
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forming Ut = Uot — riilJu. The concentrated likelihood function can be rewritten 
as 

L(Ih,E) a |ErT/2exp (-I^U /E^U . J • (7) 

The ML estimation of the parameter matrix III may be obtained by the OLS regres­
sion Uot = IhUit +£i t . Since our hypothesis imposes the restriction Ih = 71 a i , for 
a fixed value of a i the ML estimation for 71 and £ are equivalent to the LS reduced 
rank estimation in the regression Uot = 7i(a'1Uif) + 771 *, obtaining 

7i(ai) = L>oiai(aiL>nai)_1 (8) 

E(oi) = L>00 - L>oia1(a
,
1L>nai)-1a/

1L>io. (9) 

where Dij^T-'^UitUjt. 
Now the likelihood function is proportional to | £ (a i ) | _ T l 2 and hence, its maxi­

mization with respect to a i is equivalent to minimizing |L>oo — Aia i (a /
1 L ) i i a i )~ 1 

aiL^iol with respect to a i . Using commonly known results (see [1] or [7]), the 
expression to be minimized remains 

m i n K A i Q i ~ a j D i o D ^ A i O i l ^ 
(«i) lai-Diiail 

Based upon [7] and [8], a i can be estimated by choosing the first r\ eigenvectors of 
D\QDQQ DQI with respect to D\\, a\ = (vi.i, ^1,2, • • •, t>i.ri). That is, the eigenvectors 
corresponding to the r\ largest eigenvalues, Ai,-, i = l , . . . , r i solving |AiDn — 
L>ioL>o"o1Ai| = 0. 

Without a priori information, a variety of possible optimum choices10 of the 
matrix a i can be obtained from the resulting 2i that solves the eigenvalue problem 
above. However, we can always infer the cointegration space of vector xt at that 
frequency. 

The inference about the number of cointegration relationships at the zero frequen­
cy can be carried out through the likelihood ratio test statistic or trace statistic. This 
tests the hypothesis Hi0 : Hi = 71 a i , through11 

n 

-21n(Q) = - T ] T m ( l - A M ) (11) 
1 = 7 - 1 + 1 

where Ai )T .1+i, . . . , Aijn are the (n — r\) smallest eigenvalues of D\ODQQ D01 with 
respect to D\\, corresponding to the (n — r±) smallest squared partial canonical 
correlations of Ui with respect to Uo. 

10Given that IT = 71 c*̂  is satisfied, for any (r\ X r\) nonsingular matrix P it is true that 

IT j=7iaj =l\PP-la[. 
The asymptotic distribution of the test statistic is a function of the distribution of several 

stochastic matrices, involving integrals of multivariant Wiener processes of dimension (n — r\). 
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4.2. C o i n t e g r a t i o n at seasonal f requency 7r 

Let us now set up the test for the hypothesis that there ai3 at most r2 cointegrating 
vectors at seasonal frequency n. In this case, the matr ix that conveys the informa­
tion about the behavior at seasonal frequency 7r is the one related to y2,t-i- The 
confronted hypotheses are H2o : rank(II2) < r2 (r2 < n) vs. H2o : rank( l l 2 ) > r2. 

Analogously to the previous section, the hypothesis that II2 does not have full 
rank can be formulated as the expression: H2o : n 2 = 72#2- The testing procedure 
is very similar to the one developed above except that the role played by the vectors 
of residuals Hit and R2t is reversed. 

Given the hypothesis of interest, for a fixed value of a2 the ML estimation for 
72 and E are equivalent to the LS reduced rank estimation in the regression U01 — 
l2(a'2U2t) + n2t, causing 

72(0:2) = Do2a2(a'2D22a2)'~1, (12) 

_ ( a 2 ) = Ooo - Do2a2(a'2D22a2)~1a'2D2Q. (13) 

The likelihood function is proportional to | _ ( a 2 ) | ~ T / 2 . Maximizing it with respect 
to oc2 is equivalent to minimizing the expression 

m i n lQ2-p22Q'2 ~ Q2L>20L'0"0
1L>o2a2l , 1 4 , 

(era) \a'2D22a2\ 

The trace statistic for the hypothesis that there are at most r2 cointegrating vectors 
— (n — r2) unit roots — at seasonal frequency it is 

n 

-2\n(Q) = -T Y, -*-(--A2.1) (15) 
i=r2+I 

where A2)r2+i, • • •,-^2,n are the (n — r2) smallest eigenvalues of D2QDQ0 DQ2 with 
respect to D22, which correspond to the (n — r2) smallest squared partial canonical 
correlations of U2 with respect to UQ. 

4 . 3 . C o i n t e g r a t i o n at t h e r e m a i n i n g seasonal frequencies 

The cointegration analysis at each pair of seasonal frequencies ±7r/2, ±27r/3, ± 7 T / 3 , 
±57r/6 and ±7r/6 — all associated two by two with conjugated complex unit roots — 
must take into account simultaneously the information provided by two parameter 
matrices, in each case. This means that the information about permanent behavior 
of the series at each pair of conjugated frequencies ±_^ , for £ £ {4 ,6 ,8 ,10 ,12} 
(where it must be noted tha t - 4 = 7r/2, UJQ = 27r/3, ujg = 7r/3, _io = 57r/6 and 
_ 1 2 = 7r/6) 13 conveyed jointly and inseparably through the matrices II^_i and II^. 
Therefore, we need to look at the two matrices, Ui-i and 11^, simultaneously to 
test the hypothesis of seasonal cointegration at each pair of conjugated frequencies 
(±uJi). 

In a more general context, the testing procedure might imply that we need to 
consider polynomial cointegrating vectors (PCIV), since one vector is sought to 
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eliminate two unit roots from two different filtered vectors, y/_i ) t _i and yt,t-\- If 
PCIV are employed, both the cointegrating vectors and the error correction term 
coefficients may be different at different lago. 

Henceforth, this paper will assume that cointegration, if any, is contemporaneous. 
Under this assumption the testing procedure is simpler than that which results from 
a general framework such as the one described above. 

Using the above generic notation, the test of interest for either of the five pairs 
of seasonal frequencies can be formulated by means of the joint hypothesis 

Hto : {II/_i = 7z__<*i} n {Jit = 7/ai} . 

Obviously, the restriction of contemporaneous cointegration imposes t h a t the coin­
tegrating vectors must coincide at different lags. 

As above, we can develop the testing procedure for each case £ £ {4, 6,8,10,12}. 
For fixed values of Et/ and El/_i, the maximum-likelihood estimation of the remain­
ing matrices I h is equivalent to an OLS estimation in the regression of (Hot — 
I I / _ i _ _ / _ M - UtRtt) on (Rlt,R2t,Pt), where P / = P - {Rt-i,t,Rtt} and P = 
{H3t, H4t,..., Rnt}-

If we consider the series of residuals from the OLS regressions of Hot, Rt-i,t 
and Rtt on (Hit, R2t, Pi) consecutively and denote them as Uot, Ut-\,t a n d H/t 

respectively, we can obtain the MLE of the parameter matrix [II/_i :![/] from the 
regression 

Uot = II/_iU/_ M + EtUtt + itt. 

Given the restriction under the joint hypothesis of contemporaneous cointegration, 
H/0, for a fixed value of „/, 

£(<*£) = -00-(-<,,<-, - _ ) ( ? tt°) 

a'Ł 0 
0 a'Ł 

a'Ł 0 
0 a'. 

Dt-\,i-i Dt-\,t 
Dtt-i Dt,t 

at 0 
0 at 

- 1 

( Dt-\,o Dto ) (16) 

-T/2 
Now the likelihood function is proportional to £ ( « / ) and its maximization 

is equivalent to minimizing the determinant of expression (16) with respect to a/. 
The trace statistic for the hypothesis that there are at most rt seasonal cointe­

grating vectors — (n — r/) unit roots — at each pair of frequencies ±c_/ i s 1 2 

-21n(Q) = -T _Г ln(l-Л/_м-A/ ł t0 (17) 

-rt + \ 

The asymptotic distribution of the test statistic is a function of the distribution of several 
stochastic matrices involving integrals of two mutually independent Wiener processes of dimension 
(n — rp) [A proof for seasonal frequencies ±7r/2 can be found in [8]]. 
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where A / _ i - . + 1 , . . . , \t-i,n are the (n — rt) smallest eigenvalues of Dt-ltoD00 Do, / - i 
with respect to Dt-i,t-i, and on the other hand, \t^t+i,..., \t,n are the (n — 77) 
smallest eigenvalues of D^o-Vo DO,/ with respect to Dttt-

In practice, it is useful to consider a simpler performance of the testing procedure 
with very little effect (see [8]) on the test when cointegration is contemporaneous. 
This simplification is based upon the structure of the error correction model consid­
ered and consists of assuming ft = 0 (=$> Ut = 0), £ - {4, 6, 8,10,12}. 

Under this assumption we can restrict our attention to the matr ix II^-i to test 
for cointegration relationships. The hypothesis of interest will be formulated as 

B(/-4)o : n V i = 7/_ia___. 

Thus, the testing strategy is similar to that for the zero or seasonal frequency ir 
except that the series of residuals Rt-i,t — in each particular case — takes the role 
of Hit or R2t, respectively. So, we obtain that the likelihood ratio test statistic for 
the hypothesis that there are at most rt-i seasonal cointegrating vectors at seasonal 
frequencies +u>t is 

n 

- 2 In (Q) = - T _>] k i ( l -V_ i ) , i ) (18) 
i=rt-i+l 

where \(t-i),re-1+i,..., \(t-i),n are the (n — rt-i) smallest eigenvalues of Dt-i^D^ 
DQ^-I with respect to Dt-i,t-i-

4.4 . Full C o i n t e g r a t i o n 

In some data series, especially economic series, behavior at different frequencies may 
be similar due to seasonality in the time series — or even the behavior of the trend 
— having the s t a ie source. This will be reflected in the fact that some (though 
not necessarily all) cointegrating vectors may coincide. Tha t is, a single cointegrat­
ing vector, say ap, (ap = <~i = a2 = at, £ _ {4,6,8,10,12.}) might remove all 
unit roots in the system at all frequencies. This is defined as full cointegration in 
Definition 2.3. In this case the ECM (4) will be reduced to 

Ai2_ . = Wp(L)_t-i + - 4 i A 1 2 £ t _ i - f ^ 2 A 1 2 _ t - 2 4 \-Ap-12A12xt-p+12 + et, (19) 

where the hypothesis of full cointegration implies that Up(L) = jF(L)a'F must be 
satisfied. Thus a single vector a'F may eliminate all the unit roots in the system and 
JF(L) is a polynomial matr ix having potentially eleven lags. 

By arguments similar to those in the previous subsection, we will restrict our 
attention to the case when cointegration relationships, if any, are contemporaneous. 
So it is assumed that ~YF(L) = ~fFlxL

u so the ECM can be written as 

A12Xt = n F l l _ t - l 2 + A i A 1 2 _ t - l + ^ 2 A 1 2 2 ; t - 2 + Mp-12Ai2~t -p+12 + £i- (20) 

Then, we can get the series of residuals RFt from the OLS regression of ~ t - i2 
on the lagged seasonal difference Ai2~ t_ i , • • •, Ai2~t-p+i2 so, with the series of 
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residuals Rot, we can obtain the likelihood ratio test statistic for the hypothesis 

HFo : H > = jFCt'F. 

The trace statistic to test the hypothesis that there are at most rp full cointe-
grating vectors is 1 3 

-21n(Q) = - T Y, \n(l-XF,i) (21) 
i=rF+i 

where A ^ r F + 1 , . . . , \ F n are the (n — rF) smallest eigenvalues14 of SFOSQQ1 SQF with 
respect to SFF-

5. FINITE SAMPLE CRITICAL VALUES. MONTE CARLO SIMULATIONS 

The aim of this section is to analyze the finite sample behavior of trace statistic distri­
butions. This will be achieved by Monte Carlo simulations under the null hypothesis 
considered — several values of r^ — at any frequencies of interest individually as 
well as in the full cointegration case. 

We then study the power of the test statistics by generating the distribution 
under several alternative hypotheses. 

The simulation experiments are designed for a sequence of random (n x l)vectors 
{xt} generated by 

xt = xt-f2 + £t, t = -99,...,0,l,...,T (22) 

where each et is a (n x 1) vector from a sequence of vectors NID(0, / „ ) . 
Given the way the series are generated in this paper and since we consider that 

the cointegration relationships, if any, are contemporaneous, the ECM (4) will take 
the following simpler form to carry out the simulation exercise: 

Anxt = Uiyi,t-i-{-U2y2,t-i+^3y3,t-i+'^5y5,t-i+^-7y7,t-i+^-9y9,t-i+^nyii,t-i+£t-
(23) 

By construction, the dynamic (22) of the vector sequence {xt} imply that there 
is no cointegration relationship between the elements of the vector xt at any fre­
quencies. It is then clear that the true HVs are null matrices. Hence the empirical 
distributions of the test statistics will be obtained, in each case, under the null hy­
potheses that rk = rank(II/fc) = 0, k = 1 ,2 ,3 ,5 ,7 ,9 ,11 , respectively. The critical 
values are reported in the Appendix. 

To study the power of the test at any frequency we simulate several alternative 
hypotheses, where only cointegration relationships that are contemporaneous have 
been imposed, and confront them with the correspondent null hypotheses. All these 
cases indicate that the power of the test for cointegration in rejecting the false null 
hypotheses increases with T, so tests do not seem inconsistent. In Table 1 we report 
the results for one of the cases. 

The asymptotic distribution of the test statistic is a function of twelve standard mutually 
independent Wiener processes. 

14 Remark: The matrices SQF and SFF correspond to the product matrix of the residuals Ro and 

RF, that is, S0F = T-1 J2?=1 RotR'Ft and SFF = T " 1 V ^ = j RFtR'Fr 
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Table 1. Power of Trace Statistic. True Model: (n — r) = (2 — 1) = 1, 

zt = 2xt + «ti where xt = Xt-12 + Ct-

H0 : n -- Г = 2 Fгequencies 
Quantil T O 7Г ±7r/2 ±27Г/3 -ť-т/з ±5ҡ/б ±7г/б 

9 5 % 

100 
300 
500 

41.4% 41.8% 88.2% 87.1% 87.8% 87.1% 87.9% 
99.8% 99.9% 100% 100% 100% 100% 100% 
100% 100% 100% 100% 100% 100% 100% 

9 9 % 

100 
300 
500 

20.3% 18.7% 66.1% 63.2% 63.3% 63.1% 66.1% 
98.1% 99.3% 100% 100% 100% 100% 100% 
100% 100% 100% 100% 100% 100% 100% 

6. EMPIRICAL APPLICATION: P R O D U C T I O N INDICATORS 

IN T H E SPANISH E C O N O M Y 

In this section we estimate the cointegration rank at each frequency in a set of 

variables related to Spanish production d a t a from different economic sectors. The 

existence of cointegration relationships at each frequency implies that the series in 

the system fluctuate around a cyclical component at that frequency. 

Our intention is to include in the variable set considered not only production se­

ries "rom the Industrial Production Index (IPI) but also series from other industrial 

sectors that are not reflected in this index, and series from the services sector. Thus 

we try to take into account a more representative se of d a t a on Spanish production. 

The common element of these series is that they all feature a strong seasonal compo­

nent. The d a t a are collected from the Boletin de Indicadores Economicos published 

monthly by the Spanish Central Bank (Banco de Espaha). 

B I E C O : IPI. Consumption Goods. Base 1990 = 100. 
E S M E Y C A : IPI. Investment Goods. Metal structures and Boilermaking. 

Base 1990 = 100. 
M A T T R A : IPI. Investment Goods. Transport Material (except cars and motorbikes). 

Base 1990 = 100. 
MAQYBEQ: IPI. Investment Goods. Machinery and other Capital Goods. 

Base 1990 = 100. 
B I E I N T : IPI. Intermediate Goods. Base 1990 = 100. 
A C E R O : Domestic Steel Production. In Thousands of Tons. 
V E N G R A : Multiples Sale Index. Base 1983 = 100. 
P E R N O C V I : Tourism and Travelling. Nights spent by Travellers in Hotels. 

In Thousands of People. 

We analyze monthly data for the period between January 1975 and March 1995. 

Figure 1 shows the logarithmic transformations of the series. The series show strong 

components in their seasonal and trend pattern, so we can expect to find unit roots 

at seasonal frequencies as well as at zero frequency. Hence, we can test and estimate 

cointegration relationships in the system at different frequencies. 
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Fig. 1. Production Series (log). 
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To carry out the unit roots tests for each individual series, we use the critical 
values reported in Table A.l in the Appendix. These tests corroborate the impression 
reflected by the graphics of the series as to the existence of a unit root at every 
frequency in each series. Once we have analyzed the individual structure in each 
series, the cointegration tests for the different frequencies are applied. 

Rank and cointegration relationships are estimated in the system formed by 
the variables BIECO, ESMEYCA, MATTRA, MAQYBEQ, BIEINT, ACERO, 
VENGRA and PERNOCVI. For the choice of the lag length p in the VAR, the 
usual model selection methods such as the Akaike Information Criterion (AIC) and 
Schwarz Criterion (SC) are used and Box-Pierce Q-statistics are also examined to 
test for uncorrelatedness of residuals. The ECM representation is adjusted for a 
VAR(22). Table 2 reports the results for the trace statistics to test the number of 
cointegration relationships at every frequency. 

T a b l e 2. Cointegгation Tests. 

H0 : n -- r ( П f c ) 
0 

Tгace Statistic at Fгequencies 
тr ±тr/2 ±2тr/3 ±тr/3 ±5тr/6 ±7r/б n = 8 T = 214 0 

Tгace Statistic at Fгequencies 
тr ±тr/2 ±2тr/3 ±тr/3 ±5тr/6 ±7r/б 

n — r = 8 r ( П f c ) = 0 334.0a 

229.6a 

153.4a 

98. l a 

59.5 a 

28.4a 

12.4 
2.1 

195.4a 159.4 162.6a 

120.8 104.3 103.3 
72.2 60.3 67.3 
41.8 37.7 37.7 
20.3 21.2 17.8 
10.0 8.0 6.7 

4.2 4.0 3.2 
0.0 0.7 1.1 

151.6 
95.0 
54.4 
26.2 
12.4 

3.3 
1.5 
0.0 

182.5a 

114.3 
61.8 
32.4 
12.8 

4.8 
1.8 
0.0 

182.8a 

101.6 
56.6 
24.7 

4.7 
2.0 
0.3 
0.0 

n — r = 7 r(П f c ) = 1 
334.0a 

229.6a 

153.4a 

98. l a 

59.5 a 

28.4a 

12.4 
2.1 

195.4a 159.4 162.6a 

120.8 104.3 103.3 
72.2 60.3 67.3 
41.8 37.7 37.7 
20.3 21.2 17.8 
10.0 8.0 6.7 

4.2 4.0 3.2 
0.0 0.7 1.1 

151.6 
95.0 
54.4 
26.2 
12.4 

3.3 
1.5 
0.0 

182.5a 

114.3 
61.8 
32.4 
12.8 

4.8 
1.8 
0.0 

182.8a 

101.6 
56.6 
24.7 

4.7 
2.0 
0.3 
0.0 

n — r = 6 r(П f c ) = 2 

334.0a 

229.6a 

153.4a 

98. l a 

59.5 a 

28.4a 

12.4 
2.1 

195.4a 159.4 162.6a 

120.8 104.3 103.3 
72.2 60.3 67.3 
41.8 37.7 37.7 
20.3 21.2 17.8 
10.0 8.0 6.7 

4.2 4.0 3.2 
0.0 0.7 1.1 

151.6 
95.0 
54.4 
26.2 
12.4 

3.3 
1.5 
0.0 

182.5a 

114.3 
61.8 
32.4 
12.8 

4.8 
1.8 
0.0 

182.8a 

101.6 
56.6 
24.7 

4.7 
2.0 
0.3 
0.0 

n — r = 5 r(П f c ) = 3 

334.0a 

229.6a 

153.4a 

98. l a 

59.5 a 

28.4a 

12.4 
2.1 

195.4a 159.4 162.6a 

120.8 104.3 103.3 
72.2 60.3 67.3 
41.8 37.7 37.7 
20.3 21.2 17.8 
10.0 8.0 6.7 

4.2 4.0 3.2 
0.0 0.7 1.1 

151.6 
95.0 
54.4 
26.2 
12.4 

3.3 
1.5 
0.0 

182.5a 

114.3 
61.8 
32.4 
12.8 

4.8 
1.8 
0.0 

182.8a 

101.6 
56.6 
24.7 

4.7 
2.0 
0.3 
0.0 

n — r = 4 r(П f c ) = 4 

334.0a 

229.6a 

153.4a 

98. l a 

59.5 a 

28.4a 

12.4 
2.1 

195.4a 159.4 162.6a 

120.8 104.3 103.3 
72.2 60.3 67.3 
41.8 37.7 37.7 
20.3 21.2 17.8 
10.0 8.0 6.7 

4.2 4.0 3.2 
0.0 0.7 1.1 

151.6 
95.0 
54.4 
26.2 
12.4 

3.3 
1.5 
0.0 

182.5a 

114.3 
61.8 
32.4 
12.8 

4.8 
1.8 
0.0 

182.8a 

101.6 
56.6 
24.7 

4.7 
2.0 
0.3 
0.0 

n — r = 3 r(П f c ) = 5 

334.0a 

229.6a 

153.4a 

98. l a 

59.5 a 

28.4a 

12.4 
2.1 

195.4a 159.4 162.6a 

120.8 104.3 103.3 
72.2 60.3 67.3 
41.8 37.7 37.7 
20.3 21.2 17.8 
10.0 8.0 6.7 

4.2 4.0 3.2 
0.0 0.7 1.1 

151.6 
95.0 
54.4 
26.2 
12.4 

3.3 
1.5 
0.0 

182.5a 

114.3 
61.8 
32.4 
12.8 

4.8 
1.8 
0.0 

182.8a 

101.6 
56.6 
24.7 

4.7 
2.0 
0.3 
0.0 

n — r = 2 r ( Г I f c ) = 6 

334.0a 

229.6a 

153.4a 

98. l a 

59.5 a 

28.4a 

12.4 
2.1 

195.4a 159.4 162.6a 

120.8 104.3 103.3 
72.2 60.3 67.3 
41.8 37.7 37.7 
20.3 21.2 17.8 
10.0 8.0 6.7 

4.2 4.0 3.2 
0.0 0.7 1.1 

151.6 
95.0 
54.4 
26.2 
12.4 

3.3 
1.5 
0.0 

182.5a 

114.3 
61.8 
32.4 
12.8 

4.8 
1.8 
0.0 

182.8a 

101.6 
56.6 
24.7 

4.7 
2.0 
0.3 
0.0 n — r = 1 r(Пfc) = 7 

334.0a 

229.6a 

153.4a 

98. l a 

59.5 a 

28.4a 

12.4 
2.1 

195.4a 159.4 162.6a 

120.8 104.3 103.3 
72.2 60.3 67.3 
41.8 37.7 37.7 
20.3 21.2 17.8 
10.0 8.0 6.7 

4.2 4.0 3.2 
0.0 0.7 1.1 

151.6 
95.0 
54.4 
26.2 
12.4 

3.3 
1.5 
0.0 

182.5a 

114.3 
61.8 
32.4 
12.8 

4.8 
1.8 
0.0 

182.8a 

101.6 
56.6 
24.7 

4.7 
2.0 
0.3 
0.0 

lSignificant at the 5% level. 

The results show no cointegration at seasonal frequencies ±7r/2 and ±7r/3. How­
ever, it seems that there is evidence of cointegration relationships at the remaining 
frequencies. The estimated cointegration ranks are ro = 6 and TV = r±2W/3 — 
r±57f/6 = r ± r r / 6 = 1. 

The optimum estimates of the cointegrating vectors at each frequency can be 
obtained by the method explained in Section 4. These estimates are: 

" i = ( £ i , i , - - - , £ 1 ) 6 ) = 

9.27 2.83 -2.39 2.68 4.62 4.00 
2.51 -3.42 2.35 -2.39 -0.63 1.58 

-1.85 1.64 -1.57 -0.62 -1.00 -1.65 
0.17 -1.28 -0.25 3.79 0.64 1.42 

-10.09 -4.63 6.53 -4.44 0.81 -4.48 
1.66 0.28 -3.00 1.49 -0.58 0.05 

-0.61 0.52 -0.51 -0.62 -0.58 -0.32 
-0.46 1.83 0.25 -0.28 -1.44 -0.26 

(24) 

S2 = (v2Л) = [ -11.96 -2.21 1.28 -3.18 23.78 -1.33 9.30 7.27 ] ' 

S 5 = (ü5,i) = [ -16.96 8.98 0.48 6.78 -4.16 -11.63 -7.50 20 .06] ' 
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a9 = (v9 i i) = [ 19.90 - 7 . 8 6 2.38 '2.02 -23 .72 6.03 - 2 . 4 5 4.62 ] ' 

S n = (»n , i ) = [ 6.40 -11 .79 2.67 -2 .89 32.31 - 0 . 9 7 4.18 2 . 9 3 ] ' 

Summarizing, the ECM that describes the dynamic of production is 

A12-J. = 7 i « i y i , . - i + 72<x2y2,t-i + 75«52/5,t-i + 79 a9_9,t- i + 7 n a i i y n , t - i + 

+ ^ i A 1 2 x t _ i + • • • + ^ l o A i s ^ t - i o + £t, (25) 

where 71, a\ are (8x6) matrices and 72, ^2 ,75 ,^5 ,79 , ct9,7ii , a n a r e (8x1) matrices. 
Estimation of 71,72,75,79, 711 can be carried out as described in Sections 4.1,4.2 
and 4.3. 

7. CONCLUDING REMARKS 

The main result of this study is the provision of a testing framework for the coin-
tegration ranks in a system of nonstationary monthly processes. Its particularity 
is tha t it allows these tests to be implemented at each frequency of interest in the 
presence of unitary modulus roots at other frequencies. The extension made here — 
from the research in [8] — provides the empirical distributions of the test statistics 
for finite samples with different numbers of observations. 

The statistical properties of these distributions seem to coincide with those found 
in previous similar studies, and are not far from those we would have desired at the 
beginning of our work. In particular, the power experiments show that the testing 
procedure presented is not inconsistent. 

The method is applied to Spanish economic data in the form of monthly produc­
tion indicators, which illustrates the implementation of the testing procedures. The 
results enable the error correction mechanism describing the dynamic of the system 
formed by these production variables to be identified. 

We would expect inclusion of a constant term to affect — similarly to previous 
studies — the distribution of the test statistics for cointegration at zero frequency, 
and inclusion of seasonal dummies to change the distributions of the test statistics 
for cointegration at seasonal frequencies. 

Finally in practice, the assumption mentioned above, n4 = n6 = Tls = Iho = 
n i2 = 0, hardly affects the distributions of the test statistics from the point of 
view of contemporaneous cointegration analysis. However, this contemporaneous 
cointegration analysis is included in a more general context that implies considering 
polynomial cointegrating vectors (PCIV) which are difficult to find in practice, and 
a much more complicated testing procedure will be required to study cointegrating 
relationships. 

8. APPENDIX: TABLES OF T R A C E STATISTICS 

These tables report the critical values of the empirical distributions for the different 
test statistics presented in Section 4; i.e., for the trace statistics (11), (15), (18) 
and (21). 
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The distribution of probabilities for each test statistic has been approached by the 

distribution of frequencies resulting from calculating repeatedly the trace statistic 

under the null hypotheses of no cointegration (r = 0) for values of n — 1, 2,3,4, 5,6,7 

and 8, respectively. The number of observations for the finite sample considered is 

T = 100, 200, 300 and 500. The number of replications is 20,000 except in the cases 

[n — r) — 6, 7, 8, where 3,000 replications are employed. 

Each table reports the critical values for the cointegration tests at each frequency 

individually and for the particular case of full cointegration. We use the statistics 

program RATS. 

Table A . l Quantiles in the distribution of Trace Statistics Ho : n — r = 1. 

n —r = 1 Quantiles 

Frequency T 1 % 5 % 1 0 % 5 0 % 9 0 % 9 5 % 97.5 % 9 9 % 

1 0 0 0.00 0.00 0.02 0.55 3.20 4.54 5.95 7.86 
2 0 0 0.00 0.00 0.02 0.62 3.23 4.52 5.71 7.45 

ш = 0 3 0 0 0.00 0.00 0.02 0.61 3.04 4.29 5.46 7.23 
5 0 0 0.00 0.00 0.02 0.60 2.99 4.15 5.35 6.91 
1 0 0 0.00 0.00 0.02 0.54 3.16 4.50 5.82 7.97 
2 0 0 0.00 0.00 0.02 0.62 3.21 4.44 5.76 7.52 

ш = ҡ 3 0 0 0.00 0.00 0.02 0.62 3.10 4.40 5.66 7.29 
5 0 0 0.00 0.00 0.02 0.62 3.06 4.22 5.40 6.99 
1 0 0 0.00 0.00 0.02 0.57 3.23 4.61 6.00 7.73 
2 0 0 0.00 0.00 0.01 0.56 3.22 4.48 5.86 7.69 

ш= ҡ/2 3 0 0 0.00 0.00 0.01 0.57 3.17 4.44 5.66 7.40 
5 0 0 0.00 0.00 0.01 0.58 J.16 4.39 5.54 7.30 
1 0 0 0.00 0.00 0.01 0.55 3.20 4.52 5.92 7.88 
2 0 0 0.00 0.00 0.01 0.56 3.12 4.39 5.71 7.52 

ш = 271-/3 3 0 0 0.00 0.00 0.01 0.56 3.11 4.35 5.60 7.34 
^ 0 0 0.00 0.00 0.01 0.56 3.11 4.34 5.49 7.18 
1 0 0 0.00 0.00 0.01 0.53 3.20 4.54 5.96 7.64 
2 0 0 0.00 0.00 0.01 0.56 3.16 4.44 5.67 7.54 

ш = ҡ/3 3 0 0 0.00 0.00 0.01 0.55 3.12 4.33 5.63 7.18 
5 0 0 0.00 0.00 0.01 0.56 2.99 4.18 5.46 7.10 
1 0 0 0.00 0.00 0.01 0.54 3.28 4.68 6.14 8.12 
2 0 0 0.00 0.00 0.01 0.57 3.20 4.52 5.86 7.67 

ш = 57г/6 3 0 0 0.00 0.00 0.01 0.57 3.14 4.41 5.66 7.10 
5 0 0 0.00 0.00 0.01 0.55 3.03 4.23 5.52 7.33 
1 0 0 0.00 0.00 0.02 0.56 3.29 4.68 5.92 7.93 
2 0 0 0.00 0.00 0.01 0.56 3.18 4.47 5.87 7.64 

ш = ҡ/6 3 0 0 0.00 0.00 0.01 0.56 3.14 4.41 5.61 7.32 
5 0 0 0.00 0.00 0.01 0.56 3.06 4.28 5.60 7.21 
1 0 0 0.00 0.00 0.01 0.51 3.08 4.33 5.70 7.33 

Full 2 0 0 0.00 0.00 0.01 0.47 2.86 4.08 5.33 6.97 
Cointe- 3 0 0 0.00 0.00 0.01 0.45 2.74 3.86 5.06 6.76 
gration 5 0 0 0.00 0.00 0.01 0.42 2.66 3.76 4.90 6.53 
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Table A.2 Quantiles in the distribution of Trace Statistics Ho r = 2. 

n - r = 2 Quantiles 

Frequency т 1 % 5 % 1 0 % 5 0 % 9 0 % 9 5 % 97.5 % 9 9 % 

1 0 0 9.30 21.78 36.97 152.22 264.82 293.15 315.16 337.97 
2 0 0 1.26 2.07 2.63 5.93 11.40 13.38 15.39 17.72 

ш = 0 3 0 0 1.22 2.03 2.61 5.73 11.07 12.96 14.80 17.10 
5 0 0 1.31 2.05 2.62 5.68 10.80 12.72 14.47 16.87 

1 0 0 9.06 22.00 37.85 153.48 266.23 292.95 317.13 341.79 
2 0 0 1.89 2.06 2.66 5.90 11.36 13.42 15.29 17.81 

Ш = 7Г 3 0 0 1.27 2.08 2.63 5.75 11.01 12.95 14.62 17.01 
5 0 0 1.27 2.04 2.60 5.60 10.70 12.71 14.60 17.05 

1 0 0 11.10 19.25 26.36 90.88 223.64 258.64 288.35 316.00 
2 0 0 0.44 1.04 1.56 4.69 10.30 12.38 14.24 16.54 

Ш = 7 Г / 2 3 0 0 0.48 1.07 1.59 4.68 10.07 11.97 13.81 16.16 
5 0 0 0.48 1.12 1.65 4.72 9.90 11.82 13.53 15.83 

1 0 0 10.96 19.27 26.30 89.36 225.85 262.44 289.15 319.47 
2 0 0 0.45 1.07 1.60 4.71 10.26 12.20 14.12 16.60 

ш = 2тr/3 3 0 0 0.43 1.05 1.60 4.70 10.12 12.02 13.78 16.01 
5 0 0 0.50 1.11 1.63 4.75 9.95 11.93 13.77 16.21 

1 0 0 10.95 19.48 26.94 89.43 222.33 259.82 287.83 316.83 
2 0 0 0.42 1.06 1.58 4.64 10.11 12.13 14.20 16.64 

ш = тг/3 3 0 0 0.45 1.07 1.60 4.70 9.93 12.04 13.90 16.41 
5 0 0 0.48 1.12 1.66 4.71 9.93 11.85 13.78 16.35 

1 0 0 11.01 19.40 26.44 90.16 226.47 263.56 290.75 321.04 
2 0 0 0.43 1.06 1.58 4.76 10.31 12.32 14.24 16.80 

ш = 57r/6 3 0 0 0.44 1.09 1.62 4.71 10.20 12.29 14.22 16.39 
5 0 0 0.43 1.12 1.65 4.73 10.03 11.95 13.72 16.16 

1 0 0 10.73 19.17 26.09 88.97 225.73 260.24 286.51 316.27 
2 0 0 0.43 1.06 1.56 4.68 10.19 12.28 14.39 16.68 

Ш = 7Г/6 3 0 0 0.45 1.07 1.57 4.63 9.96 11.94 14.13 16.85 
5 0 0 0.47 1.10 1.61 4.65 9.84 11.84 13.67 16.25 

1 0 0 0.34 0.79 1.21 3.86 8.98 10.88 12.80 15.55 
Full 2 0 0 0.31 0.75 1.12 3.57 8.32 10.20 11.85 14.32 
Cointe- 3 0 0 0.28 0.70 1.08 3.44 8.08 9.81 11.75 14.21 
gration 5 0 0 0.27 0.70 1.05 3.37 7.81 9.59 11.28 13.58 
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Table A .3 Quantités in the distribution of Trace Statistics Ho 3. 

n - r = 3 Quantiles 

Frequency т 1 % 5 % 1 0 % 5 0 % 9 0 % 9 5 % 97.5 % 9 9 % 

1 0 0 66.87 137.38 178.44 306.75 400.61 423.55 442.64 462.97 
2 0 0 6.52 8.56 9.85 15.62 23.72 26.64 29.20 32.27 

ш - 0 3 0 0 6.38 8.35 9.53 15.12 22.88 25.66 28.00 30.82 
5 0 0 6.34 8.21 9.44 14.93 22.44 24.95 27.37 30.68 

1 0 0 69.63 137.94 179.38 306.22 401.14 424.37 443.91 464.18 
2 0 0 6.57 8.59 9.88 15.71 23.78 26.47 29.20 32.08 

Ш — 7Г 3 0 0 6.44 8.47 9.70 15.21 23.00 25.60 28.12 31.24 
5 0 0 6.33 8.23 9.45 14.92 22.55 25.09 27.33 30.69 

1 0 0 50.56 87.78 119.37 272.07 388.35 414.60 435.84 458.37 
2 0 0 4.84 6.72 7.92 13.54 21.58 24.51 27.16 30.21 

Ш = 7r/2 3 0 0 4.79 6.64 7.80 13.11 20.85 23.46 25.88 28.91 
5 0 0 4.85 6.60 7.69 12.87 20.41 22.98 25.35 28.12 

1 0 0 51.24 88.33 120.34 271.35 387.82 415.12 435.22 459.21 
2 0 0 4.98 6.71 7.87 13.46 21.34 24.11 26.59 30.06 

ш = 27r/3 3 0 0 4.75 6.57 7.74 13.10 20.76 23.34 25.74 28.49 
5 0 0 4.76 6.47 7.61 12.91 20.38 22.79 25.21 28.21 

1 0 0 50.80 86.81 119.04 272.23 388.52 415.38 436.06 459.82 
2 0 0 4.92 6.74 7.91 13.47 21.42 24.24 26.78 29.94 

Ш = 7Г/3 3 0 0 4.80 6.53 7.68 13.10 20.79 23.46 25.97 28.70 
5 0 0 4.83 6.49 7.62 12.97 20.43 22.88 25.01 28.01 

1 0 0 48.77 84.36 117.01 269.21 384.04 410.96 430.86 453.14 
2 0 0 4.96 6.70 7.89 13.46 21.26 24.05 26.53 29.90 

ш = 57r/6 3 0 0 4.78 6.58 7.76 13.10 20.63 23.19 25.78 28.69 
5 0 0 4.72 6.46 7.66 12.88 20.38 22.97 25.16 27.94 

1 0 0 49.83 84.77 116.41 269.45 385.37 411.47 430.74 453.74 
2 0 0 4.88 6.66 7.80 13.43 21.48 24.25 26.67 29.83 

Ш = 7Г/6 3 0 0 4.85 6.60 7.79 13.11 20.77 23.39 25.80 28.92 
5 0 0 4.71 6.54 7.69 12.95 20.44 23.00 25.42 28.48 

1 0 0 2.40 3.91 4.91 9.82 17.11 19.66 22.19 25.58 
Ғull 2 0 0 2.21 3.56 4.48 8.97 15.78 18.40 20.65 23.28 
Cointe- 3 0 0 2.13 3.45 4.32 8.69 15.40 17.77 19.92 22.79 
gration 5 0 0 2.10 3.37 4.22 8.49 15.01 17.24 19.34 21.74 
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Table A.4 Quantiles in the distribution of Trace Statistics Ho : n — r = 4. 

n —r = 4 Quantiles 

Frequency т 1 % 5 % 1 0 % 5 0 % 9 0 % 9 5 % 97.5 % 9 9 % 

1 0 0 126.68 192.17 228.15 343.39 435.87 459.00 478.37 498.32 
2 0 0 16.41 19.60 21.58 29.92 40.73 44.02 47.51 51.71 

ш = 0 3 0 0 15.63 19.00 20.95 28.90 39.14 42.65 45.66 49.78 
5 0 0 15.56 18.71 20.45 28.24 38.32 41.56 44.60 48.71 

1 0 0 126.43 191.81 228.14 342.28 437.77 461.50 481.92 502.51 
2 0 0 16.30 19.64 21.54 29.88 40.70 44.32 47.44 51.51 

ш = ҡ 3 0 0 15.92 19.06 20.95 29.00 39.13 42.37 45.45 49.55 
5 0 0 15.61 18.83 20.59 28.38 38.18 41.32 44.32 48.14 

1 0 0 96.55 163.29 206.19 338.22 438.92 463.58 483.71 506.56 
2 0 0 13.49 16.63 18.51 26.75 37.60 41.25 44.53 48.65 

ш = ҡ/2 3 0 0 12.87 16.06 17.96 25.89 36.06 39.24 42.31 46.02 
5 0 0 13.02 15.92 17.75 25.30 34.92 38.15 41.14 44.83 

1 0 0 97.09 155.99 193.56 324.47 426.08 451.92 470.87 494.06 
2 0 0 13.47 16.64 18.47 26.83 37.41 41.09 44.59 48.47 

ш = 2тr/3 3 0 0 12.85 16.10 17.92 25.92 36.05 39.25 42.04 45.74 
5 0 0 12.93 15.88 17.68 25.23 35.01 38.32 41.06 44.51 

1 0 0 85.42 145.57 183.82 313.30 414.67 440.66 460.97 485.63 
2 0 0 13.39 16.56 18.56 26.88 37.78 41.29 44.53 48.30 

ш = ҡ/3 3 0 0 13.20 16.23 18.02 25.97 35.96 39.38 42.35 46.07 
5 0 0 12.94 15.88 17.63 25.33 35.18 38.31 41.35 45.07 

1 0 0 88.88 146.72 185.10 314.99 416.07 441.62 462.51 484.53 
2 0 0 13.43 16.64 18.63 26.83 37.55 41.03 44.39 48.59 

ш = 5ҡ/6 3 0 0 12.99 16.26 18.09 25.90 36.20 39.48 42.52 46.47 
5 0 0 12.92 15.95 17.72 25.27 35.16 38.50 41.64 45.55 

1 0 0 86.07 145.46 184.15 314.27 415.48 441.53 463.04 483.69 
2 0 0 13.36 16.67 18.61 27.02 37.71 41.26 44.63 48.59 

ш = ҡ/6 3 0 0 12.81 16.15 18.02 25.93 35.93 39.27 42.27 45.96 
5 0 0 12.64 15.71 17.60 25.16 34.90 38.19 40.81 44.52 

1 0 0 6.98 9.55 11.21 18.48 28.38 31.91 34.97 38.75 
Full 2 0 0 6.31 8.64 10.18 16.88 25.95 28.91 31.81 35.36 
Cointe- 3 0 0 6.24 8.48 9.79 16.35 25.27 28.39 31.09 34.85 
gration 5 0 0 5.91 8.21 9.65 15.91 24.71 27.42 30.17 33.31 
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Table A.5 Quantiles in the distribution of Trace Statistics Ho '• n — r = 5. 

n - r = 5 Quantiles 

Ғrequency т 1 % 5 % 1 0 % 5 0 % 9 0 % 9 5 % 97.5 % 9 9 % 

1 0 0 39.70 49.18 56.41 293.47 437.17 467.93 494.26 520.82 
2 0 0 30.89 35.42 38.11 49.28 63.04 67.51 71.54 76.41 

ш = 0 3 0 0 29.79 34.16 36.73 47.33 60.08 64.20 67.84 72.42 
5 0 0 29.17 33.27 35.71 45.86 58.36 62.29 65.78 70.27 

1 0 0 39.72 49.00 55.71 293.63 434.43 465.38 490.50 517.76 
2 0 0 30.42 35.29 38.18 49.39 63.35 67.70 71.77 76.63 

ш = ҡ 3 0 0 29.58 34.07 36.70 47.24 60.14 64.32 68.11 72.79 
5 0 0 29.07 33.26 35.65 45.97 58.26 62.24 65.75 69.86 

1 0 0 35.75 44.65 51.26 264.89 413.82 445.29 470.65 500.58 
2 0 0 26.81 31.29 34.09 45.17 58.48 62.55 66.22 71.04 

ш = ҡ/2 3 0 0 25.88 30.12 32.67 43.12 55.73 59.63 63.50 68.16 
5 0 0 25.18 29.33 31.84 41.84 54.09 58.00 61.63 66.16 

1 0 0 36.11 45.04 51.58 265.57 414.71 446.53 470.90 500.51 
2 0 0 26.90 31.43 34.15 45.08 58.48 63.18 67.23 71.95 

ш • - 2тr/3 3 0 0 25.61 30.10 32.71 43.01 55.53 59.82 63.68 68.04 
5 0 0 25.28 29.44 31.92 41.68 53.81 58.07 61.35 65.54 

1 0 0 36.11 44.87 51.38 265.97 413.30 445.73 471.62 501.92 
2 0 0 26.58 31.33 34.05 45.24 58.36 62.51 66.30 71.30 

Ш = 7Г/3 3 0 0 25.56 30.11 32.65 43.03 55.73 59.61 63.42 68.00 
5 0 0 25.49 29.56 31.90 41.75 53.86 57.71 61.18 65.37 

1 0 0 36.66 45.64 52.16 266.46 415.18 446.90 472.50 501.18 
2 0 0 26.51 31.16 33.99 45.24 58.84 63.08 66.88 71.48 

ш = 57r/6 3 0 0 25.63 30.21 32.69 43.11 55.95 60.08 63.86 68.32 
5 0 0 25.27 29.38 31.90 41.90 53.89 57.86 61.38 65.92 

1 0 0 36.57 46.03 52.56 266.15 414.52 446.88 471.10 499.77 
2 0 0 26.69 31.33 34.12 45.14 58.76 63.38 67.23 72.15 

Ш = 7Г/6 3 0 0 25.77 30.24 32.74 43.06 55.82 60.01 63.62 68.11 
5 0 0 25.21 29.47 31.89 41.80 54.08 57.82 61.32 65.71 

1 0 0 13.80 17.74 20.00 29.63 41.89 45.92 49.66 54.36 
Ғull 2 0 0 12.56 16.05 18.09 26.79 37.91 41.62 44.67 48.94 
Cointe- 3 0 0 12.26 15.51 17.45 25.94 36.87 40.44 43.61 47.98 
gration 5 0 0 11.85 15.11 17.07 25.30 35.83 39.37 42.27 45.92 
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Table A.6 Quantiles in the distribution of Trace Statistics Ho 6. 

П — r SГ 6 Q uantiłes 

Frequency т 1 % 5 % 1 0 % 5 0 % 9 0 % 9 5 % 97.5 % 9 9 % 

1 0 0 62.27 70.58 75.46 96.07 121.18 129.90 136.47 144.21 
2 0 0 50.35 56.06 59.40 73.73 90.81 96.32 101.00 106.67 

ш = 0 3 0 0 48.43 53.47 56.85 70.02 85.25 90.41 94.68 99.77 
5 0 0 47.07 51.99 55.23 67.36 82.13 87.43 91.03 94.63 

1 0 0 60.21 69.45 74.80 96.36 120.41 127.93 136.43 145.12 
2 0 0 49.55 55.48 59.37 73.54 90.63 95.45 99.77 104.99 

Ш = 7Г 3 0 0 47.56 53.27 56.88 69.99 85.34 91.07 95.62 100.05 
5 0 0 46.25 52.19 55.59 68.11 83.28 88.76 92.52 96.95 

1 0 0 55.99 64.78 69.63 90.18 114.80 122.32 129.67 139.17 
2 0 0 45.32 50.92 54.23 67.98 85.12 90.33 94.73 100.30 

ш = 7г/2 3 0 0 42.60 48.18 51.65 65.08 80.15 84.91 89.81 95.57 
5 0 0 42.24 47.25 50.55 62.79 77.55 82.20 86.26 90.70 

1 0 0 55.32 64.34 69.89 90.35 115.52 122.68 129.85 138.30 
2 0 0 45.54 50.84 54.53 68.21 84.72 89.10 93.60 99.42 

ш = 2тr/3 3 0 0 43.10 48.52 51.86 64.55 80.45 84.39 88.01 94.17 
5 0 0 41.85 47.18 49.91 62.83 77.00 81.81 86.63 92.48 

1 0 0 55.76 64.76 69.98 90.46 116.12 123.99 132.06 140.02 
2 0 0 44.67 51.61 54.83 68.69 84.93 90.21 95.66 100.21 

Ш — 7Г/3 3 0 0 42.27 48.55 51.70 64.84 80.84 85.36 89.19 94.57 
5 0 0 41.70 47.37 50.43 62.77 77.65 82.94 87.23 91.77 

1 0 0 56.79 65.21 71.04 91.76 118.76 127.85 135.01 144.29 
2 0 0 43.87 50.33 54.23 68.64 85.74 91.11 96.04 101.97 

ш — 57r/6 3 0 0 42.70 48.17 51.74 64.57 80.52 85.32 88.97 93.49 
5 0 0 42.09 46.92 50.39 62.63 76.63 80.69 84.82 89.49 

1 0 0 57.44 66.69 71.72 92.41 116.69 124.00 133.38 143.68 
2 0 0 45.47 50.92 54.51 68.22 85.34 98.86 96.16 101.54 

Ш = 7r/б 3 0 0 43.57 48.00 51.37 64.99 81.01 85.88 90.21 95.85 
5 0 0 42.04 47.14 50.62 63.21 76.78 81.81 85.57 89.86 

1 0 0 23.91 28.89 31.62 43.31 58.01 61.89 66.43 71.30 
Full 2 0 0 21.03 25.32 28.06 38.68 52.20 56.76 59.81 64.21 
Cointe- 3 0 0 20.73 24.30 27.00 37.38 50.32 54.92 57.55 62.18 
gration 5 0 0 19.52 24.06 26.56 36.48 48.69 52.66 55.28 60.60 
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T a b l e A . 7 Quanti les in t h e dis tr ibut ion of Trace Statist ics HQ : n — r = 1. 

П-r"-: 7 Quantiles 

Frequency т 1 % 5 % 1 0 % 5 0 % 9 0 % 9 5 % 97.5 % 9 9 % 

1 0 0 99.70 112.42 119.82 149.32 183.38 195.67 204.27 217.13 
2 0 0 74.61 81.94 86.42 103.83 124.17 129.93 135.96 143.33 

ш = 0 3 0 0 71.13 77.96 81.75 97.79 115.85 121.13 127.13 133.83 
5 0 0 69.47 75.44 79.50 94.25 110.87 116.53 121.38 126.69 

1 0 0 98.51 111.58 119.47 149.73 183.71 194.92 204.18 217.69 
2 0 0 75.08 81.43 85.99 103.83 125.01 130.79 135.56 141.96 

Ш = 7Г 3 0 0 71.52 77.94 81.75 97.63 115.55 120.87 126.35 132.87 
5 0 0 69.36 76.40 79.74 93.78 111.22 116.51 120.97 126.64 

1 0 0 91.75 105.70 113.04 142.37 176.57 186.57 195.02 206.89 
2 0 0 68.05 76.34 80.60 97.17 116.99 123.07 128.98 134.10 

ш = тr/2 3 0 0 64.80 71.18 74.86 90.84 109.17 114.57 119.66 126.59 
5 0 0 61.96 68.91 73.40 87.74 105.27 110.45 113.99 119.58 

1 0 0 90.96 104.73 111.59 140.86 176.50 187.63 197.00 206.19 
2 0 0 68.32 75.78 79.85 97.45 116.70 122.48 128.78 135.34 

ш = 2тг/3 3 0 0 64.25 71.00 75.09 90.76 108.92 114.56 120.58 125.66 
5 0 0 61.68 68.61 73.10 87.39 105.11 110.89 115.58 121.69 

1 0 0 94.02 107.20 114.10 142.79 175.90 186.46 197.59 208.37 
2 0 0 69.24 76.97 80.54 97.60 117.16 124.37 129.07 136.18 

Ш = 7г/3 3 0 0 63.54 70.93 75.48 91.48 108.89 114.72 120.80 127.28 
5 0 0 63.02 70.40 73.71 87.82 104.78 110.49 115.04 119.77 

1 0 0 95.19 107.62 115.12 145.60 180.70 191.78 202.45 213.53 
2 0 0 68.82 76.50 81.13 98.69 118.26 125.09 130.59 136.58 

ш = 57r/6 3 0 0 64.03 72.37 76.59 91.85 108.70 115.49 120.33 125.76 
5 0 0 62.51 68.97 72.97 88.12 104.73 110.38 115.32 122.85 

1 0 0 96.71 107.74 115.34 144.75 179.84 190.31 201.87 213.77 
2 0 0 69.89 76.55 80.87 98.05 117.82 123.11 129.78 136.94 

Ш = 7Г/6 3 0 0 64.62 71.64 76.25 91.24 108.62 114.22 119.94 126.94 
5 0 0 62.18 68.65 72.92 87.56 105.24 109.93 113.80 118.30 

1 0 0 36.95 42.38 45.81 60.23 77.20 81.80 87.03 91.59 
Full 2 0 0 31.54 37.54 40.50 53.33 68.68 73.69 77.15 82.24 
C o i n t e - 3 0 0 30.76 36.31 39.22 51.61 66.45 71.20 74.51 80.60 
graítion 5 0 0 29.96 35.42 38.52 50.15 64.11 68.71 72.44 77.18 
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Table A.8 Quantiles in the distribution of Trace Statistics Ho : n 

n - r = 8 Quantiles 

Frequency т 1 % 5 % 1 0 % 5 0 % 9 0 % 9 5 % 97.5 % 9 9 % 

1 0 0 157.12 174.66 185.64 227.49 275.12 290.29 302.60 317.88 
2 0 0 104.00 113.60 119.14 139.16 163.34 170.94 176.73 185.58 

ы = 0 3 0 0 97.56 106.56 111.46 129.56 151.17 157.96 164.64 172.07 
5 0 0 95.22 103.22 107.59 124.76 143.61 149.83 155.98 161.73 

1 0 0 157.02 175.24 185.53 227.01 276.66 291.29 303.59 319.93 
2 0 0 105.32 113.73 118.85 139.70 164.10 171.18 177.02 184.94 

Ш = 7Г 3 0 0 99.18 106.99 111.77 130.11 152.04 158.30 163.81 170.59 
5 0 0 94.62 102.74 107.58 124.45 144.14 150.17 156.14 161.42 

1 0 0 150.11 165.85 177.05 218.37 266.43 281.46 294.93 310.43 
2 0 0 97.71 106.91 111.92 132.12 155.32 162.64 168.83 175.62 

ш = ҡ/2 3 0 0 92.37 99.71 104.16 122.37 142.88 149.09 155.55 161.66 
5 0 0 88.13 95.26 100.40 117.33 136.88 142.59 146.94 151.81 

1 0 0 149.15 167.37 178.04 220.66 269.63 285.31 297.69 315.31 
2 0 0 97.80 106.52 111.16 132.35 155.34 161.99 167.42 175.02 

ш = 2тr/3 3 0 0 90.81 99.52 104.31 122.40 144.11 150.45 156.44 162.63 
5 0 0 88.22 96.24 100.09 117.70 136.31 142.50 148.01 154.55 

1 0 0 148.69 168.79 177.83 220.22 268.27 285.19 299.51 314.36 
2 0 0 97.72 106.81 112.26 132.81 155.65 163.11 169.45 179.25 

Ш = 7Г/3 3 0 0 91.37 99.58 104.35 122.52 143.11 149.31 154.34 161.30 
5 0 0 87.81 96.08 100.22 117.86 136.99 143.03 148.02 153.70 

1 0 0 151.70 171.58 183.76 225.41 276.15 290.47 305.08 319.15 
2 0 0 96.82 107.20 112.26 133.27 157.21 164.69 170.44 177.44 

ш = 57r/6 3 0 0 90.42 99.67 105.01 122.88 143.75 150.24 156.59 163.30 
5 0 0 87.50 95.59 100.11 117.60 137.62 143.54 148.79 154.04 

1 0 0 152.20 171.95 183.19 226.10 275.32 292.48 306.62 323.91 
2 0 0 97.60 107.94 113.28 133.91 157.63 164.80 171.97 181.18 

Ш = 7г/б 3 0 0 90.43 99.28 104.58 123.22 144.46 150.86 156.25 163.84 
5 0 0 88.35 95.93 100.26 117.91 136.57 142.52 147.62 154.43 

1 0 0 51.73 59.10 62.91 79.56 98.79 104.82 110.98 116.49 
Full 2 0 0 45.34 51.43 55.35 70.52 88.37 93.59 98.17 104.17 
C o i n t e - 3 0 0 43.96 49.89 53.12 68.07 84.91 89.93 94.73 99.24 
gration 5 0 0 43.06 48.24 51.93 66.01 82.04 86.48 91.96 96.73 
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