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TESTING IN STATIONARY MODELS 
BASED ON DIVERGENCES OF OBSERVED 
AND T H E O R E T I C A L FREQUENCIES 1 

M A R I A LUISA M E N E N D E Z , D O M I N G O M O R A L E S , L E A N D R O P A R D O 

AND I G O R V A J D A 

Goodness-of-fit tests for stationary distributions of dependent data are considered, based 
on /-divergences of observed and theoretical cell frequencies. Pearson's X\ is a special 
version. A methodology is presented leading to asymptotically a-level variants of these 
tests, and also to the selection of most powerful versions. This methodology is illustrated on 
binary Markov data. Similar procedures have been previously established for independent 
data. The possibility to extend these procedures to dependent data is a new argument in 
favour of the /-divergence alternatives to the classical Pearson's X\. 

1. INTRODUCTION 

Let X = (XQ, X\,...) be a stationary sequence of random variables taking on values 
in X C R, and P the distribution of components XQ, X\,... on X. We consider the 
statistical test of the hypothesis P = P0 based on observations Xn = (X\,..., Xn) 
quantized by a fixed decomposition V = (D\,... ,Dm) of X. In other words, we 
consider the classical goodness-of-fit tests for vectors pn = (pn\,... ,pnm) of the 
observed cell frequencies 

1 " 
Pni = -2_\ 1Dx(Xk) n *—' 

k = l 

and vectors p = (pi,...,pm) of the theoretical cell frequencies p; = P(Di). The 
hypothesis PQ is indicated by writing po = (Poi, • • • ,Pom) instead of p = ( p i , . . . ,pm) 
and it is assumed tha t all components of po are nonzero. 

The classical goodness-of-fit test for independent observations is based on the 
Pearson's statistic 

m / ~ \ 2 
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Other common tests are based on the divergences between observed and theoretical 
frequencies pn and po introduced by Csiszar [3] and Ali and Silvey [1], defined for 
convex functions / : (0, oo) —> R by the formula 

Df(þn,Po) 

m , „ 

_Cp°»J (£ 
ťssl V Po; 

where /(0) (possibly infinite) is obtained by the continuous extension. 

We restrict ourselves to the convex functions f(t) with / ( l ) = 0, twice continu
ously differentiable in a neighbourhood of t = 1 with f"(l) = 1- We shall normalize 
the /-divergences into the form of statistics 

Tn
f = 2nDf(pn,p0). (2) 

Obviously the Pearson's statistic (1) coincides with T/ for f(t) = (t — l ) 2 / 2 . T h e 
class 

T« = Tl*, aeR, (3) 

of the so-called power divergence statistics, defined by fa(t) = (ta — l)/[a(a — 1)] for 
a -- 0, a -^ 1, and by 

fo(t) = -\nt for a = 0 

and 
fi(t) = tint for a = I, 

has been introduced by Cressie and Read [4] (cf. also Read and Cressie [7]). 
This class satisfies the above considered assumptions and contains the best known 
goodness-of-fit test statistics. As an example of statistic not contained in this class 
but satisfying our assumptions one can take Tj[ for f(t) = 2(1 — t)/(l -f /) . Similar 
function has been used to define /-divergence of probability distributions in Rukhin 
[8]. Other examples can be found in Liese and Vajda [5]. 

We present a methodology for specification of critical values and powers of the 
tests based on (2) and (3) in the framework of statistical models with dependent 
data satisfying an asymptotic normality condition. We also describe a method of 
specification of the most powerful test, provided it exists. The general methodology 
is illustrated on stationary Markov models. The problem of most powerful test is 
solved numerically for the uniform hypothesis in the framework of binary Markov 
data models. 

2. ASYMPTOTICALLY a - L E V E L / - D I V E R G E N C E T E S T S 

Under the assumptions about / considered in (2) it holds asymptotically, for t —* 1, 

f(t) = f(l) + f'(l)(t-l)+^-(t-l)2 + o((t-l)2) 

= f'(l)(t-l)+\(t-l)2 + o((t-lf). 
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If under the hypothesis asymptotically, for n —• oo, 

Pni = Poi + op(l) for all 1 < i < m (4) 

then 

n ,~ x 1 ^ > (Pni ~ Poi)2 . (^ (Pni - Poi)2\ 

D,(pn,Po) = -2E Poi + • * ( £ Poi ) 

so that by (2) 
Tn

f=X2(l + op(l)). (5) 

We consider models satisfying the assumption 

r~ (Pni — POI Pnm — POm\ A 7 V n t / v . , , c x 
\fn — = — , . . . , — —> N(0, V) in law. (6) 

V y/Poi ^/POm J 

E.g. , this is the case when the quantized process forms an irreducible aperiodic 
Markov chain (cf. Tavare and Al tham [9]). Under (6), 

m 

X2-^Y = ^2PiZ
2 inlaw (7) 

i= i 

where pi are eigenvalues of the matr ix V and Z{ are independent N(0,1). Hence we 
have the following 

T h e o r e m 1 . If the model satisfies the regularity assumptions (4) and (6) and Qa 

is the (1 — a) -quant i le of Y defined by (7) then, for all / under consideration, the 
tests (Tl,Qa) are asymptotically of size a. 

R e m a r k 1. The matr ix V and, consequently, the eigenvalues pi may not be speci
fied uniquely by the null hypothesis Lb (uniquely is specified only the marginal dis
tribution of components Xi). If V depends continuously on the model parameters 
which remain free under PQ, and there exist consistent estimates of these parameters 
leading to the est imate Vn of the matr ix V, then we can use the tests 

(TlQna), (8) 

where Qna is the (1 — a)-quant i le of 

m 

Yn — / jPniZj 
1 = 1 

and Pni are eigenvalues of the matr ix Vn- The continuity argument leads to the 
conclusion that pni consistently estimate pi, i.e. Qna consistently estimates Qa. As 
a result, all tests (8) are of the asymptotic size a. 
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Theorem 1 and Remark 1 assert that all test (8) are asymptotically equivalent 
from the point of view of the test size defined by 

Ocn(PoJ) = PT(Tf>Qna\P0). 

Preferences between them have thus be based on other criteria, e.g. on the test 
powers 

-n(P,f) = ?*(Tl>Qna\P) (9) 

for P ^ PQ. In general, there is no universally preferable test in the class (8) (cf. e. g. 
p. 411 in Cressie and Read [4] in the particular case of independent observations). 
However, for special models with independent observations the most powerful test 
might exist (cf. e.g. Menendez et al [6]). 

The problem is what methodology leads to the selection of the most powerful test 
in the class (8). If the asymptotic size 0 < a < 1 is fixed, this problem reduces to the 
most preferable statistic Tj[. The class (3) seems to be rich and interesting enough 
to justify the reduction of the original problem into the problem of most preferable 
statistic Tn. Indeed (cf. e.g. Read and Cressie [7]), Tn is the Pearson's Xn, T~x 

is the Neyrnan modified Xn statistic and Tn is the Freeman-Tukey statistic Fn. 
Further, 

n n 
Tn = 2 " T ^ Poi l n —L a n d T° = 2n y~ poi In -r-5-

tA POi t t Pni 

are the loglikelihood ratio statistic Gn and the modified Gn statistic. Thus the 
circle of candidates Tn may be restricted by an interval of a's arround the "center of 
symmetry" a = 1/2 , large enough to contain the above listed important particular 
cases. Within this interval, the most preferable a can be obtained by a statistical 
experimentation, similar to what has been called small sample studies on p. 143 of 
Read and Cressie [7]. It consists of the approximation of TTn(P, a) = '~n(P, fa) given 
by (9) by the relative frequency ~n>N(P, a) of the event Tn > DUia in a large number 
N of simulated realizations of Xn. The simulations should be carried out for P = P0 

and for several sufficiently representative alternatives P ^ P0. The most preferable 
value a* of the parameter a is defined by the condition that , for all selected P ^ P0, 
~n,N(P,a*) = max7r f . )jv(P,a), where the maximum extends over the subdomain of 
a's where \a — ~n,N(Po,a)\ achieves minimum or nearly minimum values. 

3. APPLICATIONS T O REVERSIBLE MARKOV MODELS 

In this section we apply the above considered tests to irreducible aperiodic Markov 
chains X = (X\,X2, • • •) with states l , . . . , r a and stochastic m x m matr ix P of 
transition probabilities. The decomposition may be defined by £),- = {i}. Then 
the regularity assumptions (4) and (6) hold (cf. e.g. Billingsley [2]). Since the 
distributions P in this case coincide with the vectors p, we can replace P and P0 by 
p and p0. Hence we consider the hypothesis p = p0 about the stationary distribution 
of the chain matr ix P. Since no states are transient, the hypothesis satisfies the 
condition that all components of po are nonzero. 
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In the model under consideration the goodness-of-fit tests of the hypothesis po 
based on the statistic X\ have been considered previously by Tavare and Altham 
[9]. They established relation (7) and for reversible chains they found a simplified 
representation of the eigenvalues /?;. Namely, they proved the following version of 

(7): 

m _ 1 1 4- \-

*J - > * 3 £ \±±Z? m law, (10) 
i = i l Ai 

where A j , . . . , Am_i are the nonunit eigenvalues of the chain matrix P. Combining 

this with our previous result (5) we obtain the following assertion. 

Theorem 2. If the model is an irreductible, aperiodic and reversible Markov chain 
and Qa is an (1 — a)-quantile of the random variable Y figuring in (10) then, for all 
/ under consideration, the tests (T^,Qa) are asymptotically of size a. 

Remark 2. Except very special cases, the matrix P is not uniquely defined by 
the condition po = PQP• But the relative frequencies 

ft.(«.J)-aa?T(S"'f° <"> 
Z_jk_2 1 { i} ( A f c - i ) 

consistently estimate the transition probabilities p(i, j) of the matrix P (cf. Billings-
ley [2j). Since the eigenvalues A; considered in (10) are continuous functions of the 
elements p(i,j) of P, the substitution pn(i,j) = p(i j) in these functions leads to 
consistent estimates Am- of A;. Denote by Yn the random variable defined by (10) 
with Ai replaced by Am- and by Qna the corresponding (1 — a)-quantile. Then one 
can argue similarly as in Remark 1 that the conclusion of Theorem 2 holds with Qa 

replaced by Qna. 

Example. We present evaluation of the most preferable test (T£, Qna) in the sense 
specified above for the uniform hypothesis po = (1/2,1/2) in the binary Markov 
model satisfying the assumptions of Theorem 2. Obviously, 

l~Y l - 7 ) : 0 < . ^ ^ 1 ' /? + 7 < 2 , 

is the class of possible Markov matrices P and 

l~J i \ , \-- 0 < / ? < m m ( l , ^ l , / ? < 1 , (12) 
P1P/P2 1 - P1P/P2 J I Pi) 

is the subclass satisfying the condition (pi,P2) = (p\,P2)P- In particular, 

( V iM : •<'<'• 
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is the subclass under the uniform hypothesis p 0 . The nonunit eigenvalue of this 
matrix is 1 — 2(3 so that we get from (10), (11) 

y _ \___72 y - P"(U)+Pn(2,2) ^ 
0 ' n 2-pn(l,l)-pn(2,2f • 

_ 2 - p n ( l , l ) - p n ( 2 , 2 ) , 
Qna - - 7 - -— r ~ - - - Xl( l - <*)• 

Pn(lA) + Pn(2,2) 
Let us choose the most preferable statistics Tn by using the relative frequencies 

^n. io^P, fa) — Kn,io*(Q, a) evaluated for 20 < n < 50, — 4 < a < 8 and all 

p = (p i ,p 2 ) = (0,1 - lj), 0 < lj < /?/(/? + 1), 

where the domain of 0 depends on 0 < (3 < 1 in matr ix (12). For our experiment we 
have chosen (3 ~ { 1 / 4 , 1 / 2 , 3 / 4 } . Figures 1 a, b present the corresponding behavior of 
7r20,io4(^, a), 7T5o]104(lj, a) on the interval 0 < lj < 2/3 for {3 = 1/2 and selected values 
of a. From the point of view of our task, these results are representative enough also 
for (3 ~ 1/4 and (3 — 3/4. To illustrate this conclusion, we present 7T50104(lj, a) for 
f3 = 1/4 in Figure 2 a and 7r2o,io*(0,a) for (3 = 3/4 in Figure 2 b . 

We see from the figures that the rate of convergence to the designed test size a 
depends on the test and also on the association between da ta represented by the 
matrix (12). Differences between the test powers depend too, they seem to grow 
with the degree of association. 

In accordance with the criterion formulated at the end of Section 2, we can con
clude from the presented figures that in testing the uniformity of stationary Markov 
distributions, the most preferable among (3) seems to be the Neyman modified X% 
statistic T~l represented in Figures 1 and 2 by + . The power of the statistics T~4 

and Tjf represented by • and x exceeds that of T " 1 but the a-levels 7rn l 04(0.5, —4) 
and 7rn l 04(0.5, 8) are too far from the designed size a = 0.05. On the other hand, 
the minimum of absolute deviation |0.05 — 7r n l 0 4(0.5 ,a) | is achieved at a = 2 but 
7rn l 04(0.5, —1) practically coincides with 7Tnl04(0.5, 2), and 7rnl0-4(lj, —1) essentially 
exceeds 7rn 10-4(lj, 2) for lj ̂  0.5. 

It is interesting (cf. the results about powers of the tests based on the / -
divergence statistics considered in (3), summarized in the case of independent obser
vations in Read and Cressie [7]), tha t in the case of independent data the Neyman 
modified X% was never found optimal in the stated sense. Also quite sharp differ
ences in power clearly visible in the presented figures are interesting. They in fact 
represent strong arguments in favour of /-divergence alternatives to the classical 
Pearson's X%, similar to those collected by Read and Cressie [7] for models with 
independent observations. 

Our results demonstrate tha t the investigation of powers of tests based on / -
divergence statistics leads even in models with dependent da ta to nontrivial results. 
In this sense they motivate the need to extend this study to composite hypotheses 
about marginal distributions of stationary da ta sources. 

(Received September 19, 1996.) 
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Power (n = 20, N = 10 4 ) 
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F i g . 1 a . 7r2o,io4(^! a) as a function of 6 for selected a and j3 = 1/2. 
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Power (n = 50, N = 104) 
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Fig. 1 b . 7r50iio4 (9, a) as a function of 6 for selected a and fi = 1/2. 
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Power (n = 20, N= 104) 

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 

parameter 6 

F i g . 2 a. ~2o,io4(0> a) as a function of 9 for selected a and /? = 1/4. 
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Power (n = 50, N = 10 4 ) 
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F i g . 2 b . ir5Q104(9,a) as a function of 6 for selected a and /? = 3/4. 
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