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APPROXIMATION A P P R O A C H FOR NONLINEAR 
FILTERING P R O B L E M W I T H TIME D E P E N D E N T 
NOISES 

Par t I: Conditionally Optimal Filter in the Minimum Mean 
Square Sense 

S. H O A N G , T . L. N G U Y E N , R. B A R A I L L E AND O. T A L A G R A N D 

An approximation approach is proposed to design a nonlinear recursive filter which is 
conditionally optimal in the minimum mean square (MMS) sense for a nonlinear filtering 
problem with dependent noises. Definition of an MMS estimator in a given class of esti
mators is introduced and its uniqueness (with probability 1) is established in Theorem 1. 
Efficiency of a new optimal filter is illustrated in Theorems 2,3. Some numerical examples 
are presented. 

1. INTRODUCTION 

State estimation plays a very important role in the field of nonlinear multivariable 
stochastic control. Given noisy observations of the state of a nonlinear dynamical 
system, contaminated with random noise, the filtering problem consists in estimating 
as precisely as possible the system state. Most works on nonlinear filtering are based 
on the minimum mean square (MMS) or on the least squares (LS) approaches. The 
LS method, considering a state estimation as an output LS problem, is unrecursive 
and therefore a filtering problem then is solved numerically as such. In this context, 
many theoretical and practical questions remain open such as the existence and 
uniqueness of a global minimum, the possible existence of local minima (which are 
highly undesirable from a computational point of view), the stability of the global 
minimum with respect to da ta or to parameter uncertainties etc. We refer to [6], [28] 
for a detailed discussion of the LS approach. 

The classical MMS approach proceeds via determination of the conditional dis
tribution function (c.d.f.) for the system state given observations. A nonliner es
timation problem then reduces to the computation of the t ime evolution of a c.d.f. 
Equations for the time evolution of a c.d.f. can be found in Bucy [5] and Jazwinski 
[11]. Unfortunately, the recursive computation of a c.d.f. is in fact unrealizable for 
a wide variety of nonlinear systems. Equations for c.d.f. are so complicated tha t 
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there is little interest in evaluating them in practical structures. This explains the 
high interest in efforts to approach a nonliner filtering from an approximative point 
of view which aims at constructing simple realizable nonlinear filters for practical 
systems (cf. [2], [3], [5], [7], [11]). In several works, the optimal filtering equations 
are linearized around a current estimate and complicated expressions are discarded 
from computation. In others, an expansion in Fourier series is used and moments of 
orders higher than second are replaced by functions of conditional expectation and 
variance. Several authors try even to integrate the Bayes formulae (see [26]). 

The following three approximate nonlinear filtering techniques appear very at
tractive: the linearized Kalman filter (LKF), the extended Kalman filter (EKF) and 
the iterative EKF. In the LKF, the gain coefficients are independent of the state and 
they are computed along a nominal solution. The estimate, however, may become 
very different from the nominal solution as time increases and as a consequence, 
nonlinearities may grow considerably. In the EKF the equations, linearized around 
the lastest estimate, are used to fit the estimator to the true state and the gain 
matrix has to be calculated in real time. This technique is very expensive for high 
dimensional systems [9]. Another difficulty is the possible divergence of the process 
[27]. As to iterative EKF, it a t tempts to decrease the nonlinear effects of measure
ments by employing in addition an iterative procedure. This procedure repeatedly 
recalculates an estimate until changes in one iteration become small enough. Several 
authors have modified the iterative EKF in order to decrease the system nonlinear 
effects by performing iterations between measurements (iterative EKF with smooth
ing). For a more complete survey of nonlinear filtering approaches, see [3], [15], [27]. 

The present paper is a continuation of linear and nonlinear filtering and smooth
ing problems with correlated noises studied in [17], [18]. In a series of papers 
[22], [23], [25] Pugachev has suggested and successfully developed a new approach to 
the design of nonlinear parameter and state estimation algorithms which are (con
ditionally) optimal in the MMS sense, for nonlinear systems. This approach allows 
to solve many complicated filtering problems from the point of view of "suboptimal-
ity". Many of the difficulties, discussed above, can be removed by introducing first 
a class of nonlinear filters of given structure; an optimal filter can then be found in 
that class of filters by solving some optimization problem. This approach enables to 
overcome traditional difficulties in nonliner filtering and to concentrate the attention 
on the choice of a structure for the filter and on optimization of the filter's perfor
mance. In [17], [18] a solution to filtering and smoothing problems with correlated 
noises is also proposed in the framework of an approximation method. In fact, when 
the noise sequence is correlated, the optimal (in MMS sense) estimator x(t), written 
in the recursive form, remains a function of all da ta measured up to and including 
t. In addition, in reality, time correlation between variables of the noise sequence 
decreases as a time lag increases [4], [12], [13]. These facts are in favour of an ap
proximation method which seeks an optimal filter in some class of recursive filters 
whose current estimate x(t) depends only on the lastest observations [17], [20]. In 
fact, for large t, the computation of x(t\z\), z\ := [z(l),..., z(t)) is time-consuming 
in comparison with x(t\z1), 1 <C q < t, while their performances, discussed under 
the above assumptions, should be comparable. Moreover, under some conditions 
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like a Markov property of the noise sequence, the latter approach can yield an MMS 
optimal filter (see Theorem 3 in [20] for linear case). Finally, the following remark 
concerned with two approaches in [23] and [17] is worth mentioning: In the light of 
the works [22], [23], [25], for the case of dependent noises, an efficient recursive filter 
can be designed by using only the last (t + l ) t h observation z(t + 1) and involving 
some last filtered estimates x(r),... ,x(t), 1 < r < (. The estimator x(t) can be 
interpreted as an "observation" for x(t) (cf. [17]) and thus the estimation of x(t + 1) 
can be regarded as an MMS filtering in a class the filters which are the functions 
of x(t), z(q),... ,z(t + 1) or, following [23] - an MMS filtering in a class of filters 
depending on x(r),..., x(t), z(t + 1). In fact, the "observations" x(r),. .., x(t) con
tain a "rich" information on x(t + 1) since they are filtered estimates for the system 
states x(r),.. .,x(t) and one can considerably improve the quality of x(t + 1) by 
using the set x(r),. .., x(t). The two approximation approaches viewed above are of 
one common idea to choose a class of filters of a given structure and to optimize the 
filter's performance by solving an appropriate optimization problem. Their differ
ence is the following: if the method in [17] is proposed to overcome the difficulties 
due to correlation in the noise sequences, Pugachev's method [23] intends to deal 
with difficulties due to nonlinearity. The purpose of the present paper is to show 
that a reasonable combination of these two methods can give a new efficient filtering 
algorithm for solving the complicated nonlinear filtering problems with dependent 
noises. Efficiency of this new approach will be illustrated on some simple numerical 
examples. 

2. PROBLEM STATEMENT 

Consider the following standard nonlinear filtering problem. We are given a dynam
ical system described by 

x(t-rl)z=<f>t(x(t)tw(t)), t = 0 , 1 , . . . (1) 

where <j>t(-) is a known deterministic function, and observations 

z(t + 1) = ht+l(x(t + 1), v(t + 1)), t = 0 , 1 , 2 , . . . (2) 

where ht(-) is also a known function. In (1),(2) x(t) denotes the n th dimensional 
system state, z(t) is an observed vector of dimension p, w(t), v(t) are random vectors 
with respective dimensions nw and nv. We will assume that the initial condition x(0) 
and the vector processes {w(t)} and {v(t)} are independent with known distribution 
functions (d.f .) . The sequence {w(t)} is supposed to be white with zero-mean and 
covariance matr ix Kw(t). We will denote F(v\) and g(X,v\) the d.f. and charac
teristic function ( c f . ) of the vector v\, v\ := [v(l),... ,v(t)]. The problem to be 
considered in this paper is to estimate the state x(t) using all the observations z\. 

According to the ideas developed in [17], [23], we introduce the class of filters 

x(t + 1) = 6t£t[x(t - r ) , . . . , x(t), z(t - q),. . ., z(t + 1)] + l u t = 0 , 1 , . . . (3) 

where r, q are integers 0 < r < t, —\<q<t — l. We want to find among the 
class of filters (3) a filter which is optimal in some sense. In (3) the n^-dimensional 
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vector-function £< is assumed to be given (its choice is usually based on practical 
experience we have in solving concrete linear or nonlinear suboptimal filtering prob
lems [22], [23]) and 6t G Rnxnt, j t G Rn are functions to be determined as a solution 
of some optimization problem. In what follows equation (3) for the filter will be 
referred to as an (r, g)-model. It can be easily seen that the (r, g)-model is a mixture 
of the two models discussed in [17], [23] which are particular cases of (3) subject to 
q = — 1 [17] and r = 0 [23] respectively. 

3. MMS FILTER FOR AN (r,g)-MODEL 

1. To avoid any possible confusion which may arise from the generality of the 
assumptions related to the noise sequence {v(t)} we will give here a more direct proof 
of the theorem which establishes basic relationships for an MMS filter (denoted as 
MMSF) for an (r, <z)-model. We mention that these relationships can be obtained 
also by the method described in [23]. For simplicity, the class of filters (3) will be 
denoted by X(6, 7), 

x eX(6,~/),x :=6£ + y. (4) 

The MMS estimator in the class X(6,7) is denoted by 

£° = ^ + 7°. (5) 

Let tr(A) denote the "trace" operator for a symmetric matrix A. 

Definition 1. The estimator x° is said to be MMS optimal in the class X(6, 7) if 
it satisfies the two following conditions: 

(Cl) E[x°] = E[ x\ 

(C2) x° = argmin f є^- J[x] 

J[x] = tr E[eeт], e :=x-x, Xu := \x' G X(6, 7) : E[x'] = E[x] I . 

Thus, Xu includes all unbiased estimators from the class X. We mention that 
the two conditions above are introduced also in [17] for the definition of an optimal 
estimator. In what follows for any two random vectors £, 77, let £ := E[£], K^ := 
E[ttT],Kto:=E[SV

T]. 

Theorem 1. There exists an MMSF for the (r, <7)-model for the filtering problem 
( l ) - (3 ) . This filter is unique w.p.l (with probability 1) and it is defined by the 
relations 

x°(t + 1) = 6^t(x°(t - r), . . ., x°(t), z(t -q),...,z(t+ I)) + 7? (6) 

7? = x(t + 1) - 6tft 

6° = KXVK+, K$ is the pseudoinverse of Kv 
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X:=x(t + l)-x(t+l), .7:= & - 6 

P(< + 1) = E [(x°(t + 1) - x(t + I)) (x°(t + I) - x(t + l))T] 

= M(t+l)-6°KT
v 

M(t+l) = E[xxTl = Kx. 

P r o o f . The requirement (CI) for unbiasedness of the estimator E[x] = E[6£ + 
-y] == 6£, + 7 = x leads to 

7° = x - Si (7) 

Substituting (7) into (3) one sees that the optimal matrix <5° is found by solving 
the following optimization problem 

<5° = argminJ(<5), J(6) = tr E [(6(Z - | ) + x - x) (6(£ - «f) + x - x)T] . 

Taking the derivative of J(6) with respect to 6 leads to the following matrix equation 
for an optimal 6° (cf. [17]) 

KVXT = Kvx (8) 

where 6° := X and x, 77 are defined above. 
Consider the general case when A',, may be singular. Note that equation (8) is 

always solvable. Indeed, for the vector v := (rjT, xT)T it can be easily seen E(v) = 0 
and 

E := E(vvT) Kv Kvx 

к к 
l \ x v l \ x Since E is a covariance matrix, E > 0 (i. e. E is symmetric nonnegative definitive). 

On the other hand, a necessary and sufficient condition for E > 0 is (cf. [1]): 
(i) Kv > 0;,(ii) Kvx = KVK

+KVX; (iii) Kx - KXVK+ KT

n > 0. The condition (ii) 
implies that Kvx G (Kv) where R(KV) is the linear space spanned by the columns 
of Kv. Hence tLe equation (8) has a solution. 

It is known (cf. [1]) that the class of all solutions of the equation (8) is given by 

6y,T _ xy,T _ K p < n + {I_ K+Kn) Y ( 9 ) 

where Y is an arbitrary matrix of appropriate dimensions. For Y = 0 one particular 
solution is 

X° = KXVK+. (10) 

Taking the second derivative of J(X) with respect to X gives the Hessian matrix 
which will be positive if det(Kv) ^ 0. Under this condition, the class of solutions 
(9) consists of only one element <5° := 6Y=0 = X° = KxvK~l. In general, for 
det(A'r?) = 0, let xY := <§y(£ — £) + x = 6Yrj + x. We show now that for any Y, all 
the estimators xY are identical in the sense that the set of sample points at which 
they can assume different values, has probability zero. Indeed, write xY = x + 6Y r\ = 
x° + YT(I - K+Kv) rj where x° is defined by (10), i.e. x° = xY=G. Let us compute 
the mean square deviation of e := xY - x°. It is equal to 

E[eeT] = YT(I - K+Kv) KV(I - K+ Kv) Y = 0 
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where the last equality follows from the property of the pseudoinverse matrix. Thus 
xY = x° for all Y (w.p. l ) . The formula for the filtered error covariance matr ix 
P(t + 1) can be obtained by direct calculation of the matr ix E[(x° ~ x) (x° — x)T].Cl 

C o m m e n t 1. In the proof of Theorem 1 we did not use the condition on indepen
dence of the sequences {w(t)}, {v(t)} of the initial state x(0) as well as the properties 
of whiteness of the process {w(t)}. These assumptions are made only for simplifying 
the computational procedure described below. 

C o m m e n t 2 . It is evident that the a. priori information we are given on all the ran
dom variables, as assumed in the statement of the problem, is sufficient to compute 
the MMS estimator x(t) (for simplicity, the upper index "0" from now are dropped 
from the notation for the MMS estimator). However, due to dependence of the se
quence {v(t)}, the algorithm (3) may become very expensive. The complexity of the 
filtering algorithm (3) depends on the degree of dependence between the variables 
of the sequence {v(t)}. For example, when {v(t)} is the output of some dynamical 
system affected by a white noise, one can use the procedure described in [23] to 
calculate 6f, j®. This type of possible simplification can be taken into account by a 
suitable approximation for the statistical characteristics of the sequence {v(t)}. The 
next section will be devoted to this important question. 

2. The following theorem establishes the fact that by allowing for a "rich" structure 
for the vector-function £ one can improve the performance of the MMS filter. This 
fact justifies the usefulness of the (r, <7)-model for the nonlinear filtering problem. 

T h e o r e m 2. Let x and x1 be the MMS estimators for the class X (4) and the 
class X1 = [x1 : x' = 61!;1 + 71] respectively, where £ = ( £ 1 , T , £ 2 , T ) T is an m-vector, 
m = mi+ m 2 , 6 = (6\62), 61 G Rnxmi, 62 G Hnxm2. If x -J. x1 in some set of 
positive probability ( w . p . > 0) then J(x) < J(xx) where the cost function «/(•) is 
defined in Definition 1. 

P r o o f . Since x1 = 61£1 + j 1 = (61,0)£ + j 1 =610£ + j1,610 := (61,0) therefore 
X1 C X. However, the unbiased estimator x1 belongs to X1,u C Xu (recall, that 
by definition, Xu is the set of all unbiased estimators in the set X; see Definition 
1) and x / x1 (w. p. > 0) by assumption, the proof of the theorem follows from the 
uniqueness (w.p. l) of the MMS estimate x in the class X. • 

3 . Theorem 2 shows that using £ instead of Z1 naturally leads to improvement 
of the MMSF performance. More precisely, this theorem states that x is "better" 
than x . We now derive a condition under which taking £ from a subspace with 
higher dimension cannot give a more efficient MMS estimator. We mention that the 
analogous question for a linear filtering problem is also investigated in Theorems 2 - 3 
[18] added and their corollaries. 
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T h e o r e m 3 . Let x = 6£ + 7 and x1 — <$10£ + 7 1 be determined as in Theorem 2. 
Then a necessary and sufficient condition for x = x1 (w.p. l) is 

A8T ER(P), A8 = 810-8, P:=I-K+Kn. (11) 

P r o o f . If x = x1 (w.p. l) then J(x) = J(xx) and from the proof of Theorem 1, 

there exists some matr ix Y such that <510>T = 8T + (I — K+Kn)Y, 8 = KxnK
+ The 

last equation means that A8T = (I - K+Kn)Y or we have what stated in (11). 

Conversely, let A<5T G R(P). It is evident that there exists some matr ix Y such 
that (I-K+Kn)Y = A8T or <510>T = 8T + (I-K+Kn)Y. Thus <510 may be written 
as <510>T = K+Knx + (I — K+ Kn)Y for some matr ix Y", i .e. x = x1 (w.p. l) (see the 
proof of Theorem 1). • 

Coro l lary . Let Kn > 0. Then a necessary and sufficient condition for x = x1 

(w.p.l) is <S10 = 8. 

The Corollary allows to conclude that if Kn > 0, a necessary and sufficient 
condition for x = x1 (w.p. l) is <52'0 = 0 where <52>° is the optimal matrix for 82 

(Theorem 2). It implies that if there exists at least one non-zero element of the 
matrix <52>°, increasing the number of components of the vector-function £ must lead 
to a more efficient MMS estimator. Detailed consideration of the condition (11) with 
the special structure of 8, 810 is of importance and is left for the future study. 

4. PRACTICAL COMPUTATION OF AN MMS ESTIMATOR 

1. It is not hard to show tha t in general the knowledge of the d.f. for the vector y, 

y := [x(t-q),x\-r ,v\~\} 

x\~r := [x(t-r),...,x(t)},v\-\:=[v(t-q),...,v(t + l)} (12) 

is suihcient for the computation of x(t + 1). Evidently, the computation can be very 
expensive because of the dependence of the sequence {v(t)}. 

2. Suppose that {v(t)} can be represented or approximated by the equation 

v(t + l) = fv[v(t),V(t)} (13) 

where {ri(t)} is a white noise sequence and fv - a deterministic function. Under this 
condition, it is sufficient to know the d.f. for the following vector y, 

y:=[x(t-q),xt
t-

r,v(t-q)} (14) 

whose evaluation is considerably less expensive in comparison with that of (12). In 
particular, for r = 0, 

y=[x(t-q),x(t),v(t-q)} (15) 
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and, if in addition, q = 0 we have 

y = [x(t),x(t),v(t)}. (16) 

Let us look in detail at the recursive procedure for computation of the d.f. for 
the vector y defined by (16) Note that analogous procedures can be constructed for 
the cases (14) and (15). 

Let gt(X,fi,v) = Eexp{iXTx(t) + i(j,Tx(t) + ivTv(t)}. Inserting (1),(2),(13) into 
the right hand side of gt(X,fi, v) gives gt(X,fi,v) = Eexp{iXT(j)t-i(x(t — l),w(t — 
l)) + i/iT[<5t_1<e1-i(£(t-l)!/it[x(0,KO]) + Tt-i] + ^T / i ;( t ; ( t- l) !7 ?( t- l))}. The last 
expression represents the mathematical expectation of a known function of (x(t — 
1), x(t — 1), v(t — 1)) (after substitution of expressions for x(t),v(t) into ht[x(t),v(t)]) 
and {w(t — 1), r)(t — 1)}. Moreover, (x(t — 1), x(t — 1), v(t — 1)) does not depend on 
(w(t — 1), r)(t — 1)). Hence gt(X, /i, v) can be evaluated from gt-\(X, /J., v) and the d.f. 
of {w(t — 1), rj(t — 1)} which is known apriori by assumption. 

3. One particular important method for approximation of the d.f. is known as a 
Gaussian approximation [14], [25] which consists in approximation of the initial d.f. 
by a Gaussian d.f. The Gaussian approximation method is efficient when there are 
given only two first moments of random variables. 

Consider the situation when we know only the correlation function Kv(t, T) of the 
nv = p dimensional vector-process {v(t)}. Suppose that Kv(t, T) can be represented 
in the following form 

N 

Kv(t,T) = J2Ki(N)(t)PiiN)(r)- (17) 

i= l 

When N = 2 the formula (17) reduces to 

2 

Kv(t,T) = J2Ki(2)(t)Pi(2)(T)- (18) г = l 

Let in (18) I<[2), P} 2 ) be p x p matrices, A'{2) being nonsingular; K\ , H2

 a r e 

the p X pi and pi x p matrix respectively. Let 

vW(t + 1) = C ( 1 )(<) v^(t) + r](
l\t),t = 0 , 1 , . . . (19) 

where {n^(t)} is a white noise sequence uncorrected with t / 1 ) ^ ) . Then Kv(i)(t, r) 
has the representation (cf. [19]) 

Kv(i)(t,T)=K[1\t)Pi

1

1)(r) (20) 

here A'{^(t) is a pi xp± nonsingular matrix. Let I<[ (t), Pf (r) satisfy the equation 

KiiHt)P?\t) = pW{t)KW(t). (21) 



Approximation Approach for Nonlinear Filtering Problem . . . . Part I 417 

Under conditions (20), (21), the process {v(t)} is solution of the following recur
sive equation 

v(t + 1) = C(t) i/(0 + D(t) v^(t) + r](t) (22) 

where {T)(t)} is another white noise sequence such that 

E[rj(t) r/(1) 'T(r)] = Qt6tT, 6tT is a Kronecker function. (23) 

Detailed procedures for the computation of C(t), C^l\t), D(t) and of the covari-
ance matrices of the random sequences {^(O), {?r1^(0} c a n ^ e f°u nd in [19]. 

We note that the class of random processes (17) is large enough to include sta
tionary as well as nonstationary processes. Moreover, random processes, possessing 
a canonical form, also belong to the class (17) (see [25]). It means therefore that 
large computational savings in the implementation of MMS nonlinear filters can be 
achieved by using the representation of the type (17) for correlated noise sequences. 

We now return to the problem of the practical implementations of an MMSF for 
the (r, g)-model when the sequence {v(t)} is verifying (22), (19). The algorithm for 
the filter is given in Theorem 1. For simplicity, consider the case when r = 0, q = 0, 
i. e. a first order nonlinear difference equation is employed with two last observations. 
Then the filter requires, at each time instant, the determination of the d.f. of the 
following vector 

y:={x(t),x(t),v(t),v^(t)}. (24) 

This can be proved by a method analogous to the method used in Subsection 4.2, 
noticing that instead of (13) we have now (22), (19) and that the two white noise 
sequences {r)(t)}, {r)(l\t)} are correlated only at t — r (see (23)). Hence {^^(t — 1)} 
depends only on {r)(t — 1)} and {r)(l\t — 1)} is independent of v(t — 1). A recursive 
procedure for the determination of the c.f. of the vector y defined by (16) can be 
obtained in a similar manner. 

5. EXAMPLES 

1. Example 1 (Chapter 10, Example 1 [24]). Let 

x(t + 1) = [x(t) + w(t)}2 

v z(t) = x(t) + v(t). (25) 

To estimate the state of the system (25), let us use the (0, 0)-model. The filter is 
then of the structure 

x(t + 1) -= 6t£t[x(t), z(t), z(t + 1)] + T ( 0 

&t = [&t,l,6t,2,- • -,6t,6], 6 = [6,1,6,2,- -- ,6,6]T 

6,1 = -HOI 6,2 = X(t)[z(t)-X(t)], 6,3 = [Z(t)-X(t)]2, 6,4 = X(t)[z(t + 1)-X2(t)] 

6,5 - [z(t + 1) - x2(t)][z(t) - X(t)], 6,6 = [z(t + 1) - X2(t)]2. (26) 

As in [24] the vector-function 6 is chosen to be a quadratic function of the vector 
[x(t),z(t) - x(t),z(t + 1) - x2(t)]. The component z(t + 1) - x2(t) is taken as a 
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term approximating z(t + 1) — x(t + l\t) where x(t + l\t) is a one-step ahead forecast 
for x(t + I). Indeed, an MMS forecast is given by x(t + l\t) = E[x(t + l)\z\] = 
E{[x(t) + w(t)]2\z\] = E[x(t)2 + w(t)2 + 2x(t) w(t)\z\]. Since w(t) does not depend 
on [x(t),z\] hence x(t + \\t) = E[x(t)2\z\] + E[w(t)2] if E[w(t)] = 0. Thus the 
approximation x(t + l\t) ~ %2(t) is valid if x(t) is a good estimate for x(t) (and 
w(t) is small) since then E([x(t) — x(t)]2\z\) is small from which one can conclude 
x(t + l\t) ~ x2(t). In general, however, we are free to assume the structure described 
above for 6 independently on how close is x(t) to x(t). 

Optimal parameters (<5{\ 7°) are then given by Theorem 1, 

7? = x(t + 1) - SÍІt 
6t = KXr)Kt 
кxч = [ki(t),.--,k6(t)], 

^ ( ^ - E f æ ^ + l ) ^ , ! - ^ , ! ) ] , 
A', = Æľ[(6-6)(6-6)T] 

ü?[Kt,i-Sii)€t.i] ••• 

£[(6,б-£,б)6,i] ••• 

.,k6(t):=E[x(t + l)(Ztt6-Zt,6)] 

(27) 

^[(6,1-6,1)6,6] 

#[(6,6-6,6)6,6] 

The computation of Kxn, K^ is similar to that described in [24]. For instance, we 
write here several formulae 

h(t) = E[x2(t) x2(t)] - E[x2(t)] E[x2(t)] 

k2(t) = E[x3(t)x(t)]-E[x2(t)]E[x(t)x(t)]-ki(t) 

+E[x2(t) x(t)v(t)] - E[x2(t)] E[x(t) v(t)] 

k3(t) = E[x\t)]-{E[x2(t)]}2-k1(t)-2k2(t) 

k4(t) = E[x2(t) x3(t)] - E[x2(t)] E[x3(t)] + E[x5(t)] - E[x2(t)]E[x2(t) x(t)] 

+E[x2(t) v(t + 1) x(t)] - E[x2(t)] E[v(t + 1) x(t)] 

k5(t) = E[x5(t)] - E[x2(t)] E[x3(t)] - {E[x3(t) x2(t)] - E[x2(t)] E[x(t) x2(t)] 

+E[x2(t)x2(t)v(t)] - E[x2(t)] E[x2(t)v(t)] - k4(t) 

and so on. 

Comment 1. As follows from Theorem 1 and Example 1, Theorem 1 in fact 
gives the filtered estimate for the system state while the procedure described in [24] 
computes a one-step ahead forecast. 

Comment 2. For the filtering problem (25) with dependent noises one can employ 
a simpler class of (0, — l)-models as described in [24], 

x(i)(t + l) = 6(

t

l\^[x^(t),z(t + l)] + -f

(

i

1) 

6 ( 1 ) = {x^2(t),x^(t)[z(t + 1) - x^2(t)], [z(t + 1) - x^2(t)]2}T . (28) 
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From Theorem 2 we have the inequality 

E {[x(t + 1) - x(t + l)]2} < E{[xW(t + 1) - x(t + l)]2} (29) 

with strict inequality if x(t + 1) -£. i^1)^ + 1) (w. p. > 0) where x(t + 1) is defined 
by (26) (see Theorem 3). It is seen that one can improve the accuracy of any 
filter by involving a wider class of (r, q)-models. In particular, a (0,0)-model is 
certainly preferable over a (0, —l)-model. The stronger is the dependence between 
the variables of the noise sequence {v(t)}, the better is the performance of x(t + 1) 
in comparison with that of x^)(t + 1). 

2. Example 2. Let in (1), (2) 

x(t + l) = 4>t[x(t)] = x(t) = x 

z(t + l) = ht+1[x(t + l),v(t + l)]. ® (30) 

The filtering problem for the system (30) reduces to the estimation of the unknown 
parameter x. It is interesting to demonstrate here that by choosing an appropriate 
structure for the vector-function £* one can construct a simple convergent algorithm 
for the estimation of x. Let us choose 

6:=W*),*(* + l)-*«+i(*(*))lT. (31) 
Tntroduce 

x(t + l) = 6x(t) + ^. (32) 

Statement. Consider a filtering problem for the system (30) and suppose that 
x(t+l) is an MMS estimator produced by the (0, —l)-model, £t being defined by (31). 
In addition, let x(t + 1) be an MMS estimator in the class (32) and x(t + l) ^ x(t + l) 
(w.p.> 0). Thei. 

P(t + l)<P(t) (33) 

where P(t) := E[x(t) — x(t)] [x(t) — x(t)]T is the error covariance matrix for x(t). 

P r o o f . By construction, from Theorem 2 P(t + 1) < P(t + 1) where P(t + 1) is 
the error covariance matrix for x(t + 1). The strict inequality (33) holds if we can 
show that P(t + 1) < P(t). From Theorem 1, 7 = (1 - 6) x. Hence 

x(t + l) = 6x(t) + (l-6)x = 6[x(t)-x] + x 

x(t + 1) — x = 6[x(t) — x + x — x] + x — x = 6[x(t) — x] + (1 — 6) (x — x) 

or 
x(t + 1) - x = dTrj (34) 

here for simplicity we use the notation d := (6,1 — 6)T, 6 := 6,x := x(t),r] := 
(x — x, x — x)T. Then 

P(t+l) = dTZd (35) 

£ := E(Vr,T) (36) 
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fhere 

E := E(rìrì
т) = 

P n 
n M 

, P : = P(t), n := E[x -x][x- x], M := E[x - xf 

Consider the difference Ap := P(t + 1) - P(t)- From (35) 

AP = a82 + 2b8 + c 

a:= P-2n + M; b := n - M\ c := M - P. 

On the other hand, Theorem 1 gives 

8:= 6 = KxnK~l = (M - n)/(P + M - 2n) 

since A"X7? = E(x — %)(x — x) = M — n, Kn = -£(£ - x)2 = E(x - x + x - x 
P + M - 2 n . 

Inserting (38) into (37) leads to Ap < 0 which proves the Statement. 

Comment . In general, instead of (33) we have 

P(t+l)<P(t). (39) 

(37) 

(38) 

? = 

D 

Considering u(t) = tr P(t) as a stochastic Lyapunc function [8], the relation 
(33) shows that Au(t) := u(t + 1) — v(i) < 0 and therefore the sequence v(t) must 
converge since .v(O) is bounded from below by 0. It means that the estimation error 
for the sequence {x(t)} is bounded and that the filter is stable. A detailed study of 
the possibility to design a stable nonlinear filter for the filtering problem (1) (2) will 
be given in Part II. 

3. Example 3. To illustrate the theoretical results presented in Theorem 2, let us 
return to the filtering problem of Example 2 subject to z(t) = x2(t) + v(t),t = 1 , 2 . 
We limit ourselves to the case of two observations z(t),t = 1,2 since the purpose 
of the present example is only to give a numerical illustration of Theorem 2. The 
question of the more appropriate structure for £t and of the asymptotic behaviour of 
the estimate x(t) are not considered here. They are worthy of special investigation 
in the future. 

Suppose that the vector v := [x,v(l),v(2)] has the Gaussian d.f. with zero mean 
and covariance matrix 

V = 
2 1 1 
1 2 1 
1 1 2 

Let us compute by Theorem 1 MMS estimators for the following three classes of 
filters 

(i) xi :=8ix + 82[z(l)-x2] + -f 
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(ii) xP := 61x1 + 62[z(2) - x\] + 7 

(iii) x := M i + 62[z(2) - x\] + 63[z(l) - x\] + 7. 

Thus, x\ belongs to a class of estimates at t = 1, xp belongs to a class of (0, — 1)-
models at t = 2, and x belongs to a class of (0,0)-models (at t = 2 too). The class 
(ii) is of the Pugachev form while (iii) is of the form (3). 

3.1. Since x = 0 by assumption, 7 = —262 and x\ = 62[z(\) — 2]. For £ = 
z(\), Lemma A3 (see the Appendix) implies E(x£) = l,E(£ — 2)2 = 10 hence by 
Theorem 1, 69, = 0.1. The mean square error (MSE) of the estimator £1 is computed 
by Theorem 1 (see equation for P(t) in Theorem 1) and is equal to Pi = E(x\ — x)2 = 
1.9. 

3.2. For the class (ii), since E(x\) = 0 we have 7 = — 62E[z(2) — x\] = —1.962 (see 
Lemma A3), hence xp = 61X1 + 62[z(2) — x\ — 1.9]. 

Minimizing Pp = E(xp — x)2 leads to the following equations for the determina
tion of 6 := (61, 62), 

£<5T = 6, E : = ( E f i )
2

) i = i , 6 :=(6 i ,6 2 ) T 

E n = E(x\), E12 = E2i = E[(z(2) - x \ - 1.9)£i] 

E22 = E[z(2) - x\ - 1.9]2, 61 = £7(^1), 62 = E{x[z(2) - x\ - 1.9]}. 

From Lemma A4 (see the Appendix) one finds E n = 0.1, £12 = 0.83, E22 = 
8.7064, b = (0.1,0.92)T. Solving the corresponding system of equations for 6 gives 
6° = (0.5852501, 0.0498793). Thus the MMS estimator in the class (ii) is of the 
form xP = 0.5852501£i + 0.0498793[z(2) - x\ - 1.9]. The MSE of xP is equal to 
PP = E(xP - x)2 = Pi- 6°Kln = Pi- 6°b = 1.7955861. 

3.3. For the class (iii), Theorem 1 and Lemma A3 yield 7 = —1.9(62 + 63) hence 

x = M i + 62[z(2) - x \ - 1.9] + 63[z(l) - x \ - 1.9]. 

Analogously, minimizing the MSE of x leads to the following system of equations 
for finding 6: £<5T = b, £ = £ := (E,j)f J = 1 , b := (b\,b2,b3)

T. It is easily to 
see that £ ; J , i, j = 1,2;6,-,.' = 1 , 2 remain unchanged. Lemma A4 gives £13 = 
E[z(l)-x\- 1.9]xi = 0.93, £ 2 3 = E[z(2)-x\- 1.9] [z(l)-x\- 1.9] = 7.7064,£33 = 
E[z(l) - x \ - 1.9]2 = 8.7064,63 = E[z(l) - x\ - 1.9] x = 0.92. This leads to 

6° = (6°, 6%,6$) = (1.888863, 0.04921551, -0.1396555). 

Then the optimal MMS estimator in the class (iii) is 

x = 1.888863£i + 0.04921551[z(2) - x\ - 1.9] - 0.1396555[z(l) - x\ - 1.9] 

which has MSE equal to 

P = E(x- x)2 = Pi- 6°b = 1.7943185 < PP = 1.7955861. 

This simple numerical example supports Theorem 2 and shows that using in 
addition the observation z(l) yields an estimator which has a smaller MSE than xp. 
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6. CONCLUSION 

We have considered nonlinear filtering problems with time-dependent noise sequences 
for the model and observation errors. A new approximate MMS filtering approach 
is proposed which seeks an MMSF in the class of (r, <jf)-models by solving an ap
propriate minimization problem. It is proved theoretically that an MMSF exists 
and is unique (w.p . l ) . A detailed algorithm for its computation is given. We prove 
theoretically and illustrate by a numerical example that the proposed method can 
produce a more accurate estimator than previously developed methods [17], [23]. 
This is obtained through the choice of a more appropriate structure for the filter. 
This fact is important since due to the nonlinearity and the time-dependence of the 
basic random processes, there is no possibility to obtain in practice a strictly optimal 
(in a statistical sense) structure for the nonlinear filter. 

As seen from Section 4, practical implementation of the MMSF for an (r, <7)-model 
is considerably simplified if dependent noise sequence is represented or approximat
ed as the output of a dynamical system driven by a white noise sequence. This 
representation can be used for a wide class of random processes, either stationary 
or non-stationary, and either Markovian or non-Markovian. However, it should be 
emphasized that dynamical representation of a given random process produces an
other process which is equivalent to the original one only to the degree that their 
first- and second- order moments are identical. Since in practice statistics are given 
only approximately, dynamical representation approach can yield satisfactory results 
only if a Gaussian approximation is valid for the filtering problem at hand. More 
precisely, there exist other classes of random processes (for example, heavy-tailed 
non-Gaussian processes [10], [21]) for which a Gaussian Bayesian estimation is inef
ficient for small deviations from Gaussian models. In such situations, a possible way 
to avoid instability (with respect to deviations from a Gaussian model) is to operate 
on the innovation vector with a nonlinear optimal transformation [21] (or influence 
function, in terms of [16]). 

Another important question is related to the design of a stable MMS nonlinear 
filter, i.e. a nonlinear filter which produces an MMS estimator with a bounded 
MSE. The importance of this question arises from the well known fact that even 
in a linear case with white noises, optimality of a Kalman filter does not imply its 
stability [11]. We will show in Part II tha t by imposing an additional constraint on 
the optimality condition, it is possible to design a nonlinear filter whose performance 
is comparable in accuracy to that of an MMSF with no parameter uncertainty. In 
contrast, when uncertainty is present, a stable MMSF will certainly behave better 
than the corresponding MMSF. 
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A P P E N D I X 

In order to employ Theorem 1 to compute MMS estimators in Example 3 first we 

need Lemma A l . For its proof we refer an interested reader to [24]. 

L e m m a A l . Let x : = (a? i , . . . , xn)
T be a random Gaussian vector with zero mean 

and covariance matrix Kx = [Aty]. Let m / , ^ ^ ^ := E(x^ .x\2 . . -x\\n) be a moment 

of order h,h = ]>_" h\. Then for all s = 1,2,.. ., we have m 2 s - i = 0, 

_ _ hx\h2\. . .hn\ -.-^ _ 
m 2 s — TO/ii ,...,/i„ — ^ j / y Kp,qi Kp,q — ^Pi ,9 i ' ' ' Ps,qs 

where the sum ]!_ includes all the different permutations of 2s indices pi, q\,...,ps, qs 

from which h\ indices are equal to 1 , . . . , hn indices are equal to n. In particular, 

for scalar x we have m 2 5 _ i = 0, 

(2f_ 
2 's ! 

™** = kтľГ^ Dx:=E(x2). 

L e m m a A 2 . Let v : = (x, v\, v2) be a Gaussian vector defined in Example 3. Then 

m 2 0 o = 2, m 4 0 0 = 12, m6oo = 120, m 8 0 0 = 1680, 

m220 = 6, m310 = 6, m2n = 4, m 4 2 0 = 48. 

Lemma A2 is an application of Lemma Al to computation of the moments of the 

vector v. Using Lemma A2 one can obtain 

L e m m a A 3 . Let z(l),z(2) be the observations given in Example 3. Under the 

conditions of Lemma A2, 

Ez(l) = Ez(2) = 2 

E[xz(l)} = E[xz(2)} = 1, E[z(l)z(2)} = 13, E[z(l)2} = E[z(2)2} = 14 

E[x2(l)} = 0.1, E[xx(l)} = 0.1, E[x(l)z(l)} = 1, E[x(l)z(2)} = 0.9 

E[x3(l)} = 0.07, E[xx2(l)} = 2125, E[z(l)3} = 138 

E[x2(l)z(l)} = E[x2(l)z(2)) = 0.9, E[z(2)z2(l)} = 134 

E[x4(l)} = 0.1164, [z4(l)) = 1980. 

Finally from Lemma A3 it follows 

s rama A 4 . Under conditions of I 
6j of vector b, defined in the Example 3, are equal to 

L e m m a A 4 . Under conditions of Lemma A3, elements £ ; J of the matr ix £ and 

S i з 

£ 2 2 

= £( . r 2 ) = 0.1, S12 := Ex(l)[z(2) - x\ - 1.9] = 0.83, 

= E[z(l)-x\ - 1 . 9 ] x i = 0.93 

= E[z(2)-x\ —- 1.9]2 = 8.706, 
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E 2 3 := E[z{2) - x\] [z{l) - x\ - 1.9] = 7.7064, 

£33 := E[z{\) - x \ - 1.9]2 = 8.7064 

&i := E{xxi) = 0.1, 62 := E{x[z{2) - x\ - 1.9]} = 0.92, 

63 := E[z{l)- x\- 1.9] x = 0.92. 

(Received July 31, 1995.) 
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