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STRONG DECOUPLING OF DESCRIPTOR SYSTEMS
VIA PROPORTIONAL STATE FEEDBACK!

Liu XiAOPING AND VLADIMIR KUCERA

The problem of strong input-output decoupling by proportional state feedback is con-
sidered for linear descriptor systems. The resulting system is required to be regular, with
a diagonal transfer function matrix and an impulse-free response.

The problem is solved in two steps. First, a generalized structure algorithm is used to
regularize the system. Then, another algorithm is proposed which produces a sequence
of integers. These integers are invariant under restricted system equivalence and regular
proportional state feedback. The second algorithm provides a condition for existence as
well as a procedure for construction of a decoupling feedback law.

1. INTRODUCTION

We consider a linear, time-invariant descriptor system of the form

! = Allgl 4 A2z2 4 Bly
0 = A%zl 4 A?222 4 By 1)
y = Clz'+C?2?+ Du

where Al € RMX™ | A2 ¢ RriXna Bi g RriXm o (O ¢ RMX™ for ¢ = 1,2 and
D e nmxm,
The system (1) is said to be regular if the matrix

sl — A1 —Ap
—Ag —An

is nonsingular. A regular system has a unique solution z!(t), z?(t) for every input u.
An initial condition z'(07), z2(07) is said to be consistent if it satisfies the system
equation (1).
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Sciences, and State Key Laboratory of Industrial Control Technology, Hangzhou, China. This work
was performed while the first author was with the Institute of Information Theory and Automation,
Academy of Sciences of the Czech Republic, Czech Republic.
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The problem in question is to find, if possible, a regular proportional state feed-
back of the form

u=Flz! + F2z? + Gv (2)
with G being nonsingular, such that the corresponding closed-loop system
#1 = (A 4 B'FY)z! 4 (A2 4 B'F?)2? + B'Gv
0 = (A + B%2FY)z! + (A% 4+ B?F?)z? + B*Gv )

y = (C'+ DFY2! +(C? + DF?)z? 4+ DGv
has the following properties
1. it is regular;

2. its solution z! is differentiable and z2 is piecewise continuous for any piecewise
continuous input v and any consistent initial conditions;

3. it has noninteracting property, that is, the transfer function matrix of the
closed-loop system (3) is diagonal and nonsingular.

Such a problem is referred to as the strong input-output decoupling problem. It is
worth noting that the definition above is somewhat different from that proposed by
Dai [6] in that only consistent initial conditions are considered.

Descriptor systems (also referred to as the differential-algebraic equation, singu-
lar, implicit or semi-state systems) constitute an important class of systems of both
theoretical interest and practical significance. Such systems arise naturally, among
others, in robotic systems [14], chemical engineering [9], mechanical systems [22],
and electrical circuits [15]. For a comprehensive introduction, see books [7] and [5],
or survey papers [4] and [11].

For linear descriptor systems, input-output decoupling problems have been ad-
dressed by several authors (Dai [6], Paraskevopoulos and Koumboulis [16, 17, 18],
Ailon [1], and Shayman and Zhou [19]). However, the results given in these pa-
pers are all obtained under the assumption of regularity by using transfer function
methods. In fact, descriptor systems which are not regular can also be decoupled
by proportional state feedback. This paper addresses the decoupling problem with-
out the assumption of regularity; one assumes mere regularizability by proportional
state feedback.

In contrast to standard state-space systems, continuous inputs to a descriptor
system can give rise to discontinuities or impulsive modes in the state trajecto-
ries. Therefore it is of practical importance to design a feedback such that the
corresponding closed-loop system is free of impulsive modes. Dai [6] investigated
an input-output decoupling problem with impulse-free response, and called it the
strong input-output decoupling problem. However, these results have the drawback
that the conditions under which the strong input-output decoupling problem is solv-
able depend on a matrix which needs to be chosen first. In addition, these results
were given under a very restrictive assumption that B? has full row rank. In this
paper, under the condition of regularizability, necessary and sufficient conditions for
the solvability of the strong input-output decoupling problem will be derived, which
only depend on the parameter matrices of the original system.



Strong Decoupling of Descriptor Systems via Proportional State Feedback

The paper is organized as follows. Section 2 investigates the problem of reg-
ularization via proportional state feedback. An algorithm is proposed, which is
based on the structure algorithm given in [21]. This algorithm yields a necessary
and sufficient condition for the solvability of the regularization problem. In Section
3, the strong input-output decoupling problem is addressed. Another algorithm is
presented, which produces a sequence of integers. It is proved that these integers
are invariant under the restricted system equivalence and regular proportional state
feedback. A necessary and sufficient condition is derived, under which the strong
input-output decoupling problem is solvable. Technical proofs are relegated to the
Appendix. An alternative approach, which is based on the standard Falb—Wolovich
test (8], is discussed in the concluding section.

2. REGULARIZATION PROBLEM

The problem of finding a feedback (2) which makes the closed-loop system (3) regular
is that of regularization. This problem has been investigated considerably, see [2, 3].
We address this problem by using an alternative method.

First we present an algorithm which is based on the structure algorithm of Sil-

verman [20, 21].

Algorithm 1. (Regularization Algorithm)
Step 0. Let go = rank [ A??2 B?] and let [ 422 BZ] be the submatrix formed from

the .rst go independent rows of [ A22  B?]. Then, there exists an n x ny nonsingular
matrix Sg such that

a2 B
¢

For convenience, partition SgA%! conformably with Sp[A4%? B?] as

AZI
ot =]

So [ 422 B?]:[

wherc A2! has go rows. If rank A21=0, then terminate the algorithm. If rank figl >0,
then go on to next step.

Step k + 1. Assume that A?!, A?', A??, and B?, i = 1,...,k, have been defined
through Steps 1 to k. Calculate the matrices

ap i B}
A'%IAII A,%IAU A%J.Bl .

122 Y B _
Let gx+1 = rank [/&;’212 /i,gi?l J If[A72, B{,,]Iis the submatrix formed from

AR

the first gr+1 independent rows of [ col e - ‘J’ then there exists an ng X ng
: ALAY?2 AZB

nonsingular matrix Sk+1 such that
A22 B2 A2 2
5k+1[~ k B J:[ k+1 k+1
A%IAH A}%lBl 0 0

373 .
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Similarly denote )
A?l A%l
Seat [ AR ] _ [J,H]
Aav| T Az

where A%, has gr41 rows. 1f

A2t _
0 A
rank K 1 = rank :
) :
Aj o
Afl k
-+1

then terminate the algorithm. Otherwise go on to nexi step.

Remark 1. A similar method was used in [10] for solving the prob]erﬁ of dynamic
feedback regularization.

It follows from [21] that Algorithm 1 terminates after a finite number of steps
bounded by ny 4+ 1. The following properties of the algorithm are useful in this

paper.
Lemma 1.

1. The integers ¢;, 2 = 0, ..., and the matrices /I?l, 1= 0,..., are invariant under
the feedback of the type (2).

2. Let X be the first integer such that g = ¢,,. If g5 = no, then the rows of Ly
are linearly independent, where

For the proof of Lemma 1, sece the Appendix.

The following theorem gives a necessary and sufficient condition for solvability of
the regularization problem.

Theorem 1. The system (1) is regularizable if and only if g5 = n».

Proof. Sufficiency: If g\ = ny, then [A3? B%] has full row rank, which means
that there exists a matrix F'? such that A3%>+ B2 F'? is nonsingular. The application
of feedback u = F%2z? + v to system (1) produces the following closed-loop system

.’i}l — Alll‘l + (Al2 + BI.FE)."L'Q+ BIU

4
0 = A%zl 4+ (A2 4 B F?)z? + B%v. )
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It follows from Lemma 1 and [21] that the standard state-space system
Bl = Allg) 4 (A2 4 BLR?)z?
y = Al g (A% 4 B2F?)?
is invertible, which implies that its transfer function A2}(s]— A1)=1(A124 B F?) 4

29 9 oy : o [sT =AY (A 4+ BIFY)] .
(A*2 4+ B?F*) is nonsigular. Hence the matrix [ _AM (422 4 B2 is non-
singular. Thus system (4) is regular.

Necessity: Suppose that system (1) is regularizable. Then there exists a feedback
(2) such that the corresponding closed-loop system (3) is regular, that is, the system

.’i?l

(.411 + BIFl)l'l +(A12 +BIF2)LL‘2
y = (A:!l +BQF1).Z'1 +(A22+ BQFQ).’IJZ
with input 25 and output y is invertible. So, performing Algorithm 1 for (3) gives

rank(A3? + B2 F?) = n,, which implies that rank[A%? B%] = ny,i.e. gx =ny. O

Throughout the paper, we assume that system (1) is regularizable. Then, for the
closed-loop system to be free of impulsive modes, z! must be in the null space of
Ly. In addition, it is easily seen that for any z! € KerL), the regularizable system

can be equivalently described as follows:
! = Allgl 4 AV2z2. . Bly

0 = Alel 4 A2+ Blu

where [A22 B2] has full row rank.

3. DECOUPLING PROBLEM

It follows from Section 2 that for any consistent initial condition a regularizable
system can be equivalently described as (1) with [4?? B?] having full row rank.
Therefore, it is convenient to make the following assumption.

Assumption 1. The matrix [A?? B?] has full row rank.

Now let us introduce another algorithm which will play an important role in
solving the strong input-output decoupling problem.
Algorithm 2. (Decoupling Algorithm)

Step 1. If
422 g2
rank [ c2 Di} = ny
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then there exists a unique vector E} of dimension ny such that
(C? Di]=FE} A% B
where C} and D; are the i—th rows of C' and D, respectively. Then let T}! =
C} — E} A?Y. Otherwise, set r; = 0 and terminate the algorithm.
Step k. Assume that we have defined a sequence of T}, ... ,Tik_l. If

A22 B2
k- k-
T} 1A12 T, lBl

rank = nq

then there exists a unique vector E¥ of dimension n, such that
[T}-lat TEBl)= (A B2,

Then let TF = TF 1Al — EFA?'. Otherwise, set 7; = k — 1 and terminate the
algorithm.

Performing Algorithm 2 for i = 1,...,m produces m integers, say ri,..., .

Now let us introduce the following matrices

¢t [ct D,

él = : CZ = D =

¢ é Do
with
. c} ri =0 . C? ri =0 ) D; ri =0
Cil = » C? = D; =

’T;‘Au i -',é 0 T:riAlz T # 0 Tir'Bl T; # 0.

Remark 2.

1. If np = 0, i.e. there is no algebraic equation in the system, then EF must be
considered as a vector with no entries and T¥ is equal to T "'A'l. In this
case, the integers r;, ¢ = 1,...,m, are the same as those given by Falb and
Wolovich (8]. On the other hand, the algorithm runs even in the case n; =0,
i.e. there are no differential equations in the system.

2. If Algorithm 2 does not terminate at step nq, then it never stops, i.e. r; = cc.
In this case, it is not necessary to continue the algorithm further, so let r; = n;.

The following two properties of Algorithm 2 are useful in the sequel.

Lemma 2. The integers ry,...,ry, are invariant under feedback (2) as well as the
restricted equivalent transformation
Q' Pz] [Ql 0 ] |
= P = 5
@ [ 0 P Q2 Qs _ 5)

whose definition can be found in [6].
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AZE B?

Lemma 3. If the matrix [ ¢ b ] is nonsingular, then the vectors

T, ... I0, . T, ... T
are linearly independent.

The proofs of Lemma 2 and Lemma 3 can be found in the Appendix.
. . [A?? B?]. .
According to Lemma 3, if c: pls nonsingular, then ry + - -7 < n1. As
a consequence, it is always possible to chooce n; — r linearly independent vectors
Ti,..., T, such that Tv,...,Tn, -, 1%, ..., 17", ...,TL, ..., TTm are linearly inde-
pendent, where r = ry +- - -+7,,;. Therefore one can choose the following coordinate

transformation
n = (M, ny-r)

& = (&,...,&, .. €L, emY

with f} = Tj:cl, i=1,...,r,j=1...,mandnp =Tz, i=1,...,mp—7. Itis
easily seen that the description of system (1) in the new coordinates takes the form
of

n = Aln+4 A% + A3+ Blu
0 = A2zl 4 A?22% 4 B%y
&g = &
: (6)
&7 =
E:' = C’ilx1+é'i2m2+biu
v = &, i=1,...,m
where -
o]
B
(A A2] = : Al -1
-Tnl_r..
ST
(B = | c (4 p)
_Tnl—r_‘

with T = [Th,;..., Toyery T8 oo T Ty T
Since the relation

A22 B2
rank [ ]

c?* D
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ank A22 BZ I 0 I _(A22+B’2F2)—1 B2
WL e Dl I]]o I

A22 + BZFZ 0
C*+ DF? D~ (C?+ DF?) (A% + B?F*)~'B?

* = rank [

holds for any F'? such that A?? + B2F? is nonsingular, the application of feedback
(2) with such F%s, and

j F' = -—G[C' = (C?*+ DF?)(A®™ 4 B*F?)~1 AY]
2 A AR 2 . 1 p21—1 (7)
G = [D—(C*+DF?*)(A* + B*F*)7'B*]”
to system (6) gives
o= Ayt A% 4 A% 4 Bl =
0 = (A" + B?FYz! + (A2 4+ B*F?)z* + B?Gv
o= ¢
' (&)
f.r'-l = £
& = v
vi = &, t=1,...,m

The structure of these equations shows that the noninteraction requirements have
been achieved. As a matter of fact, the input v; controls only the output y; through
a chain of r; integrators, the input vy controls only the output ys through a chain
of ry integrators, etc. In addition, the nonsingularity of the matrix A%% 4+ B?F?
guarantees that system (8) has Properties 1 and 2 given in Introduction. Therefore

22 B?
c* D
of the strong input-output decoupling problem. In fact, it is also necessary.

the nonsigularity of the matrix is a sufficient condition for the solvability

Theorem 2. The Strong Input-Output Decoupling Problem is solvable if and only

422 R2
if [ Pt D} 1s nonsingular.

Proof. Sufficiency has already been verified. Now let us prove the necessity. To
this end, we assume that the closed-loop system (3) has been rendered noninterac-
tive, 1.e. possesses Properties 1-3 stated in Introduction. It follows from Lemma 1
that a necessary condition under which system (3) has Property 1 is that the matrix
A?? 4 B%F? is nonsingular. As a result, 22 can be uniquely determined from the
second equation of (3) as

¥ = —(A?? 4 B2F?)"N (A% 4 BPFY! — (A 4 B2F?) B2Gw,
Substituting this into the first and third equations of (3) yields
' = (A+BFY2' + BGv
y = (C+ DFYz! + DGy
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with

/1 — All _(A12+BIF2)(A22+B’_’FQ)—IA’JI
B — Bl —(A”+Bll"2)(A22+B2F2)_1BZ
C = c!'- (C2 + DFZ)(A” + 32[12)—14421
D = D—(C*+ DF?) (A?* 4+ B*F*)~1132,

According to the noninteractive property of system (3), it follows that system (9)
has the same property, that is, the system
2 = Azl + E’w (
~ 1 R (10)
y = Cz'+ Dw

can be decoupled by the feedback w = Flz! + Guv.

We need the following lemmas whose proof can be found in the Appendix.

Lemma 4. For any matrix /2 which renders A?? + B*I"? invertible, dj = r; — 1
for:=1,...,m where

0 D; #0
di=1{ min{j: GAB#0,j=01,....,ni =1} Di=0
CiAIB=0,j=0,1,...,n

ny — 1
where C; and D; being the i—th row of C' and D, respectively.

Lemma 5. For any matrix F'? which renders A?? + B? I'? invertible, 3* is nonsin-
22 BE
gular if and only if the matrix [/(1;2 ) } is nonsingular where
C‘L,‘id‘ 3
BT = :

CA

According to the results on the input-output decoupling of standard state-space
systems [20], it follows from Lemma 5 that the condition of the theorem is necessary.

4. CONCLUSIONS

The strong input-output decoupling problem has been considered for linear descrip-
tor systems under the assumption of regularizability. Two algorithms have becn
proposed, one answering the existence of a regularizing feedback while the other one
the existence of a decoupling feedback. Both algorithms are constructive.

The method used in this paper is different from those found in the literature.
The results of the paper are given under the assumption of regularizability, so they
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are more general than the existing ones. Compared with the results by Dai [6], the
condition for the solvability of the strong input-output decoupling problem is less

restrictive and easier to check.

For descriptor systems (1) with the matrix [ A%2 B%] having full row rank, an
alternative solution of the strong input-output decoupling problem is available. Let
F? be a matrix such that A?? + B2F? is nonsingular. The application of feedback
u = F2z? 4 v to system (1) produces a descriptor system in which

1,2 — _(A22 +B2F72)—1(A211_1 + Bzv)‘

On eliminating z?, one obtains a system in standard state-space form. Thus the
effect of F'? has been a shift of all infinite eigenvalues of (1) to finite positions. For
the resulting system the standard Falb—Wolovich test 8] is applicable, thus providing
an alternative design. The result, however, may depend on the choice of matrix F?
and it is difficult to interpret in terms of the original system matrices. The method
proposed in this paper avoids these difficulties.

Perhaps the main advantage of the method of this paper is that it can be gen-
eralized to linear time-varying and nonlinear descriptor systems. An indication of
how such a generalization to the time-varying case can be obtained is given in [20];
the generalization to the nonlinear case can be found in [12, 13].

APPENDIX

Proof of Lemma 1
For convenience, let “—” denote the application of feedback (2) to the system. For
1 =0,
I 0
[A22 BZ]__>[A22+B2F2 B2G]:[A22 Bz][]ﬂ G]

which implies that go — qo, as a result, Sg — Sp. From the relation
721 121 | P2 gl
[ 321 :, — S()A21 —>SO[A2] +BZF1] - [ Ao ‘{;iBOF ]
0

1t follows that /1(2)1 — /igl. Now assuming that the result holds for ¢ = k, then it is
easily seen that the following relation is satisfied.

e 5]
AIEIAIZ A_lel ] ] ]
A,%Q—PBi,fFZ ~B,fG _ ~A,%2 ~BL2. I 0
AP AV + AZIBYF? AZ'BIG| T | AP AT ARBY||F? G
This implies that Sy+1 — Sk+1 and gk+1 — gk4+1. In addition,
iz oA
[/’igj_]] = 5k+1 [r{glﬁillJ

k+1
/[21 }?2 ‘421 + BE }pl
S 2k Pk 1_ k+1 T Pkl
T Sk [Aiwl] Has {AB} r [ i,
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which means Azil — /iz}H By induction, it is no hard to prove the first part of
the lemma. The second part is proved in [21]. O

Proof of Lemma 2

In order to prove the result, let us denote the systemn formed after applying feedback
(2) and restricted equivalent transformation (5) as follows:

LN 411‘7—:1_*_%12'»132_*_[31” .
0 = 42151+f‘12252 +~B2v (11)
y = Clz'4+C%*%4 Dv '
where ~
Al = QTUAM 4 BYFY)Qy + Py(A? + BEFY) Q,
+Ql—1(A12 + BLFQ) QZ +1)2(A22 + BZF'Z) Q2
AIZ — Ql—l(An + BIFZ) Q3 +P2(A22 + BEFQ) Q:}
/pl — P3(A21 + B2F1)Q1 + P;;(A.H + B'ZF'Z) QQ
/i22 — P3(A22 + B?,FZ) QS
Bl — (Ql)_lBlG-i- PQBQG (12)
B? = P3BG
C' = (C'+DFYQ,+(C*+DF?*)Qy
C? = (C*+DF®)Qs
D = DG.
Now it is sufficient to prove that r; = 7;, 7 = 1,..., m, where 7; is associated with

system (11).
First, let us verify the following relations by induction.

E¥ = (BF4+TF'Q.Py)P;! (13)
TF = TfQ
fork=1,...,r;and i=1,..., m, where 7 = 0.

It is easily seen that relations (13) hold for £ = 1. Assume that relations (13)
hold for k = j. Then according to (12) and [T/ A}? T/ B'] = EIT'[A** B?], it
follows that

(7] A2 TIB')=(EI*' + T/ QuP) Py [A? B?)
which implies EIT! = (EIT 4 T/ Q, Py)Py 1. Moreover, it is easily seen that
Tj+1 — TjAll _ R g1 (TjAll _ EJ"»HAzl)Ql — THIQl.
This proves (13). Then, from
A'J

2
rank Tr AL

B? ‘
T{‘Bl} =Ny -+ 1
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it follows that

/i22 BQ
rank [TT'A” Tw‘;l]
= rank Py(47 + B2 ) Q° PABG
T (A2 4B F?) Qs+ T Qi Pa(AR L B2F2) Qs T/ B'G+T " Q1 P, B2G

It

22 2
rank r~P3 0 ’ er 12 7 TB 1 Q3 0
Ti'leg 1 ]ilA < fl'B F2Q3 G

AZZ BZ
=ny+1
This completes the proof. ) 0O

Proof of Lemma 3
It easily follows from Algorithm 2 that the following relations hold.
[C? D] = BI[A% B?] o
[TE-1A? TF1BY] = EF[A%2 B2], k=2,...,r,i=1,...,m

These are equivalent to the following relations

. I 0 I
2 ) gl oA22 2
[C? Di] [F'Z I] = I}[A B?] [1’2 ]
’ Y 1
[rlik_lAlz lz'k—lBl] [Flz ?] - sz (A% B?] [FI- ] (15)

](:22 y iy 2 1

that is,

i

[C24+ D;F? D] EF[A*? + B*F* B?]
[TF-1(A12 4 BIF?) TF'BY] = EF[A®+B?F? B?], (16)
k=2,...,r;,1=1,...,m.

Therefore, for any F? which makes A22 + B?F? nonsingular, Ef can be uniquely
determined as follows:

E} (C? + D;F%)(A?2 + B?F?)~1

EF = TFY A2 4 BIFY) (A2 4 BFHTY k=2 i=1,m
(3 1 (]7)

I

‘Assume that T, ... T/, ... T} Trm are linearly dependent. Then,

ceogdgmy oy
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with cz being constant,j = 1,...,r;,i=1,...,m. As a result, one can get
m r;—1
0 = <> > o1 +Zc"T" (412 B]
i=1 j=1
m ri—1 ) m
0 = > > d[1/A? T!B'] +Z [T]* A T]'B']
: i=1 j=1 i1
m ri—1 m
- ZZ 1E+1 A2 B?]4 Z nTTEAY TTBY].
i=1 j=1 i=1

Therefore, from the nonsingularity of the matrix

422 B2
A22 B2 TP A2 1] B!
[6‘2 D ] T z
Tjp AY? Ty B!
it follows that ¢{* =0 for ¢ =1,...,m. As a result,
m r‘—l
i=1 j=1

Considering (17), it is easily seen that

,}
|
—

C'ZT [All (A12+B] FZ) (A22+B2 F?)—;IAQI] [AIE Bl}

o
Il
.ME

-
1
—

RN

_

1

1
.MS
M

o [fz] Al it AQI} (412 B!]

..“

-
11
-
.
1
,_. Laad

617 T]+1 [A12 1]

1

i
.MS

i=1 j=1
m ri—2 i m

- Z EJ+2 A22 2] +Zc;‘,—l [T;ri AIZ T‘if’i Bl] ]
i=1 j=1 i=1 |

It follows that c:‘—l =0fori=1,...,m

Similarly, it is easily proved that cf =0forj=1,...,m -2, ¢=1,...,m. This
“completes the proof. (m]
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Proof of Lemma 4
Substituting (17) into (14) yields
Ci2 _ (C,Z + Din)(A” + szz)-lAzz
D; — (C}+ D;F?)(A** + B2F?)~'B? =
TF AN (A4 BIF?) (A2 4+ B F?)~1A4%] = 0, k=2,...,r

TF-'B'~(A'? 4+ B'F?) (A2 4+B?F?)~1B? = 0, k=2,...,r, i=1,...,m.
(18)

I
o o

By construction of T¥, it is casily seen that

T = Cil _ EilAﬂ — Cil _ (sz + Din) (A22 + BQF2)—1A21

i
TF = Tik_l — EFA? = Tf‘l[A“ — (A2 + BYF?) (A% + B2F?)-1 4%, (19)
k=2,...,r;,i=1,...,m,
In addition, for any F? which renders A??> + B2F? nonsingular, we have
A22 B2
fan 1]

ank [ [ A% B? I 0][I —(A®+B?F?)~'B?
TiraAIZ T{'Bl FZ I 0 I

rank [

= rank [ A22 +BAF 0 ] .
TT(A'2 + BLF?) TI[B' — (A2 + BLF?) (A% 4+ B2F?)-1B?]
A%? B? . .
As a result, rank [TiﬁAlz T[‘Bl} =ny+ 1 if and only if
T/ [B' — (A2 4+ B'F?) (A*2 + B*F?)"'B*] £ 0. . (20)
From equations (14)-(20), one can easily deduce the following relations.
D; = D;—(C?+ D;F*) (A* + B?F?)"1B? =0
S = Ol —(C?+ D;F?)(A? + B2F?)~1 A% = T}
C’,'B — Til[Bl — (AlZ +BIF2) (Azz + BZFZ)'IBg] =0
*iA — Til[/l“ _ (A12 + BlF2) (Azz + Bze)_lA:“] — Tiz
CiAB = TP[B'- (A + B'F?)(A®+ B*F?)~'B? =0
(’jiA2 — Tt?[A“ _ (A” + BIFQ) (Azzz + szz)—lAzl] — Ti3
CAr-2B = T B! — (A2 4 B'F?) (4?2 + B2F?)~'B? =0
CGiATTU = TTIAN (AT 4 BUET) (AP 4 BRRY)T AN = T

CiAM=1B = TI[B'— (A2 4 B'F?) (A2 4+ B2~ 'BY #0, i=1,...,m
‘ (21)



Strong Decoupling of Descriptor Systems via Proportional State Feedback 385

which means that d; = r; — 1. m}

Proof of Lemma 5

According to the definitions of C? and D, it follows that

'A22 B2
rank - c2 [)]
~ A22 B2

TIHAIZ TlnBl
= rank . .
LT7m A2 T7m B!
, A22 B?
T{'A12 TITIB1 [ 1 0] [I _(A22+BZF2)—1B2

= ranky F2 1o 1

\ T;lm.Alz T:;‘m B!
- A22 +BZF2 0
Tlh(AIZ + BIF2) Tl"x[Bl _ (A12 + BIFZ) (A22 + BZFZ)—IBZZ]
= rank i i
_Trr]‘qm (AIZ + BIF2) T;l,,. [Bl _ (A12 + BIF2) (A22 + B2F2)_132]
- A22 +B2F2 ) ~0 )
Tr (A2 + B'F?)  C,An-'B
= rank .
LT (A2 + B'F?) CrAT»~'B
[ A%?+ B2F? 0

= rank X B
which proves the claim. : a
(Received January 18, 1996.)
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