
K Y B E R N E T I K A — VOLUME 3 3 (1997) , NUMBER 3, P A G E S 3 1 1 - 3 3 2

CONSTRUCTION OF A ROBUST PARSER
FROM A DETERMINISTIC R E D U C E D PARSER

M A R T I N P L A T E K

A formal method for the automatic construction of an error recovery part for a given
parser is presented. We use a new formal model of parser, and a new notion of headsymbol
instead of skeletal symbols. We guarantee in a formal way the recovery from any type of
errors and we separate the (in)correct input parts with the help of the hierarchized output.

1. INTRODUCTION

T1 e starting point of the present study is [1]. The great advantage of [1] is the exact
formulation of guarantees for the error recovery in the terms of formal languages
and automata . We try to work in a similar way We use headsymbols instead of
skeletal symbols, and we present push-down au tomata as special list au tomata .

This model of au tomata allows to introduce moving-trees. Any computation of
such an automaton can be expressed as a moving-tree. We consider moving-trees as
the output of t~:e automata .

In [1] the recovery from "skeletal errors" is left open. Our method guarantees a
recovery from any type of errors (full robustness).

There are no problems to determine the set of headsymbols for a given parser.
The same problem for skeletal sets is much more complex, maybe unsolvable (see

[4])-
Further motivation to use headsymbols is the observation, that some popular

programing languages like Pascal do not contain suitable skeletal sets, but their
parsers ordinarily work with a suitable set of headsymbols.

As headsymbols, for example, some of the key words of Pascal: b eg in , if, r e p e a t ,
until , etc. can be used.

In [1] the given guarantees are conditioned by the property of error sensitivity of
the parsers (a parser operates only inside of the correct prefixes of the input text) .
Instead of error sensitive parsers we work with reduced parsers (similar concept as
for grammars) . For reducing of parsers there are much more effective algorithms
than for the transformation in the error sensitive parsers (see [3]). The reduction
of a parser surely does not increase its size. Tha t is not the case if we consider the
transformation in the error sensitive parser.

312 M. PLÁTEK

Our model of automata can serve as a formal device for the interpretation of the
standard parsing methods (LL(1), LR(l),...). The tables describing such parsers
can be transformed into sets of instructions for the list automata in a simple algo
rithmic way. This makes our method independent on the used method of parsing.

The remainder of the paper is divided in seven sections:

2. Basic notions

3
4
5
6
7
8

The

Properties of parsers
Headsymbols
A construction of an error recovery part to a reduced parser
Formal properties of MR
Examples
Concluding remarks

main concept is introduced in Section 4. The construction of the robust
parser is presented in Section 5, and the formal properties of this construction are
formulated in Section 6. We hope that the titles of the other sections summarize
sufficiently theirs content.

2. BASIC NOTIONS

We work with automata of the following form: The memory is a linear doubly
linked list with a left-hand side and a right-hand side sentinel. Every item in the list
can store one symbol. The first item always contains the symbol # (left-hand side
sentinel), the last one the symbol $ (right-hand side sentinel). The automaton has a
workhead which can read the content of the visited item and the content of its right-
hand side neighbour (cf. Figure 1.1). The automaton can perform the following
basic operations: MVR - a move to the right, DEL - a deletion of the visited item
and a move to the left. IN(symbol) - insertion of the symbol immediately to the
right of the visited item and a move on the inserted item.

Definition 2.1. A list automaton (L-automaton) M is a 5-tuple
M = (Q, A, B, It, qo), where Q is a finite set (of states), A is a finite alphabet (input
alphabet), B is a finite alphabet (working alphabet), where B D (A U {#,$}), and
9o £ Q (initial and accepting state).

The elements of the finite set It are called instructions and have the following
form: [qi,b,a] -> [q2, op], where qx, q2 G Q, 6 G B,a£ (-4U$); op € {MVR, DEL, IN(b),
for be B- {#,$}}.

M is deterministic if the set It does not contain two different instructions of the
form [q, b, c] —*• [q2, opi], [q, b, c] —> [qi, op] (with the same left-hand side and different
right-hand side).

In the present paper only deterministic automata are considered.

We represent a configuration of M via a triple K = (wb, q, v), where w represents
the string of symbols in the list on the left-hand side of the symbol visited by the

Construction of a Robust Parser from a Deterministic Reduced Parser 313

head (left-hand side of K), b means the symbol visited by the head, v is the string
on the nonvisited part of the list (right-hand side of K) and q means the current
state of M. The string wb may be considered as the content of the pushdown of M
(b is the top).

The number of symbols in the word wb is called the size of the left-hand side of
K (we denote it as szl(K)), and the number of symbols in the word v is called the
size of the right-hand side of K (we denote it as szr(K)).

Let K\ = (wb, q, cv) be a configuration of M, i = [q, b, c] —• [q\, op] some instruc
tion of M.

We write K\ =>,• A'2 in the following cases:

(a) op = MVR, A'2 = (wbc, q\,v)

(b) op = DEL, A'2 = (w, q\,cv)

(c) op = IN(d), A'2 = (wbd, q\,cv).

The notation K\ =>• K2 means, that there is an instruction i such that ATi =>,• A2.
We say that K\ => K2 is a step from K\ to A'2. The reflexive and transitive closure
of the relation => is denoted by =>*.

Configuration of the form (# , go, w$), where v £ A*, is called a starting configu
ration of M.

Let A denotes the empty word. A configuration of the form (A,qo>$) is an ac
cepting configuration (the list contains only a sentinel, and the head of M is not
positioned on the list).

Any configuration K such that there exists no step of the form K => K\ is called
a halting configuration.

We say that any sequence C of steps K\ => A2, A'2 => K$t..., A'n_i =>• A' n , . . . is
a computation of M.

If A'i is a starting configuration, we call C a starting computation. If Kn is a
halting configuration, we call C a halting computation.

а + b $ # а + b $

, , 1 .

Finite control

F i g . 1. LVautomaton.

We say that a computation is completed if there does not exist a step prolonging
this computation.

There are two types of completed computations: infinite and halting computa
tions.

314 M. PLÁTEK

Any halting configuration which is in the form (# v , q, w$) is called an error
configuration.

We denote L(M) = {v G A* | (# , q0, v$) =>* (A, q0, $)}.

We give two examples of list automata .

E x a m p l e 2.2. Automata MA and Mc recognize the same language: set of words
of the form a0 = ai + . . . + an, where a? G {a, b}.

The automaton MA proceedes in the following way: At first without any checking
moves to the right-hand side sentinel. All the checking is performed by the deleting
with the outlook on the right-hand side sentinel.

MA = ({qotqilqatq=,q#}>{aib,+,=},{a,b,+,=,#,$},ITA,q0), IT A (set of in
struction) is described with the help of the following schemes (metarules):

(1) ({#,a,b,+,=},qo,{a,b,+,=})^(qo,MVR)

(2) ({a,b},q0,{$})->(quDEL)

(3) ({+},qi, { $ }) - » (9a, DEL)
(4) ({a,b},qa,{$})-±(quDEL)

(5) ({ = },qi,m)^(q=,DEL)

(6) ({atb},q=t { $ }) - > (? # , DEL)

(7) ({ # } , ? # , { $ }) - (? o , DEL);

A scheme (P, p, R) —+ (q, op) represents a set of instructions of the form [p,a,b] —>
[g.op], where a is from P and b is from R, e.g. the scheme (2) represents two
instructions: [go, a, $] —• [qi,DEL] and [q0, 6,$] —> [qi,DEL]. Similarly we can use
the sets of states instead of single states.

The automaton Mc computes in a different way. It inserts the symbol C instead
of the symbol = . All the visited symbols on the righthand side of C are immediatly
deleted.

Mc = ({qo,qr,qa,q,q=,q+,qi,q2,q%},{a,b,+,=},w,lTC,qo), where
W = {a,b, +, = , C , # , $ } , and ITC is a set of instructions described with the help
of following schemes:

(1) ({#},?o,{a,6})-+ (qr,MVR) (8) ({C},q+,{ + })~ + (q+,MVR)
(2) {{a,b},qr,{=}) -+ (ç=,MVfí) (9) ({+},q+,{a,b}) ->(q2,DEL)
(3) {{ = },q=,{a,b})--+(q,DEL) (10) ({C},q2,{a,b}) ^(qa,MVR)
(4) ({a,b},q,{a,b}) -->(q=,IN(C)) (П) ({C},<Za,{$})- (qi,DEL)

(5) ({C},q=,{a,b})- ->(qa,MVR) (12) ({a,b},qi,{$})- ^(q$,DEL)

(6) ({a,b},qa,{+})- -(q+,DEL) (13) ({#} ,?$,{$})- (qo,DEL)

(7) {{a,b},qa,{$}) — >(qa,DEL) ;

We introduce the concept of string-tree in order to prepare the introduction
of moving-trees. Moving-trees will describe the structure of the computations of
the list automata, and we will consider moving-trees as parsing structures of the
corresponding input strings.

Def in i t ion 2.3. A string-tree S over an alphabet B is a rooted tree S = (U,E),

where U (set of nodes) is a set of indexed symbols, where the symbols are from B,

Construction of a Robust Parser from a Deterministic Reduced Parser 315

and the indexes are integers (formally U C B x Int). U is ordered by the indexes of
its members. The ordering of U (signed by >) has the following properties:

[1] (left-to-right pathes) If a path leads from a; to another node bj, then a; < bj.

[2] (projectivity) If u\,u2,u^ are nodes of S, u\ < u2 < 1*3, [141,1*3] is an edge
from E, then there is a pa th leading from 1*1 to u2.

We can see, tha t the root is always the first node by < .
Let S = (U, E) be a string-tree over B, U = {1*1,. .. ,un], U{ = aj, where a £ B.

We write Sym(ui) = a. We denote Str(S) = Sym(u\).. .Sym(un). By Str(S,A) we
denote a string which we get from Str(S) by removing all its symbols not belonging
to the alphabet A.

We say that the string-trees S\ = (U\,E\) and S2 = (U2,E2) are isomorphic if
there is a one-to-one mapping / from U\ to U2 such that a/b is from E\ iff f(a)/f(b)
is from E2, and a < b iff f(a) < f(b), and Str(S\) = Str(S2)-

We introduce string-trees and their isomorphism since we will not make any
difference between two isomorphic moving-trees.

Let i*i, 1*2 be nodes of some string-tree S. We say that 1/2 depends on u\ if a path
of S leads from u\ to «2- We denote an edge [1*1, u2] usually as u\/u2 and a bundle
of edges u\/u2,..., u\/un as 1*1/(1*2, • • •, un). We can describe any string-tree by
nesting of the previous description of bundles and we get the so called /-description.

Let S be a string-tree. We write S\ <C S if S\ is a string-tree such that it is a
subtree of S, and any node of S depending on the root of Si is from S i .

Let S be a string-tree. We write Si -< S if Si is a subtree of S such that Str(S\)
is a substring of Str(S).

We can see that if Si < S then S\ •< S.
Let be Si -< S. We denote by S — Si a string-tree which contains all nodes from

S not depending on any node from S i .

E x a m p l e 2 .4 . Let Si = (Ui, E\), where

U] = { # o , a i , = 2 , a 3 , + 4 , & 5 } , -^1 = { # o / a i , a i / = 2 , = 2 / a 3 , a 3 / + 4 , + 4 / 6 5 } .

We get the /-description of S i :

o / a i / =2 /a3/ +4 /6 5 .

E x a m p l e 2 .5 . Let S2 = (U2,E2), where

U2 = { # o > a i , = 3 , C 4 » a 5 , + 6 , & 8 h £2 = { # o / a i , a i / (= 3 , C 4) , £4/(05,-1-6, fc8L}-

We get the /-description for S2:

o / a i / (= 3 , C4/(a5, + 6 , 68)).

Figure 2 represents S2.

316 M. PLÁTEK

a C # a C # a C

.*
' r ' '

= a + Ł = a + Г /

Fig. 2. String-tree S2-

Definition 2.6. Let C = K\ =>ix K2, A'2 =>/2 A3, . . . , A'n =>jn A ' n + i , . . . be a
computation of M. We can see that Ij means the instruction used in the jth step of
C. We call the sequence of instructions h,... ,In,... trace of the computation C,
and denote it by TR(C).

We will define the moving-tree S by C (or by TR(C)). Roughly speaking the
nodes of S correspond to the visited items during C and the edges correspond to
the actions of C causing the first visits on the single items. Let us recall that
computations in a general case can start on an item placed inside of the list. This
fact slightly complicates the next definition.

First we outline the meaning of the symbols (variables) used in the step-by-step
definition of the moving-tree.

Scan - the position of the head - [integer]
Instr - the order of the current instruction - [natural number]
U - the current set (of indexes) of nodes - [set of integers]
E - the current set of edges - [set of edges]
Act - the indices of nodes currently in the list - [set of integers]
Dep - a node waiting for its tree-predecessor - [empty or one-node set]

Let C be a computation of M = (Q,A, B,It, qo), and TR(C) = h, •.., In,....
Moving-tree S = (U, E) by C (or by TR(C)) is a string-tree over B, defined step
by step, using in the ith step the information corresponding to the prefix of TR(C)
h,...,U:

1. Initialization. Let us suppose that I\ has the form [gi,&,a] —> [q2, op].

We consider the following cases:

If op = DEL

then we set Scan := —1, Instr := 1, U := {bo}, Dep := {bo}, E := {empty set},
and Act := {empty set}.

If op = MVR

then we set Scan := 1, Instr := 1, U := {b0, a i) , E := {bo/a^, Act := {0,1},

and Dep := {empty set}.

Construction of a Robust Parser from a Deterministic Reduced Parser 317

If op = IN(c)

t h e n we set Scan := 1, 7ns t r := 1, and U := {6o,-i}> E := {6 0 / c i } ,
Act := {0 ,1} , and Dep := {empty set}.

2 . I n d u c t i v e s t e p . Let us suppose Scan = i, Instr = k, h+i = [qk+\,a,d\ —>
[qk+2,opk+i], and U is nonempty.

If the node with the index i is not contained in U it is supposed that i £ Act
and Dep is not empty;

t h e n we set at first U := U U {a,-, }, Act := Act U {i}, and E := E U { a , / u } ,
where u is the node from Dep. After that we set Dep := {empty set}.

Further we consider the following cases:

If opk+i = DEL, and there is in Act a number lower than i, and p is the
greatest number from Act, less than i,

t h e n we set Scan := p, Act := Act — {i}, Instr := k + 1.

If opk+i = DEL, and there is not in Act any number lower than i, and n is
the smallest index of the nodes from U

t h e n we set Scan := n — 1, Instr := fc+1, ^4ct := Act — {i}, and Dep := {a ,} .

If opk+i = MVR, and m is the maximum of indices of the nodes from U

t h e n we set Scan := m + 1, Instr := k + 1, Act := Act U {m + 1},
U :=Uu{dm+1}, and E := E U { a , / d m + 1 } .

If op/fc-i-i = IN(c), and m is the maximum of indices of the nodes from U

t h e n we r ?t Scan := m + 1, Instr := k + 1, Act := Act U {m + 1 } ,
U := !7U{cm+i}, and E := E U { a , / c m + i } .

We say that a string-tree S is a moving-tree by M if there is a computation C by
M , such that S is a moving tree by C. Let a, /6j be an edge of a moving-tree S by
the computation C. We will define the history of a , / 6 j . If the a,-, respectively bj,
is entered only once during C, the history of a,/6;- is the single instruction realizing
the first visit on a,- (deleting instruction), or on bj (nondeleting instruction). In the
other case the history (so called complete history) of a , / 6 j , is an ordered pair of
instructions (Ik,h), where Ik performes the first visit on bj, and 7/ performes the
deletion of bj, followed by the visit of a,.

The set of all moving-trees by M is denoted as S(M). The subset of S(M) of
all moving-trees created by an accepting computation of M is denoted as SA(M).
The subset of S(M) of all moving-trees created by a starting computation of M is
denoted as Ss(M). A moving-tree S from S(M) is called deleting-tree by M if the
histories of all edges of S are complete.

E x a m p l e 2 .7 . S\ from the Example 2.4 is a member of SA(MA), and 52 from the
Example 2.5 is from SA(Mc)- MA and Mc are defined in the Example 2.2.

318 M.PLATEK

3. PROPERTIES OF PARSERS

C o n v e n t i o n . M denotes a deterministic list automaton M — (Q, A, B, It, qo).

Defini t ion 3 . 1 . If M does not insert symbols from the input alphabet A then M
is called a parser. We say tha t a parser M is reduced if any instruction of M can
be used in some accepting computation of M.

Let us recall tha t szl(K) means the size of the left-hand side of the configuration
K, and szr(K) the size of the right-hand side of the configuration K. We call the
expression szl(K) -f szr(K) the size of K, Let us note tha t we use the sign x for
multiplication. The next theorem shows that parsers are computing in the linear
time, and we will notice a useful consequence of this fact. We will take advantage
of this consequence by the construction of a robust parser.

T h e o r e m 3 .2 . Let M be a reduced parser. Then a constant r exists such that the
two following assertions hold:

(a) The number of steps in a computation C of M beginning with a configuration
of the size / is smaller than / x r.

(b) Let Cm be a completed computation of M, where Kj is the first configuration
of Cm, and K\ the last one. Then it holds:

r x (szr(Kf) — szr(Ki)) > szl(K{) — szl(Kf).

P r o o f . First we prove the assertion (a). We divide the proof into four observa
tions:

• Observat ion 1. Let C be an infinite computation of M. Then there is
an infinite subcomputat ion C\ of C such that the item scanned in the first
configuration of C\ is not deleted during C\, and the operation MVR is not
performed during C\ at all.

P r o o f . If we suppose the opposite, one of the two following cases occurs:

— in C\ the operation MVR is used infinitely times
or

— in C\ an unlimited number of items not inserted during C\ is deleted.

But that is in a contradiction with the finite size of the first configuration of
C\.

• Observat ion 2 . Let us suppose that there is an infinite computation of M.
Then M cannot be a reduced parser.

P r o o f . Let C be an infinite computation of M. Let S be the moving-tree by
C. Let C\ be the maximal subcomputation of C, where in the trace of C\ there
is not any instruction performing the operation MVR, and all deleted items by

Construction of a Robust Parser from a Deterministic Reduced Parser 319

C\ are inserted during C\. By the Observation 1 C\ is infinite. We take the
first instruction I, performed by C\. We can see that instruction I performs the
operation insert. Any computation which used I is not a halting computation
because of the determinism of M. Therefore an accepting computation cannot
use the instruction I. •

• O b s e r v a t i o n 3 . Let m be the number of instructions of M, and C*2 be a
computation of M with a moving-tree S2 with the following property: In the
histories of edges of S2 there is not any instruction performing the operation
MVR, and the number k of edges of S2 is greater than nn, where n = m 2 .
Then there is an infinite computation by M.

P r o o f . By the computation C2 only the items inserted by C2 are deleted. The
number k is big enough to ensure that one of the two following cases occurs:

(i) some two edges in a pa th of S2 have the same history, or

(ii) some two edges of S2 with a common node have the same history.

Tha t means, by determinism of M, tha t an endless cycle begins in C2 which
infinitely times inserts (and possibly deletes some of the inserted items again).

•

• O b s e r v a t i o n 4 . Let M be a reduced parser and m be the number of instruc
tions of M. Let r = 2 x nn + 1, where n = m 2 . Then in any computation C of
M longer than r steps the operation MVR or a deletion of the start ing item
of C, is performed at least once.

P r o o f . If we suppose the opposite, then there is a moving-tree by M fulfilling
the assumptions of the Observation 3. By the Observation 2 the automaton
M cannot be a reduced automaton. •

Now we can finish the proof of the assertion a). We show how it follows from the
Observation 4. Let C be a computation by M. We can divide C in such subcompu-
tations C\, C2., • • • , Cj, where in the first configuration of any C, the scanned item
is visited during C for the first t ime (after MVR or DEL). From the Observations
4 it follows that the length of such computations can be choosen in such a way that
it does not exceed the number r.

The p r o o f of the assertion b): From a) it follows that Cm is a finite compu
tation. Cm is a completed computation, therefore the configuration K] is a halting
configuration. We divide the remaining proof in two cases:

Let K\ be an accepting configuration. Then the szl(Ki) = 0, and szr(Ki) = 1.
We can see that there is not such Kf tha t Kf => Ki, and szl(Kf) + r x szr(Kf) < r,
since the size of Kf is at least 2.

Let us suppose that K\ is an error configuration. In this case the assertion b)
follows from the proof of the assertion a). We can see that the left-hand side of the
list can be prolonged at most by r — 1 inserted symbols between any two MV-R-steps
during CM- From this observation the assertion b) follows directly. •

320 M.PLÁTEK

R e m a r k . In [6] it is shown that any parser M can be automatically transformed
to a reduced parser Mr such that SA(M) = ;3U(Mr). An efficient algorithm for the
reduction of parsers is presented in [3].

We use the properties of reduced parsers to formulate an error recovery technique
in the next section.

T h e o r e m 3 .3 . The parsers recognize exactly the class of deterministic context-free
languages (DCFL).

P r o o f . We divide the proof in two cases:

a) Any language recognized by a parser is in DCFL:
A parser M, which recognizes L(M) can be simulated step by step by a determin
istic pushdown automaton Mi so that the content of the left-hand side part of the
considered configuration of M is kept in the pushdown store of M i .

b) Any language from DCFL is recognized by some parser:
From [7] it follows that the class of languages recognized by deterministic list au
tomata without look ahead, using only the operations MVR, DEL and rewriting of
symbols, is equal to the class DCFL. We see that a list automaton M , which uses
MVR, DEL and rewriting only, can be easily simulated by a parser M i , simulating
M in such a way that instead rewriting by a symbol b, it uses a pair of operations
DEL and IN(b). •

R e m a r k . We have not yet explicitly introduced an output of the parser. In the
sequel we consider as the output to a given computation the responding moving-tree.
We demonstrate then that moving-trees on the output can serve at least so well as
the output tape.

Let us consider a parser Mo with an additional output tape. Let Mo = (Q, A, B, C,
Ito,qo), where for the simplicity C and B are disjoint, the instructions of /To have
the form

[q,a,b] -> \p,op,c],

where c (output symbol) can be a symbol from C, or A (empty string). The in
structions are performed in an obvious way as by usual parsers, enhanced by the
sequential writing of the output symbols on the output tape.

It is easy to construct a parser M i , which simulates Mo in such a way that the
actual simulated situation on the output tape of Mo can be derived from the related
moving-tree of M i .

The construction of Mi can be done in the following way: Let

Ml = (QLlQo,A,BUC,ITl,qo),

where

Qo = {(q,i);qeQ,ie {1,2}},

Construction of a Robust Parser from a Deterministic Reduced Parser 321

and for any instruction from 7To of the form [q, a, b] —> [p, op, c] with c G C, we put
in 7Ti the following triple of instructions:

[q,a,b]^[(p,l),IN(c)],

[(p,l),c,b]-+[(p,2),DEL],
•

[(p,2),a.6]-> [p,op].

If c is an empty string, we put the single instruction [q, a,b] —* [p, op] in 7Ti.
We can see from the previous construction that the moving-tree to an accepting

computation of Mi contains simultaneously the information about the input word
and about the corresponding output word computed by MQ . That observation allows
without loss of generality to use moving-trees instead of the usual sequential output
tape.

4. HEADSYMBOLS

We introduce headsymbols in this section. The headsymbol can be an input sym
bol as well an inserted symbol. Our recovery method is based on the properties
of headsymbols, namely of input-headsymbols. Programming languages use many
input symbols with the properties of headsymbols. For instance in a parser of Pascal
the keywords begin, if, while, and others can usually be considered as headsym-
bi Is. The symbol case is not suitable for that purpose, because it has two different
meanings in Pascal.

Definition 4 .1 . Let M = (Q, A, B, It, q0), c G B. We denote

SV(c) = {q e Q; there is some [gi, a, c] -> [q, MVR] G IT, or

some[q3,b,d]^[q,IN(c)]eIT}.

We denote

SE(c) = {q€Q; there is some [quc, <-] -> [g, DEL] G 7T}.

We call c from B a headsymbol of M if

card(SE(c)) = 1, and card(SV(c)) < 1.

Remark. In any computation of a reduced parser M the state of the first visit
on a headsymbol c is unambiguously determined, and the state immediately after
deleting c is unambiguously determined, too. For a reduced parser M, where L(M)
is nonempty, the left-hand side sentinel is a headsymbol and the right-hand side
sentinel is not a headsymbol.

Example 4.2. The set {#, =, +} is the set of headsymbols of the automaton MA
from the Example 2.2, and the set {#,=,C,+} is the set of headsymbols of the
automaton MQ-

322 M. PLÁTEK

5. A CONSTRUCTION OF AN ERROR RECOVERY PART TO A REDUCED
PARSER

For any reduced parser M we construct an automaton M\ realizing an error recovery
part to M. MR will be a robust automaton composed from M and M\. The purpose
of any computation of M\ is to restart a computation of M (a recovery), to assure,
that the state and place of the restart cannot be inproperly chosen.

Conventions.
Let b e B. DP(M, b) - {c G A; there is T £ SA(M) with a node containing the

symbol c depending on some node containing the symbol b}.
We can see that DP(M, #) = A (A is the input alphabet of M).
RB stands for a set of input symbols containing the right-hand side sentinel, LB

stands for some set of headsymbols containing the left-hand side sentinel. LB and
RB are sets of boundary symbols (left-hand side and right-hand side).

MRB C {(a, ft); a e LB,b £ RB, and b is a headsymbol such that there is a
[q,a,b]^[SV(b),MVR]eIT}.

DLL C {(a,b);a E LB,b 6 RB such that there is a [q,a,b] -> [SE(a), DEL] e
IT} U {(#, $)}. Moreover DLL always contains (# , $).

MR works in the following way:
(a) Any starting computation of MR begins with some starting configuration of

M. M computes until the first halting configuration K of M.

(b) In the case that K is an error configuration of M, a nonempty computation of
M\ from K is started.

(c) Any completed computation of M\ finishes by a configuration of M. If it is
an error configuration M\ is started again. If it is an accepting configuration,
MR accepts it. In other cases a nonempty computation of M is started.

We can see that MR halts always in an accepting configuration of M. At the first
glance we see that the parsing of correct words from L(M) by MR, is not burdened
by the error recovery component (Mi).

It remains to describe the recovery automaton M\.

The description of M\.

M\ inserts two types of symbols neither of which is contained in B:
a) error signs - serve as error messages.

b) special signs - serve to separate the output components, computed by M from
the components computed by M\.

M\ consists of the following eight commands, which should be performed in the
outlined order:

(1) M\ starts always by this command. M\ inserts an error sign if the visited
symbol is not a special sign.

(2) The head of MR moves step by step to the right and stops when looking ahead
a symbol from RB. We denote the look-ahead symbol as ft (visited is the
left-hand side neighbour of ft).

Construction of a Robust Parser from a Deterministic Reduced Parser 323

(3) M\ performs the operation DEL (deleting with a move to the left) until an
error sign or a special sign is encountered. Then M\ prolongs the deletion until
a symbol from LB is found. We denote this symDol as a.

(4) If (a,b) is from MRB, the head inserts a special sign between a and 6 and
erases it again. Then M\ moves the head on b, and MR is transfered to the
state SV(b) of M.

(5) If (a,b) is not from MRB, but b is a headsymbol from DP(M,a), the head
inserts a special sign between a and b, moves to 6, and MR is transfered to the
state SV(b).

(6) If b is not a headsymbol and if 6 is from DP(M, a) a special sign is inserted
between a and b. After that the head moves to the right until a symbol from
RB is in the look-ahead position. The symbol in the look-ahead position is
denoted as b. After that M\ deletes items until the symbol marked as a is
visited (the special symbol is erased), and continues with the command (4).

(7) If b is not from DP(M,a), and (a,b) is from DLL, M\ inserts a special sign
between a and b, and erases it again. Then the headsymbol a is deleted, and
MR is transfered to the state SE(a).

(8) If the previous conditions are not fulfilled, M\ deletes a, and continues in
deleting until a symbol from LB is reached. The visited symbol is denoted as
a. The computation of M\ continues with the command (4).

6. FORMAL PROPERTIES OF MR

We suppose in the following text tha t MR is constructed by the previous construc
tion (Section 5) from a reduced parser denoted as M. The properties of MR are
formulated as Uieorems, the properties of M and its headsymbols are formulated as
claims.

T h e o r e m 6 . 1 . The two following assertions hold:
(a) MR is a parser and any start ing completed computation of MR is an accepting

computation (the robustness of MR).
(b) S E SA(MR) is a member of SA(M) if and only if S does not contain any

error sign.

P r o o f .
ad (a): We can see tha t the commands (1) , . . . , (8) from the description of M\

can be carried out using only the operations MVR, DEL and IN (a), where a is
not from A. Therefore we can construct MR as a parser.

We know that any start ing completed halting computation of MR ends by an
accepting configuration of M. We need only to show tha t any start ing completed
computation of MR halts. Let C be a start ing completed computation of MR. C
following the construction of MR, and Theorem 3.2 is divided in halting computa
tions of M and halting computations of M\. We need to show that there is only a
limited number of switches between computations of M and computations of M\.

324 M.PLÁTEK

We will show that the number of switches between computations of M and com
putations of M\ during C is less than

f(K\) = szl(K\) + rx szr(K\),

where K\ denotes the starting configuration of C, and r is the constant given by
Theorem 3.2.

We need only to show, that the function

f(K) = szl(K) + r x szr(K)

is decreasing during C, if we check only the values of / of the first configuration of C
and of any switching configuration between computations of M and computations
of M\ and vice versa.

We first consider a completed subcomputation C\ of C by M\. After the use
of a command of the type (4),(5) or (6), the szr decreases and the szl does not
increase, after a use of the commands (7) or (8) the szl decreases and the szr does
not increase. Therefore the value of / of the last configuration of C\ is lower than
the value of the first configuration of C\. The first and the last configuration of C\
are switching configurations.

To complete the proof we consider a subcomputation CM of C by M. Let Kf
be the switching configuration and the first configuration of CM, K\ the last con
figuration of CM and simultaneously the switching or accepting configuration. By
Theorem 3.2 there holds that

szl(Kf) + r x szr(Kf) > szl(Ki) + r x szr(K\).

We can see that the function / decreases for the sequence of switching configurations,
and therefore the value of f(K\) is the required upper estimation of the number of
switches between M and M\.

ad (b) C is an accepting computation of M if and only if C is a completed starting
computation of MR, and the subautomaton M\ during C is not started. Since an
error sign is inserted by any call of M\, and only by a call of M\, the proposition
(b) holds. D

Definition 6.2. Let c G B, q G Q, b G A U {$}.

LEFT(M,q,c,b)= {v G A*;(c,q,vb) =>* (A,?/, 6) by M for some qf}.

The trace of the computation by M leading from (c, q, vb) to (A, qf, b) is denoted
by LETR(M,q,cvb).

Computations with the trace equal to LETR(M,q,cvb) are called left-hand side
computations on the string cvb from the state q. We can see that the trace of the
left-hand side computation on the string cvb from the state q does not depend on
the left-hand side context of c and the right-hand side context of 6.

We denote by SL(M, q, cvb) the tree created by the trace LETR(M, q, cvb).

Construction of a Robust Parser from a Deterministic Reduced Parser 325

We write

SL(M, q, c, b) = {SL(M, q, cvb); v £ LEFT(M, q, c, b)}.

We set

RIGHT(M,q,c,b) = {y E A*;(c,q,yb) =>* (cb,qi,X) by M, for some ? i } .

The trace of the computation by M leading from (c, q, yb) to (cb, q\, X) is denoted
by RITR(M,q,cyb).

Computations with the trace equal to RITR(M, q, cyb) are called right-hand side
computations on the string cyb from the state q. We can see that the trace of the
right-hand side computations on the string cvb from the state q does not depend on
the left-hand side context of c and the right-hand side context of 6.

We denote by SR(M,q,cyb) the tree created by the trace RITR(M,q,cyb).
We take

SR(M, q, c, b) = {SR(M, q, cyb); y € RIGHT(M, q, c, b)}.

Definition 6.3. Let c be a headsymbol of M, b G A U {$},q = SV(c). We set
LEFT(M, c, b) = LEFT(M, q, c, b).

We say instead of left-hand side computation on cvb from the state g only left-
hand side computation on cvb. The trace of such a computation is denoted as
LETR(M,cvb). We can see that this computation finishes in the state q/ = SE(c).

Let v G LEFT(M, c, b). We denote as SL(M, cvb) the tree SL(M, q, cvb), and we
write SL(M, c, b) = SL(M, q, c, b).

Remark. For a parser M there certainly holds

LEFT(M, # , $) = L(M), and SL(M, # , $) = SA(M).

Definition 6.4. Let c, b be headsymbols of M and {q} = SV(c), {q\} = SV(b).
We set RIGHT(M, c, b) = RIGHT(M, q,c,b), RITR(M, cyb) = RITR(M, q, cyb),

SR(M, cyb) = SR(M, q, cyb). We take SR(M, c, b) = SR(M, q, c, b).

Claim 6.5. Let c be a headsymbol, S be from SA(M), SI <C S, SI and S2 be from
SL(M,c,b). By replacing the subtree Si by S2 in S we get a moving-tree 53 from
SA(M).

P r o o f . Let the computation C\ creating Si begins in a configuration (xc, q, vby)
and ends in a configuration (x,qi,by). We can see that any computation C2 cre
ating S2 starts from a configuration k\ of the form (zc,q,ubw), and finishes in the
unambiguously determined configuration &2 = (z,qi,bw).

We can see that the computation C creating S starts in a configuration of the
form (#,qQ,tcvby). We show that we can take as S3 the moving-tree computed by
the computation C3, starting from the configuration (#,qo,tcuby). It is obvious
that the sequence of instructions used by the computations C until the first visit

326 M.PLÁTEK

on c is a prefix of the trace of C3 (because of the determimism of M). Tha t
means that the configuration &3 = (xc,q,uby) is the start ing configuration of C 3 .
Therefore the computat ion C 3 continues from &3 with a trace equal to the trace of
C 2 . The configuration reached by C 3 is (x, q\, by) which is the above mentioned last
configuration of C i . Consequently, the tails of both computations C and C3 are
equal to each other. Since 5 G SA(M), then 53 £ SA(M). •

The next corollary expresses the previous fact with the help of traces instead of
moving-trees.

Coro l lary 6 .6. Let c be a headsymbol of M v,z £ LEFT(M, c, b),
LETR(M,#xcvby%) have the form tr\,LETR(M,cvb),tr2 for some sequences of
instructions tr\ and i r 2 . Then the sequence tr\,LETR(M,czb),tr2 creates a trace
of some accepting computation of M.

C l a i m 6 .7 . Let c, b be headsymbols, 5 £ SA(M), S\ -< 5 , and 5 i , 5 2 G SR(M, C, b).
Replacing the subtree 5i by 5 2 in 5 we get a moving-tree 53 G SA(M).

P r o o f . Let us suppose 5i = SR(M,cvb), 5 2 = SR(M,czb) and
5 = SL(M, #xcvby%). Let S3 be the moving-tree created by the starting completed
computation imposed on -$xczby%. The prefixes of traces used by computations of
5 and 53 until the first visit of c are equal to each other. Because the symbol b
is a headsymbol the computations on xcvb and xczb reach the same configuration
(#xcb, SV(b), y%). Therefore the tails of both computations are equal to each other.
Since 5 £ SA(M), then 5 3 G SA(M). •

We can see that a similar corollary can be formulated to the Claim 6.7 as to the
previous one.

C l a im 6 .8 . Let c be a headsymbol from M, Si G SL(M,c,b). Then there is
5 G SA(M) such that Si < S.

P r o o f . By the definition 5i has on the root the headsymbol c. Since M is a
reduced parser, the instruction I which deletes c by the left-hand side computation on
cvb, is used in some accepting computation C by M. Let us suppose that the moving-
tree computed by C is denoted as 5 3 . Since I is of the shape [c, q, b] —> [qi, DEL]
there is 5 2 G SL(M, c, b) such that 5 2 < 5 3 . By the Claim 6.5 there is 5 G SA(M)
such that 5i < 5 . •

The next claim can be demonstrated in a quite similar way.

C l a i m 6 .9 . Let c,b be headsymbols from M, S\ G SR(M,c,b). Then there is
5 G SA(M) such that Si -< 5 .

Construction of a Robust Parser from a Deterministic Reduced Parser 327

R e m a r k . We can see that the left-hand side and right-hand side computations
depend only on the visited and looked items. The previous statements allow to
consider any left-hand side or right-hand side computation of M as a surely correct
(invariant) computation.

Coro l lary 6 .10 . Let c be a headsymbol, c £ RB. We can see tha t the first
visit on c by a computation of MR is always done by the state SV(c) of M . By
this observation the following convention is correct. We denote LEFT(MR,c,b) =
LEFT(MR,SV(c), c, b), RIGHT(MR,c, b) = RIGHT(MR, SV(c), c, b), SL(MR, c, b)
= SL(MR,SV(c),c,b), SR(MR,c,b) = SR(MR,SV(c),c,b).

T h e o r e m 6 . 1 1 . Let y £ A*, y = uavbw, where a is a headsymbol of M from RB,
b 6 A, v € LEFT(M, a, b). Then SL(M, avb) < SA(MR, # y $) and LETR(MR, # y $)
has the form t\, LETR(M, avb),t2 for some sequences of instructions ^i and t2.

P r o o f . Since a is a headsymbol of M from RB, then a left-hand side computation
by M is performed on avb. This observation implies the prooved assertion. •

T h e o r e m 6 .12 . Let y £ A*, y = uavbw, where a is a headsymbol of M , a £ RB
and v E RIGHT(M, a, b). Then SR(M, avb) -< SA(MR,#y$), and RITR(MR, # y $)
1K.S the form t\,RITR(M,avb),t2 for some ^i and t2.

P r o o f . Since a £ RB, v £ RIGHT(M, a,b) we can see that the first visit on a is
done by M , therefore the whole computation on avb is a right-hand side computation
o f M . This implies the statement. D

T h e o r e m 6 .13 . Let c be an inserted headsymbol by Mor a headsymbol from RB,
Si £ SA(MR) and S2 <C S i , where S2 £ SL(MR,c,b) does not contain any error
sign. Then S2 eSL(M,c,b).

P r o o f . Since c is a headsymbol of M from RB or an inserted symbol, and S2

does not contain any error sign, then all nodes of S2 are visited and therefore created
by M . Thus 5 2 £ SL(M, c, b). D

R e m a r k . A similar statement to the previous one can be formulated for a string-
tree from SR(MR, c,b).

The previous statements give us guarantees about correctness of the left-hand
side and right-hand side computations. Left and right-hand side computations are
continuous computations considering time and topology as well. In the sequel we
outline some possibilities to give similar guarantees for some computations discon
tinuous in t ime. We will take the advantage of the topological continuity of these
computations. In the next definition we introduce tools to handle such computa
tions.

328 M.PLÁTEK

Definition 6.14. Let 52 t for i G {1, . • •, n h and S\ be string-trees, where 52 , < Si
for i e {I,..., n}, and any two different string-trees from { 5 2 l , . . . , 52 n} do not have
any common node, and SLI = 5 I — 5 2 l , SL2 = Si^ — 5 2 2 , • • •, SL^ = 5^n_x — 52n.
Then we can write SLU — S\ — {S2l, • • •, S2jl}.

Let SL(M,d,e) be nonempty, SV(d) = q, SE(d) = q\. We denote by SLM(MR, d, e)
the subset of SL(MR,d,e) such that any computation creating some member of
SLM(MR, d, e) starts from the state q and finishes in the state q\.

Theorem 6.15. Let Si G SR(MR, C, b) and 52 t G SLM(MR, di, e,) for i between 1
and n, and the tree 53 = 51 — {52! , . . . , 52 n} does not contain any error or special
symbol. Then 53 is a subtree of some moving-tree from SR(M,c,b).

P r o o f . Since SR(MR, C, d) is defined and nonempty, c is a headsymbol from RB.
Let C\ be the computation creating 5i and C2i be the computations creating 52,.
C2i are subcomputations of C\. C\ starts from the state SV(c) of M. Therefore any
computation of Mi can be awakened only inside of some computation C2l. By our
assumptions there are left-hand side computations of M, which can be placed instead
of computations C2l into C\. By this operations we can get a new computation C3.
Since 53 does not contain any error or special symbols, all edges from 53 are created
by M. Thus C3 is a right-hand side computation by M. •

Remark. We can see that we can get some other variants to the previous state
ment.

An important thing is to see that the number of nested (or iterated) separated
subtrees computed by M inside a tree from SA(MR) is in general not bounded by
any constant.

We can also see that the size of any tree from SA(MR) is linearly bounded com
paring to the length of the input, which means that the number of error symbols is
also linearly bounded.

Remarks about headsymbols. An input headsymbol a, for which there is a
symbol b such that LEFT(M, a, b) is an infinite language, is more suitable for our
construction than some headsymbol c, for which the sets {v; v G LEFT(M, c, b) for
some 6} are empty.

It is easy to check whether a symbol is a headsymbol of M. By the definition it
is sufficient to check the set of instructions of M.

7. EXAMPLES

Example 7.1. For an automaton MA = (QA, A, ylU{#,$}, ITA, qo), which repre
sents the reduced equivalent of the automaton MA from Example 2.2, we construct
by the construction 5 the automaton MAR = (QAR, A, A U {#, $, @, &;}, ITAR, qo).
We choose for this construction LB = {#, +, =} , RB = {$}, DLL = {(#, $), (=, $),
(+, $)}, and MRB equal to the empty set. The symbol @ is the single error sign, the

Construction of a Robust Parser from a Deterministic Reduced Parser 329

symbol k, is the single special sign. Despite the empty set MRB the MAR seems
to have a reasonable abbility of the recovery.

ITA is described by the following schemes:

(l a) ({ # , + , = } , g0, {a, b, }) -> (q0, MVR)
(lb) ({, a , 6 , h 9 0 , { + , = }) - * (go, MVR)
(2) ({a, b}, g0, { $ }) - (? ! . DEL)
(3) ({+},9iAS}) -+(qa,DEL)
(4) ({ a , 6 } , g a , { $ }) ^ (g i , D E L)

(5) ({ = } , ? ! , W) - > (« = , D E I)
(6) ({ a , 6 } , g = , { $ }) - (g # , D E L)

(7) ({ # h g # A $ }) - (< Z o , D E I) ;

- the remainder of /TA^ :

(9) ({ # , + , =},go, {+ , = , $}) - (Jbi , IN(@))
(10) ({ # } , g i , { $ }) - (^ i , / N (@))
(11) ({ a , 6 } , g 0 , { a , 6 }) - ^ (^ i , / N (@))
(12) ({= , +, a, 6}, g # , {$}) -> (*wi, /N(@))
(13) ({@, a, 6, + , = } , kvi, {a, b, + , =}) -> (kvi, MVR)
(13a) ({a, b, + , = } , ibui, {$}) -> (kvi, DEL)
(14) ({@}, kvi, $) -> (fcud, D L L)
(15a) ({ + } , kvd, {$}) -> (kd, IN(&))
(15b) ({&},yfca,{$})-^(yfca,L>LL)
(15c) ({ + } , f c a , { $ }) - > (g a , D L L)
(16a) ({ = } ,)fct;d, {$}) -> (k = , 7N(&))
(16b) ({&}, yfc = , {$}) -> (ifc = , D L L)
(16c) ({ = } , * = ,{$}) - > (g = , D E L)
(17) ({a,b},kvd,{$})-+(kvd,DEL)

(18a) ({ # } , Arwrf, {$}) — (*:#, /-V(&))
(18b) ({ & } , £ # , { $ }) - + (£ # , D L L)
(18c) ({ # } , * # , {$})-> (g0, D L L)

command 1
command 1
command 1
command 1
command 2
command 3
command 3
command 7
command 7
command 7
command 7
command 7
command 7
command 8
command 7
command 7
command 7

The automaton MAR computes to the input string with sentinels # a = aa + $
the following moving-tree (in the /-description) computes to the input string with
the sentinels # a = aa-\-%:

o / a i / =2 / (a 3 / @ 4 / a 5 / + 6 , & 7) .

We can see that the previous tree has only one correct component, namely # o / a i / =2 ,
and one incorrect component. We can see that the incorrect part begins after the
node =2, since the special node &7 directly depends on it.

Let us take

o / a i / =2 / @ 3 / (a 4 / =5 / (a 6 / @ 7 / a 8 , & 9) , & i o) .

This tree computed by MAR has also only one correct component, but two separate
incorrect components corresponding to two different errors.

330 M.PLÁTEK

E x a m p l e 7 .2 . We construct a robust parser MC = (QC, A, All { # , $, C, @, k},
ITC, go) to the automaton Mc from the Example 2.2. We choose for this construc
tion LB = { # , C } , RB = { + ,%}, DLL = { (# , $) , (C, %)}, MRS = {(C,+)}. The
symbol @ is the single error sign, the symbol k io the single special sign.

ITc is described by the sets of schemes:

(1) (;{#},ft,{o,б})-(ÎГłмvгл) (8) ({C},q+,{ + })->(g+ ,MÌ/fí)

(2) ([{a, 6},qГ) {=})->(?-., MVR) (9) ({ + },g+,{a,6}) -+(q2,DEL)

(3) ([{ = },q=,{a,b})^(q,DEL) (10) ({CЪtt, {«,*})-->(qa,MVR)

(4) Aa,b},q,{a,b})-+(q=,IN(C)) (И) ({C},qa,{%})^ (quDEL)

(5) [{C},q=,{a,b})->(qa,MVR) (12) ({a,b},qu{%})- + (q$,DEL)

(6) [{a,b},qa,{ + })->(q+,DEL) (13) ({#},?$,{$})-> (qo,DEL)

(7) [{a,b},qa,{%})-,(qa,DEL)

The i est of instructions of ITC:

(14) ({#}, 90, { = , + , $ }) - (Ь г , l N (@)) command 1
(15) ({a,6},ç r ,{ + ,a,6,$})-+(Ьл,/N(@)) command 1
(16) ({ = },q=,{ = ,+,%})-^(kvг,IN(@)) . cornmand 1
(17) ({ + },?+, { + , = , $ }) - (Ь г , / N (@)) command 1
(18) ({a,b},qa,{a,b,=})-+(kvi,IN(§>)) command 1
(19) ({@,a,b,C,=},kvг,{a,b,=}) -> кvi, M VR) command 2
(20) ({a, 6, =}-, кvi, {%, +}) -> (кvd, DEL) command 3
(21) ({@, к},кvd, {$, +}) -> (кg, DEĽ) command 3
(22) ({@}, кvi, {$,+}) -> (кg,DEL) command 3
(23) ({C,a, b, =},kvd, {$,+}) -> (kvd DEL) command 3
(24) ({a,b},kg,{%,+})^(кg,DEL) command 3
(25a) ({C},kg,{ + })^(k+,IN(к)) command 4
(25b) ({к},к+,{ + })->(к+,DEL) command 4
(25c) ({C},к+,{+})->(q+,MVR) command 4
(26a) ({C},kg,{%})->(kl,IN(к)) command 7
(26b) ({к},kl,{%})-+(kl,DEL) command 7
(26c) ({C},кl,{%})-+(1,DEL) command 7
(27) ({#},{кvd,qi},{%})-+(kin,IN :&)) command 7
(28) Ш,kg,{+,%})-^(kгn,IN(к)) command 7,4
(28a) ({&}, кin, {%}) -> (кin, DEL) command 7
(28b) ({ф},кin,{%})^(qQ,DEL) command 7
(29) ({к},kгn,{+})^(q+,MVR) command 5
(30) ({&},q2,{Ц)->(kg,DEL) command 3
(31) ({&},ç2,{a,6}) -> (кvi,MVR) command 2

The automaton MC to the input string with sentinels # a = aa + $ computes
the following moving-tree:

o / a i / (= 2 , C3/(a4/@5/a6, k7, + 8 /@9, &io).

In this tree two errors are exactly localized and one correct component is sepa
rated.

Construction of a Robust Parser from a Deterministic Reduced Parser 331

If we add + to LB, and (+ , $) to DLL then we get an enhanced robust parser
which separates the correct component enhanced by +... comparing to the previous
moving-tree.

8. CONCLUDING REMARKS

Our effort was to describe an algorithmizable construction of a robust parser to a
deterministic reduced one. We give the possibility to choose between construction of
a big parser which is more sensitive to separating correct and incorrect components,
or a smaller parser with a low sensitivity. The sensitivity and the size of the resulting
robust parser depends on our choice of the sets LB, RB, DLL and MRB.

We can see that the size of the robust parser is usually much greater than the
size of the original reduced parser. Tha t is the reason why the algoritmization of
such a construction can be a real practical help.

This paper has arisen as a modification of the technical report [6]. The idea
to use list au tomata to model parsers has come out from [8], where list au tomata
represent parsers suitable for natural languages. A similar notion as the moving-tree
was introduced in [7]. Some basic information about the error recovery techniques
can be found in [2] and [9].

The error recovery method from [1] can be formulated also with the help of list
automata . Tha t makes it possible to extend the method from [1] by our ideas in such
a way that we get a fully robust parser. In this way we can get broader guarantees
than we have offered in this paper.

ACKNOWLEDGEMENT

I am very thankful to Zuzana Dobes and to Jaromir Matas for their recommendations.

The work on this paper is a part of the project "Automata for Separation of Syntactically
Correct Structures from Syntactically Incorrect Structures" supported by the Grant Agency
of the Czech Republic under Grant No. 201/96/0195.

(Received May 23, 1996.)

REFERENCES

[1] M. Chytil and J. Demner: Panic Mode without Panic. In: Automata, Languages and
Programming (Lecture Notes in Computer Science 267). Springer-Verlag, Berlin -
Heidelberg - New York 1987.

[2] J. Lewi et al: The ELL(l) Parser Generator and the Error Recovery Mechanism. Acta
Inform. 10(1978), 209-228.

[3] J. Matas:. Construction of Reduced and /-Corrected List Automata (in Czech). Diplo
ma Thesis, Department of Theoretical Computer Science, Faculty of Mathematics and
Physics, Charles University, Prague 1993.

[4] Nguyen Xuan Dung: On Decidability of Skeletal Sets (in Czech). Ph. D. Thesis,
Department of Theoretical Computer Science, Faculty of Mathematics and Physics,
Charles University, Prague 1988.

332 M. PLÁTEK

[5] M. Plátek: Independent error messages. In: SOFSEM'91, Czechoslovak Society for
Computer Science, Jasná pod Chopkom 1991, pp. 257-260.

[6] M. Plátek: Syntactic Error Recovery with Formal Guarantees I. Technical Report
No. 100, Department of Theoretical Computer Science, Faculty of Mathematics and
Physics, Charles University, Prague 1992.

[7] M. Plátek and J. Vogel: Deterministic list automata and erasing graphs. The Prague
Bulletin of Mathematical Linguistics 45 (1986), 27-50.

[8] M. Plátek and B. Tichá: List automata as dependency parsers. The Prague Bulletin
of Mathematical Linguistics 50(1988), 71-88.

[9] N. Wirth: Algorithms -f Data Structures = Programs. Prentice-Hall, Englewood
Cliffs, NJ 1975.

Martin Plátek, CSc, Katedra teoretické informatiky, Matematicko-fyzikálnífakulta Uni
verzity Karlovy (Department of Theoretical Computer Science, Faculty of Mathematics
and Physics - Charles University), Malostranské náměstí 25, 11800 Praha 1. Czech
Republic

