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DECOMPOSITION IN STEREOLOGICAL 
UNFOLDING PROBLEMS 

V I K T O R B E N E Š AND PAVEL K R E J Č I Ř 

Some new results in an old problem of stereological unfolding in particle systems are 
presented. Under the conditional independence property of particle section parameters the 
multivariate unfolding problem can be decomposed into a series of simpler problems. The 
general idea is applied to the unfolding of trivariate size-shape-orientation distribution of 
spheroids using the vertical uniform random sampling design. 

1. I N T R O D U C T I O N 

The conditional independence relation plays a key role in a number of topics in 
probability theory and its applications, cf. van Put ten and van Schuppen [14]. In 
the area of sufficient statistics this relation enters in a natural way. Therefore it 
is not surprizing t h a t in this context the assumptions of conditional independence 
appeared in a stereological study Baddeley and Cruz-Orive [1]. 

We present here another application of conditional independence in stereology, 
namely in the classical unfolding problem. Consider a system of three-dimensional 
particles of similar shape spread in an opaque base and observe its planar section. 
The problem may be formulated either in the design-based approach where particles 
are fixed and the section plane random or in the model-based approaches where 
particles form a stat ionary random process. Defining some geometrical parameters 
of particles one would like to evaluate their joint distribution from the observed par
ameters of planar particle sections. The problem typically leads to integral equations 
between corresponding joint probability densities, which are solved either analyti
cally (Cruz-Orive [4], Gokhale [6]) or numerically (Ohser and Miicklich [12]). 

In the present paper it is shown how multivariate unfolding problems may be in
vestigated using the probabilistic interpretation of the kernel function in the integral 
equation. When a suitably defined conditional independence property is satisfied the 
unfolding can be decomposed into a series of simpler problems. The general theory is 
applied finally to the trivariate size-shape-orientation distribution of ellipsoidal par
ticles. Using the sampling design of vertical uniform random sections the relation 
between planar and spatial parameters is obtained. In a statistical study numerical 
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EM-algorithm (Silvermann et al [13]) is used for the real d a t a evaluation and the 
stability of solution is discussed. 

2. UNFOLDING AND CONDITIONAL I N D E P E N D E N C E 

A bounded closed convex set in Rd is called a particle. Let a fixed particle X 
be described by n real geometrical parameters x\,X2, • . • ,xn. A sampling design is 
represented by a random hyperplane p with probability distribution Q on the para
metric space of hyperplanes. Assume that the intersection Y = X C\ p ^ 0, then 
y is a random closed convex set in Rd~l called a particle section. Let y\, . . . , ym 

be geometrical parameters describing Y, such that y\, . .. ,y^, k < min(n,m) cor
respond to properties of x\, . .., x^, e.g. x\, y\ size, „2, y2 shape factor etc. Let 
p(y\, . . . ,ym\x\, . . ., Xn,^) be the conditional probability density of y\, . . ., ym given 
x\,...,xn and given that the particle is hit by p. The upper arrow f emphasizes 
that the distribution p depends not only on particle characteristics but also on the 
sampling design Q. 

Further assume that particles are randomly dispersed in Rd with constant inten
sity Nd. If particles are still fixed (just translates of X) denote Nd-\(x\,. . ., xn) the 
mean (with respect to Q) intensity of particle sections in p. 

In the following step given Nd let particles are random with probability density 
f(x\, . . . ,xn) of parameters x\, . .., xn invariant with respect to translations in R . 
We are interested in particle sections observed in p. 

D e f i n i t i o n 1. The average particle section intensity N__i and probability density 
g(y\,... ,ym) of parameters y\,. .. ,ym are defined by 

Nd-\g(y\,...,ym) 0 ) 

Nd_i(„i,.. ,,xn)p(y\,.. . , y m | x i , . . .,xn,])f(x\,.. . ,a? n )dx i • • • d x n . 

The stereological unfolding problem consists in the estimation of unknown particle 
characteristics /, Nd from the particle section distribution g and N__i, which can 
be observed and estimated from realizations of p. The first part of the solution is to 
establish the theoretical relations. 

P r o p o s i t i o n 1. The unfolding problem is decribed by an equation 

Nd-\g(y\,. ..,ym) = Nd • • • I k(x\,.. .,xn,y\,.. .,ym)f(x\,. .. ,xn) dxx • • • dxn, 

( 2 ) 
for some nonnegative kernel function k. 

P r o o f . Use Definition 1 and put 

, , v N__i(xi,....xn) 
k(x\,...,xn,y\,...,]jm) = — P ( ! / l . - - < , . y m | X i . . . . , x n , t ) . • 
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The problems (2) were studied until now for m,n at most 2. They lead to 
Abel type integral equations which can be solved analytically, cf. Cruz-Orive [4] 
for size-shape distribution of rotational ellipsoids, Gokhale [6] for size-orientation 
distribution of circular plates. For situations when the input data form a bivariate 
histogram equation (2) is discretized and solved by numerical methods, cf. Ohser 
and Miicklich [12] for size-shape, size-number (number of vertices) distribution of 
various particular polyhedra. It was shown in the latter paper that even in some 
cases with complex section classification, when the form of (2) is unknown, the 
coefficients of its discrete version can be obtained by simulations. 

For a greater number of parameters than two, direct analytical or numerical meth
ods are also worth investigation, however, the aim of the present paper is to proceed 
another way. We observe that when the following property of section parameters 
is satisfied, the unfolding problem can be decomposed in a series of problems with 
smaller number of parameters. Each of these subproblems has a kernel function with 
smaller number of arguments which simplifies the solution. 

De f in i t i on 2. Random variable y\ is strongly conditionally independent on y2, . . • 
. . . ,ym given x\,.. . ,xn and Q if the kernel function k in (2) satisfies 

k(x\, ...,xn,y\,...,ym) = k\(x\, yx) k2(x2, • • •, xn, y2,. . .,ym) (3) 

for some functions k\, k2 and any y\,. . . ,ym,x\,. . . ,xn. 

T h e o r e m 1. Let y\ be strongly conditionally independent on y2,---,ym- Then 
there exist nonnegative functions k\, A?2 and h(x\, j 2 , • • •, ym) such that 

a) for any y2,. . ., ym fixed 

Nd-iO(yi, • • -,ym) - Nd / k\(x\,y\)h(x\,y2,. .. ,ym)dx\ (4) 

b) for each X\ fixed 

h(x\,y2i • • .,ym) = / • • • ' / M * - . • • -,xn,y2,.. .,ym)f(x\,. .-. ,xn)dx2 • • • d x n . 

(5) 

P r o o f . Put t ing (3) into (2) and introducing function h (5) and (4) follows. • 

The decomposition (4) and (5) of the unfolding problem (2) suggests solution in 
two steps: 

a) given Nj-\ and g, for each fixed y2, . . . , ym solve the "outer" univariate problem 
(4) with respect to unknown N^ and h, 

b) for each fixed X\ investigate the "inner" problem (5) with simpler kernel func
tion &2 which could be eventually further decomposed. 

In the rest of the paper we study some special unfolding problems in R3. The 
sampling design of vertical uniform random (VUR) sections will be used, which is 
anisotropic but in practice simpler than commonly used sampling design of isotropic 
uniform random (IUR) sections. 
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3. PLATELIKE PARTICLES 

We start with a known result which is in fact a special case of subsection 4.1 in 
this paper on oblate rotational ellipsoid if we reduce the number of parameters by 
putt ing there c = 0. Let particles are circular plates of zero thickness in R with 
constant intensity Nv, random radius a > 0 and normal orientation (6,<f>). Here 
0 G (0, y) is the colatitude (angle between the plate normal and the fixed vertical 

axis) and <f> £ (0, 27r) the longitude. We denote f(a,6) = -r- L f\(a,9,(j))d(f) the 
joint probability density function of the radius a and angle 9. A vertical section 
plane is such that it is parallel to the vertical axis. In a vertical uniform random 
section plane particle sections are observed of length 1A > 0 and orientation angle 
ct G (0,5-) to the vertical axis. Let g(A,a), NA be the corresponding probability 
density function and section intensity in the sense of Definition 1. Gokhale [6] derived 
an integral equation connecting / and g. First a short proof of his result is presented. 

T h e o r e m 2. It holds 

'ҡ/2 Acos2 9sin f(a, 9) dad 
NAg(A,a) = Nv- / " Ţ Ѓ V " ' " / " " ' " (6) 

Ҡ JA •>*/--« sin 2 aJ(a2 - A2) (sin 2 a - cos 2 0) 

for A > 0, a > § - 9. 

P r o o f . Let a plate centered in the origin have fixed a, 9, (j), and a vertical uni
form random section plane hitt ing the plate have distance d from origin and let the 
longitude longitude of the normal be <f>*. Its probability density is constant 

q(d,cf>*)=j 

for 0 < < / > * < 2TT, 0 < d < l(<f>*) a n d 

q(d,<j>*) = 0 

otherwise, where l(ip) = ay 1 — sin 2 fjsin (<p — 4>) IS the support function of the 

ellipse of particle projection (in vertical direction). The perimeter of this ellipse 

L = L(a,9) = ixb(a,9), b(a,9) being its mean breadth. The basic relations between 

spatial and planar parameters (derived in Gokhale [6]) are 

sin(0* —(/)) = cot 9 cot a 

for TT/2 - 9 < a < | and „ 
- - 2 cos 9 r- — 

d = V a 2 - A2 

sma 

for 0 < A < a. They define a transformation between (d,<j>*) and (A, a) which is 
one-to-one for 0 < <f>* < ~ assuming (without loss of generality) that <f> = 0. Its 
Jacobian 

J = 
дd дd 
ӘA дa 
õф* Әф* 
ӘA дa 

A COS2 9 

Va2 - A2 gin2 a V s i n 2 ^ - cos2 9 
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yields the conditional density p(A, a\a,0, ]) = j-J = 4/'(^b(a, 6)) J independent of 

<f). Now for a system of fixed particles we have b(a,6) = NA(a,0)/Ny. For system 

of random particles, we get the result (6) integrating p(A, a\a,0, | ) with respect to 

joint density f(a,9) and using (1). • 

Formula (6) is a double Abelian integral equation the theoretical solution of which 
with respect to / is available, see Gokhale [6]. Using Theorem 1 we decompose this 
problem into series of univariate unfolding problems. 

Coro l lary 1 . Denoting 

/ //! ч 2 cos 2 0 , „ . 
k2( ,a)=--— — (7) 

sin" avsin2 a — cos2 0 Ҡ 0 ; „ 2 

the problem (6) can be decomposed as follows: 

a) the "outer" problem for each fixed a 

NAд(A,a) = 2Nv Г 4 = 4 da, (8) 
J A V O. — A 

b) the "inner" problem for each fixed a > 0 

^

<7r/2 

7 r / 2 - a 

/ • * 7 -
h(a,a)= k2(6,a) f (a, 0) sin 6 d0. (9) 

J7r/2-a 

P r o o f . Observe that the strong independence property is fulfilled for the kernel 
function in (6) with ki(a, A) = A/Va2 - ,42 and k2 in (7). Then (8), (9) corresponds 
to (4), (5) in Theorem 1. D 

In practice often the input is a bivariate frequency histogram of lengths and 
orientations observed in vertical section planes. Then the use of the analytical 
solution is not comfortable since it requires fitting of the bivariate density followed 
by numerical differentiation and integration. Therefore a traditional approach of 
discretization of the integral equation (6) and evaluation of the bivariate histogram 
of spatial parameters is desired. It can be applied either directly using the techniques 
of Ohser and Mucklich [12] or in steps using Corollary 1. The latter way, which is 
preferable especially for problems with more parameters, was developed in Benes et 
al [2], 

Further aim is to investigate the unfolding problem with three parameters: size, 
shape factor and orientation (colatitude) of flat particles. It will be shown for the 
model of oblate ellipsoids that the joint size-shape-orientation distribution can be 
unfolded from VUR sections. 
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4. ELLIPSOIDAL PARTICLES 

An arbitrary ellipsoid in the Euclidean space Rd can be expressed by means of a 
symmetric positive-definite square matr ix Wd- The ellipsoid Ed centered in the 
origin of a coordinate system is the set Ed = {t £ Rd, tWd

lt' < 1}, where W~l is 
the inverse matr ix of W and t' is the transposed vector t. It holds Wd = OdLO'd, 
where CLj is an orthogonal matr ix the columns of which correspond to the orientation 
vectors of principal semiaxes and L is a diagonal matrix with diagonal elements being 
the square lengths of the semiaxes of an ellipsoid Ed-

For d = 3 consider a three-dimensional ellipsoid £+L3, given by W3 = (wij), i, j = 
1, 2, 3, which is centered in an arbitrary point t = (x, y, z) £ R3. Now denote p the 
plane x = 0, and study the intersection of t + E3 with the plane p. The following 
Lemma is a special case of Lemma 2.1 in Moller [11], p. 324: 

L e m m a 1. The intersection (t + E3) Pip is non-void if and only if e = 1 — — > 0. 
Denote 

U = (y)-(^)JL and w„.3=(w"w")—l-(**1) («•«) , 
\ Z ) \ HV31 J WU \ IV23 W33 J WU \W31 J 

then for e > 0 it is 

(t + E3)r\p= {seR2, (s - U)W^3(s - U)' < e} xox, (10) 

where ox means that a zero x-coordinate is added to (y, z) points. Moreover, the 
length of the orthogonal projection of t + E3 onto x-axis is equal to 2-^/w\\. 

4 . 1 . Obla te e l l ipso ids 

Let the particle be a fixed oblate rotational ellipsoid E3 with semiaxes a = b > c 
centred in the origin. The orientation of the axis of rotation is 9, 4>. Let a vertical 
section plane p have normal orientation 0* = 7r/2,0* in spherical coordinates and 
the distance d from the origin. Under the condition tha t the particle is hit by p 
denote the semiaxes of intersection ellipse (10) by A,C, A > C and by a the angle 
between the semiaxis A and vertical axis (it is correctly defined whenever C 7̂  A). 

Def in i t ion 3 . The shape factors of the particle, its section, are defined as s = 
c/a, S = CI A, respectively. 

It follows that always 0 < s < 1, 0 < 5 < 1. 

L e m m a 2. The spatial and planar parameters of a vertical section of given ellipsoid 
are related as 

s h u > * - ( / i ) = cot 6 cot a (11) 

- = ^ r ^ ľ (12) 



Decomposition in Stereological Unfolding Problems 251 

/ d2 

A = а J l - — , (13) 

V wv. 
where _ 

wn 

2 - ( a 2 - c 2 ) s i n 2 t f c o s 2 ( 0 * - <j>). (14) 

P r o o f . A straightforward algebraic calculation using Lemma 1. • 

We proceed by randomizing the sampling design to get conditional densities for 

size-orientation and size-shape problem of type (2). Denote 

S((3,z) = J \J\- z2sin2pdtp 
Jo 

the elliptic integral of second kind, specially S(^,z) = S(z). 

P r o p o s i t i o n 2. Under the vertical uniform random sampling design the condi

tional distributions of particle section parameters for the size-orientation, size-shape 

unfolding problem have densities 

, t . n ^ 4 A cosO 1 - (1 - s 2 ) (sin 2 9 - cos2 0cot2 a ) r , ' x 

pl(A,a\a,9,s,])=- fST—d r ^ r -, 15 
L V a 2 - A 2 sin a y sin 9 - cos2 a 

fc 7r/2 — # < a < 7r/2, 0 < A < a, pi = 0 otherwise, and 

4 A s f / 9 2 \ r 9 2 11 _ 1 / 2 

P 2 ( A , S\a, 0, s,]) = J ^ 2 _ ^ - J {l - - J [ S 2 sm 2 lj + ? cos 2 g - i j j , 

" ' (16) 

for s < S < s / v s 2 sin 6'+ cos2 t9, 0 < jl < a, p 2 = 0 otherwise, respectively. 

Here L = jr6(a (C,«) = 4a^(\/ l — s 2 sinfj) is the perimeter of the ellipse of particle 

projection (in vertical direction), b(a,0,s) its mean breadth. 

P r o o f . Consists of the evaluation of Jacobians analogously to the proof of The

orem 2. For the size-orientation problem we start from formula (11) and 

d = \Ja2 - A2 y j l - ( l - s2) (sin 2 0 - cos 2 9 cot 2 a ) , 

for the size-shape problem we start from formula (12) and 

U - 1 
sin(</>* -4) = Wl - 5 ' . 2 , 

y (s- — l ) s i n 0 

obtained from ( 1 1 ) - ( 1 4 ) . • 

The main result of this Section is the following Theorem concerning the unfolding 

problem (2) of size-shape-orientation distribution. Let f(a,0,s), g(A,a,S) be the 

probability densities of spatial and planar parameters, respectively. Further denote 

£( a , 0) = y ^ « E _ _ J and B(s, 9) = sin flyT^2. 
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T h e o r e m 3. The size parameter A is strongly conditionally independent on the 
shape factor S and orientation a and the outer size problem of the decomposition is 

/ °° A 
NAg(A, a, S) = 2NV / -=-• h(a, a, S) da (17) 

J A Va2 - A2 

for some nonnegative function h and any fixed a, S. 
Let H(a, a,S) = L fQ h(a, ft, T) d(3dT. The inner shape-orientation problem for 

any fixed a is 
H(a, a, S) = - / / K(a, S, 0, s) f(a, 9, s) sin 9 dOds, (18) 

W h e i e K(a,S,9,s) = mm(Kl(a,0,s),K2(S,0,s)). (19) 
Here for each fixed 0, s 

Ki(a, 0, s) = £(arcsin D(a, 0), B(s, 0)) (20) 

for TT/2 - 6 < a < ir/2, Ki(a, 9,s) = 0 for a < TT/2 -0 and 

K2(S, 9,s) = E (arcsin f — i - - , t / l - ^ ] , H(s, 0) ) (21) 

for s < 5 < s/Vs2 sin2 (9+ cos2 9, K2(S,0,s) = 0 for S < s and K2(S,0,s) = 
S(B(s,9)) otherwise. 

P r o o f . Proposition 2 yields the strong conditional independence of size on both 
shape and orientation and formula (17) follows as in Theorem 2 and Corollary 1. 

From formulas (11) — (13) in Lemma 2 it follows that for fixed 9,s holds 

5 = S(a) = s [1 + (s2 - 1) (sin2 0 - cos2 9 cot2 a)]_1/2 , (22) 

which means that orientation and shape factor are conditionally functionally de
pendent. Therefore the joint conditional density p(a, S\9, s, | ) is degenerate and we 
proceed in terms of distribution fuctions. Observe that the transformation S(a) in 
(22) is monotone increasing on (0, f ) for each fixed s, 0. Therefore (Mikusinski et al 
[10]) the joint conditional distribution function 

is equal to the upper Frechet bound of marginal conditional distribution functions 

Ki(a,M I<2(S,9,s) 
e(B(s,0)y S(B(s,9))' 

which implies (19). The functions K\, K2 follow from (15), (16): 

cosi? / l - ( l - s 2 ) ( s i n 2 č / - c o s 2 č ? c o t 2 / ? ) 
J\i\a,u,&) = i 

Ii-0 
and 

Kг(a, ,s)= / — - W 'Ą- — ^dß, 
1 вsш ß V sm ^ - c o s ß 

K2(S, 9,8)= I - ^ ( ( 1 - -V ] [ T 2 srn2 (9 + L cos2 0 - 1 
• 1 / 2 

T2 [ V* s2 J f ' 5a ~~ " ^ ' dT-
(18) is thus obtained using the Fubini theorem. • 
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4 .2 . Prolate ellipsoids 

Consider now a system of prolate rotational ellipsoids with semiaxes a > b = c under 
the same notation as in the previous subsection. The unfolding problem for joint 
distribution of spatial parameters (a,9,s) from planar parameters (A,a,S) cannot 
be derived exactly in the same way as in the oblate case. It will be shown later that 
it holds 

Proposi t ion 3. In the prolate case the parameter A is not strongly conditionally 
independent of S and a given a, 9, s. 

However, still an analogous way exists, namely to replace in the analysis a, A by 
the shorter semiaxes c,C. In fact the triplet c,9,s yields the same information as 
a, 9, s. Therefore solution of the unfolding problem between joint probability densities 
f(c, 9, s) and g(C, a,S) of spatial, planar parameters, respectively, is satisfactory for 
practical statistical purposes. 

First let the particle be a fixed prolate rotational ellipsoid E3 centred in the 
origin. 

Lemma 3. The spatial and planar parameters of a vertical section of given ellipsoid 
are related as 

s'm(<f)* — (j)) = cot 9 tan a (23) 

ä = S V ^ * (24) 

C = . ^ 1 - - * , (25) 

where d is the distance of vertical section from origin and 

w*u = c2 + (a2 - c2) sin2 6 cos2(<f>* - <j>). (26) 

P r o o f . A straightforward algebraic calculation using Lemma 1. • 

We proceed analogously to the previous subsection, size is represented by smaller 
semiaxes. Denote 

, -2 .x_ ._2„ i # / ~ lz(s,9)-\ 
Z(s, ) = l + ( s - 2 - l)sin-0, M(s, ) = 

Z(s, ) 

Proposi t ion 4. Under the vertical uniform random sampling design the condi
tional distributions of particle section parameters for the size-orientation, size-shape 
unfolding problem have densities 

4_ С сов 9 11 + (в-2 - 1) ( з т 2 9 - соз2 9 1ап2 а) 

Ь л/с2 - С2 соз а У з т 2 9 - з т 2 а 

, _ - . , . , . . . » ** \s <̂~>s v 1 1 - * - — 11 i s m a — cos u 1a.11 a 1 
Pl(C,a\c,9,s,1)=T - _ - _ _ - — . A l LL- —2 >-, (27) 



254 V. BENEŠ AND P. KREJČÍŘ 

for 0 < a < 9, 0 < C < c, p\ = 0 otherwise, and 

p2(C, S\c, 9, s,])=j C - [(S2 - s2) (sin2 9 + s2 cos2 9 - S2)} ~ 1 / 2 , (28) 

for s < S < v s2 cos2 9 -f sin2 9, 0 < C < c, p2 = 0 otherwise, respectively. Here 
L = nb(a,9,s) = 4cZ(s,9) E(M(s,9)) is the perimeter of the ellipse of particle 
projection (in vertical direction), b(a,9,s) its mean breadth. 

P r o o f . Consists of the evaluation of Jacobians analogously to the proof of The
orem 2. For the size-orientation problem we start from formula (23) and 

d= \/c2 -C2\Jl + (s~2 - I) (sin2 9 - cos2 9 tan 2 a), 

for the size-shape problem we start from formula (24) and 

cos(ф*-ф) = x l - , , ч _,, 2 / > , (29) 
S2-s< 

(l-s2)sin'9 

obtained from (23)-(26). • 

Remark. For the longer semiaxes it holds d = -\/s2a2 — S2A2, the Jacobian of 
this transformation (including (29)) cannot be factorized and the negative result of 
Proposition 3 follows. 

Concerning the unfolding problem of size-shape-orientation distribution we get 
the following result. 

T h e o r e m 4. The size parameter C is strongly conditionally independent on the 
shape factor S and orientation a and the outer size problem of the decomposition is 

/ °° C 
NAg(Ctat'S) = 2NvJ -j====h(c,a,S)dc (30) 

for some nonnegative function h and any fixed a,S. 

Let H(c,a,S) = f0 f0 h(c, (3, T) d(3dT. The inner shape-orientation problem for 
any fixed c is 

H(c, a, S) = - í í K(a, S, 9, s) f(c, 9, s) sin 9d9ds, (31) 

where 

K(a, S, 9, s) = max (o, K^a, 9, s) + K2(S, 9, s) - y/'Z(s,9) S(M(s, 0))) . (32) 

Here for each fixed 9, s 

Ki{atets) = v
/z'(s,lj)^(arcsin(cot0tana), M(s,9)) (33) 



Decomposition in Stereological Unfolding Problems 255 

for 0 < a < 9, Kx(a, 9, s) = y/Z(s, $) £(M(s, 9)) for a > 9 and 

K2(S,9,s) = y/Z(s,$)£ aгcsm (щ--ч1-i),щ',в) (34) 

Í - ^\lz(s,e) - ^ 

for s < S < y/s2 cos2 9 +sin2 9, K2(S,9,s) = 0 for S < s and K2(S,9,s) = 
y/Z(s,9)£(M(s,9)) otherwise. 

P r o o f . Proposition 4 yields the strong conditional independence of size and 
formula (30) follows as in Theorem 2 and Corollary 1. 

From formulas (22)-(24) in Lemma 3 it follows that for fixed 9, s, 

S = S(a) = yfs2 + (l-s2) (sin2 9 - cos2 9 tan2 a), (35) 

WThich means that orientation and shape factor are conditionally functionally de
pendent and the joint conditional density p(a, S\9, s, f) is degenerate. Observe that 
the transformation S(a) in (35) is monotone decreasing on (0, 5) for each fixed s, 9. 
Again by Mikusinski et al [10], the joint conditional distribution function 

P(a,S|9,*,T)- A > < 5 < ^ 
s/~~J)S(M(S,0)) 

is equal to the lower Frechet bound of marginal conditional distribution functions 

#i(tt,fl,s) K2(S,9,s) 
^/Z(s~T)£(M(s,9)y y/Z~7~~)£(M(8,0)y 

which implies (32). The functions A'i, K2 follow from (27), (28): 

т, , „ ч Г cosö lì + (s~2 - 1) (sin2 9 - cos2 9 tan2 ß) , a 
Ki(a, ,s)~ j -W —ү- г^— '-dß, 

Jo cos ß y sm J - sm J ß 

and 
•5 rp2 

K2(S, 9,s)= í — [(T2 - s2) (sin2 9 + s
2 cos2 9 - T2)} ~1'2 ŮT. 

Js S 

The last integral was found in Gradshtejn and Ryzhik [7], p. 261. • 

5. NUMERICAL EXAMPLE 

Unfolding problems belong to a class of inverse problems (Coleman [3]) which are 
often called ill-posed, which means that a small error in the evaluation of input 
quantities may cause a large error in the resulting estimator. It is difficult to study 
this property by functional-analytic methods. From reasons described at the end 
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of Section 3, a discretization method is used in our example for the solution of 
size-shape-orientation problem. It transforms an integral equation onto a system of 
linear equations. Condition number of the matrix of this system can be used as a 
criterion for the stability of solution. 

Assume that in the model of oblate ellipsoidal particles n particle sections are 
observed using the VUR sampling design and classified into trivariate histogram 
with class limits for size, shape factors and orientations, respectively: 

aj = Aj = W, j e Z; st- = Si = f 1 J , a{ = 9{ = iA, i = I,... ,m. (36) 

Here b > 1, v > 0 are given constants, m the number of classes, A = ~ . Notice 
that classes of colatitude 9 in (36) correspond to areas on the hemisphere of spatial 
orientations proportional to cos#;_i — cos#{. 

The unfolding runs in two steps according to Theorem 3. In both of them the iter
ative EM-algorithm is used, see Silvermann et al [13] for its numerical and statistical 
properties. The outer problem (17) is in fact the Wicksell [15] corpuscule problem as 
expected according to results of Kleinwachter and Zahle [9]. H(ai,aj,Sk) and Ny 
are then estimated using any commonly used method, e.g. Benes et al [2], Ohser 
and Mucklich [12]. 

Discretization of the inner bivariate problem (18) is standard, cf. Ohser and 
Mucklich [12]. For each fixed a it is assumed that s, 9 are discrete random variables 
and Fij = P(s = Si,6 = 9j). Further 

H(k, I) = H(a, a,, Sk-i) - H(a, at, Sk) - H(a, a^i,Sk-i) + H(a, ai-i,Sk) 

and 
2 

Pijki = - [ A ' ( s « > ^ . ^ - ! > » / ) - K(si,9j,Sk,ai) (37) 
-K(si ,9j,Sk-i,ai-.i) + K(si, 9j, Sk, a.-i)] 

using (19), i, j , k,l = l , . . . , m . The discrete analogue of (18) is the system of 
equations m m 

Hki-Y^Y^PijkiFij, (38) 
i = l j = l 

which is solved by EM-algorithm with Ath iteration step 

,(A) 
-,(A + 1) _ Fij V ^ V ^ HklPijkl 

Í- — f.. 2Lu2—< -A (39) 
kl 

7 ^ !«.., , Л o _i-r_ Ш l ł l Q І i ł û Г Q f í л n JГ^ 1 where t{j = J2k HiPijki, r*. = £ i E ; Fij Pijkh As an initial iteration Ft) = H8j 

is sufficient. 
In a statistical study, a sample of n = 10017 particle sections of a composite 

material (Benes et al [2]) was classified according to (36) with b = 1.756, j = 
1, . . . ,m; v — 1.5, m = 8. The matrix P of coefficients Pijki for the inner problem 
(38) has size 64 x 64 and condition number cond(P) = ||E|| | |E_ 1 | | = 75.75 using 
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the norm | |P| | = \/YlijkiPijki- This relatively low value (cf. Gerlach and Ohser [5]) 
justifies the use of the method. Histogram FHJ of estimated frequencies of spatial 
parameters a/, t?,-, Sj obtained from (39)for each fixed o.\ is in Figure 1. It enables 
further investigation of various kinds of dependencies within the particle system. 

a i size 

shape 

• * • • • ! • ' 
? • : • : • 

• : - : f : ; . 

M 
• • ; *r>^ orientation 

•t 

Fig. 1. Histogram of estimated spatial size-shape-orientation distribution. The volume 
of three dimensional balls in the Figure is proportional to the estimated 

values of FUJ, 1, i, j = 1, . . . , 8. The axes intersect in the point I = i — j — 1. 

6. DISCUSSION 

M0ller [11] proved that it is possible to reconstruct an ellipsoid completely from three 
parallel sections. His method is hardly applicable in quantitative metallography from 
two reasons. First the preparation of appropriate parallel sections in hard materials 
with small particles (cf. Benes et al [2]) is almost impossible, while a vertical plane 
(e.g. parallel to the deformation axis) is easily obtained. From the same reason 
also the assumption-free methods of stereology (Karlsson and Cruz-Orive [8]) may 
sometimes be useless. 

Secondly M0ller's method works for perfect ellipsoids while in practice the shape 
assumption is often an approximation, only. Therefore we revisited the 70 years old 
problem in order to pose a new three-parametric ill-posed problem, the solution of 
which is, thanks to modern numerical approaches, acceptable for practice. 
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