THE INVARIANT POLYNOMIAL ASSIGNMENT PROBLEM FOR LINEAR PERIODIC DISCRETE-TIME SYSTEMS ${ }^{1}$

Leopoldo Jetto and Sauro Longhi

This paper considers the problem of assigning the closed loop invariant polynomials of a feedback control system, where the plant is a linear, discrete-time, periodic system. By a matrix algebraic approach, necessary and sufficient conditions for problem solvability are established and a parameterization of all periodic output controllers assigning the desired invariant polynomials is given.

1. INTRODUCTION

Various classes of processes, such as periodically time-varying networks and filters (for example switched-capacitors circuits and multirate digital filters), chemical processes, multirate sampled-data systems, can be modeled through a linear periodic system (see, e. g., $[2,13]$ and references therein). Moreover, the study of linear periodic systems can be helpful even for the stabilization and control of time-invariant linear systems through a periodic controller [1, 8, 18, 19, 21, 27], and for the stabilization and control of a class of bilinear systems [10, 11, 12].

In the discrete-time case, a control theory is developing with the help of algebraic and geometric techniques and contributions on several control problem have been given, including eigenvalue assignment, state and output dead-beat control, disturbance decoupling, model matching, adaptive control, robust control and optimal H_{2} / H_{∞} control (see, e.g., $[3,5,7,13,15,17,22,25,26]$).

The aim of this paper is to analyze the invariant polynomial assignment problem for the class of discrete-time linear periodic systems. This problem generalizes the characteristic polynomial assignment, which, for the same class of systems, was solved by a geometric approach in [5, 15, 17, 22]. For time-invariant plants, the invariant polynomial assignment was considered in [19, 20, 23, 27].

The paper is organized in the following way. In Section 2 preliminary definitions and results are given. The problem considered in this paper is formally stated in Section 3, and conditions for its solvability are constructively established in Section 4.

[^0]
2. PRELIMINARY RESULTS

Consider the ω-periodic discrete-time system Σ described by

$$
\begin{align*}
x(k+1) & =A(k) x(k)+B(k) u(k) \tag{2.1}\\
y(k) & =C(k) x(t) \tag{2.2}
\end{align*}
$$

where $k \in \mathbb{Z}, x(k) \in \mathbb{R}^{n}$ is the state, $u(k) \in \mathbb{R}^{p}$ is the input, $y(k) \in \mathbb{R}^{q}$ is the output and $A(\cdot), B(\cdot), C(\cdot)$ are periodic matrices of period ω (briefly, ω-periodic). Denote also by $\Phi\left(k, k_{0}\right), k \geq k_{0}$, the transition matrix associated with $A(\cdot)$.

It is well-known that, for any initial time $k_{0} \in \mathbb{Z}$, the output response of system Σ for $k \geq k_{0}$, to given initial state $x\left(k_{0}\right)$ and control function $u(\cdot)$, can be obtained through the time-invariant associated system of Σ at time k_{0}, denoted by $\Sigma^{a}\left(k_{0}\right)$ [24]. $\Sigma^{a}(k)$ is represented by

$$
\begin{align*}
x_{k}(h+1) & =E_{k} x_{k}(h)+J_{k} u_{k}(h) \tag{2.3}\\
y_{k}(h) & =L_{k} x_{k}(h)+M_{k} u_{k}(h) \tag{2.4}
\end{align*}
$$

where $E_{k}:=\Phi(\omega+k, k), J_{k}:=\left[\left(J_{k}\right)_{1} \cdots\left(J_{k}\right)_{\omega}\right],\left(J_{k}\right)_{i}:=\Phi(\omega+k, i+k) B(i-1+k)$, $i=1, \cdots, \omega, L_{k}:=\left[\left(L_{k}\right)_{1}^{\prime} \cdots\left(L_{k}\right)_{\omega}^{\prime}\right]^{\prime},\left(L_{k}\right)_{i}:=C(i-1+k) \Phi(i-1+k, k)$, $i=1, \cdots, \omega, M_{k}:=\left[\left(M_{k}\right)_{i j} \in \mathbb{R}^{q \times p}, \quad i, j=1, \cdots, \omega\right]$, with $\left(M_{k}\right)_{i j}:=C(i-1+$ k) $\Phi(i-1+k, j+k) B(j-1+k)$, if $i>j$, and $\left(M_{k}\right)_{i j}:=0$, if $i \leq j$.

In fact, if $x_{k}(0)=x(k)$ and $u_{k}(h):=\left[u^{\prime}(h \omega+k) u^{\prime}(h \omega+k+1) \cdots u^{\prime}(h \omega+k+\right.$ $\omega-1)]^{\prime}$ for all $h \in \mathbb{Z}^{+}$, then $x_{k}(h)=x(k+h \omega)$ and $y_{k}(h)=\left[y^{\prime}(h \omega+k) y^{\prime}(h \omega+k+1)\right.$ $\left.\cdots y^{\prime}(h \omega+k+\omega-1)\right]^{\prime}$ for all $h \in \mathbb{Z}^{+}$. The notion of associated system at time k allows one to analyze structural and stability properties and pole-zero-structures of periodic systems [2, 4, 14]. For example, the subspace of reachable (unobservable) states of system Σ at time k is readily seen to coincide with that of system $\Sigma^{a}(k)$ if it is expressed in terms of matrices E_{k}, J_{k}, L_{k} and M_{k} [14]. Obviously, $\Sigma^{a}(k+\omega)=\Sigma^{a}(k)$ for all integer k. A simple test for the reachability (observability) of system Σ at time k was also introduced in [16] making use of the following block-diagonal matrices:

$$
\begin{align*}
\mathcal{A}_{k} & :=\operatorname{blockdiag}\{A(k), A(k+1), \cdots, A(\omega-1+k)\}, \tag{2.5}\\
\mathcal{B}_{k} & :=\operatorname{block} \operatorname{diag}\{B(k), B(k+1), \cdots, B(\omega-1+k)\}, \tag{2.6}\\
\mathcal{C}_{k} & :=\operatorname{blockdiag}\{C(k), C(k+1), \cdots, C(\omega-1+k)\}, \tag{2.7}\\
\mathcal{R}_{k}(\lambda) & :=\left[\begin{array}{cc}
0 & I_{(\omega-1) n} \\
\lambda I_{n} & 0
\end{array}\right], \lambda \in \mathbb{C}, \tag{2.8}
\end{align*}
$$

where I_{n} denotes the identity matrix of dimension n.
Lemma 2.1. [16] System Σ is reachable (observable) at time k if and only if the following matrix

$$
\left[\begin{array}{ll}
\mathcal{A}_{k}-\mathcal{R}_{k}(\lambda) & \mathcal{B}_{k}
\end{array}\right] \quad\left(\left[\mathcal{A}_{k}^{\prime}-\mathcal{R}_{k}^{\prime}(\lambda) \quad \mathcal{B}_{k}^{\prime}\right]^{\prime}\right)
$$

has full row-rank (column-rank) for all $\lambda \in \mathbb{C}$, or equivalently for all the eigenvalues of E_{k}.

The notions of invariant zero, transmission zero and pole of the ω-periodic system Σ at time k are defined with reference to the following $\omega q \times \omega p$ matrix

$$
\begin{equation*}
W_{k}(d)=L_{k} d\left(I_{n}-d E_{k}\right)^{-1} J_{k}+M_{k}, \tag{2.9}
\end{equation*}
$$

where $d:=z^{-1}$ is the backward shift operator. The rational matrix $W_{k}(d)$ is the transfer matrix of the associated system of Σ at time k and is called the associated transfer matrix of Σ at time k. A complete analysis of pole-zero structure of system Σ is reported in [14] and [16] making use of the associated transfer matrix characterized with the forward shift operator z. The following result, that follows from Lemma 2.1 in [14], shows the dependence of $W_{k}(d)$ with respect to the initial time k.

Lemma 2.2. For any integer k it holds that:

$$
W_{k+1}(d)=\left[\begin{array}{cc}
0 & I_{q(\omega-1)} \tag{2.10}\\
d^{-1} I_{q} & 0
\end{array}\right] W_{k}(d)\left[\begin{array}{cc}
0 & d I_{p} \\
I_{p(\omega-1)} & 0
\end{array}\right] .
$$

As a consequence of this result the rank m of $W_{k}(d)$ is independent of time k (see, e.g., [14] for a similar result with the forward shift operator z).

The transfer matrix $W_{k}(d)$ can be factored as

$$
\begin{equation*}
W_{k}(d)=A_{k}^{-1}(d) B_{k}(d)=\bar{B}_{k}(d) \bar{A}_{k}^{-1}(d) \tag{2.11}
\end{equation*}
$$

where $A_{k}(d)$ and $B_{k}(d)$ are relatively left prime ($r l p$) polynomial matrices and $\bar{A}_{k}(d)$ and $\bar{B}_{k}(d)$ are relatively right prime ($r r p$) polynomial matrices.

Analogously to the time-invariant case [23], the invariant polynomials of $I_{n}-d E_{k}$ are called the invariant polynomials of Σ at time k. As shown in [14, 16], the product of these polynomials characterizes the stability properties of Σ.

Under the hypothesis of reachability and observability of Σ at time k, the invariant polynomials of Σ at time k are associate of the invariant polynomials of the Smith forms of $A_{k}(d)$ and $\bar{A}_{k}(d)$ [23].

Denote by $\chi(q, p, \omega)$ the class of $\omega q \times \omega p$ rational matrices

$$
W(d)=\left[\begin{array}{cccc}
W_{11}(d) & W_{12}(d) & \cdots & W_{1 \omega}(d) \tag{2.12}\\
W_{21}(d) & W_{22}(d) & \cdots & W_{2 \omega}(d) \\
\vdots & \vdots & \ddots & \vdots \\
W_{\omega 1}(d) & W_{\omega 2}(d) & \cdots & W_{\omega \omega}(d)
\end{array}\right], W_{i j}(d) \in \mathbb{C}^{q \times p}, i, j=1, \cdots, \omega
$$

with $W_{i j}(0)=0, i<j, i, j=1, \ldots, \omega$. The class $\chi(q, p, \omega)$ characterizes the transfer matrices of ω-periodic systems. In fact, the causality of ω-periodic system Σ implies that the associated transfer matrix of Σ at time k belongs to the class $\chi(q, p, \omega)$ for all $k \in \mathbb{Z}[6]$. Then, the causality of Σ implies that the roots of the invariant polynomials of Σ at time k are different from zero for all integers k. This in turn implies that matrices $A_{k}(0)$ and $\bar{A}_{k}(0)$ are nonsingular. Foregoing considerations and Lemma 2.2 allow us to prove the following result.

Lemma 2.3. The invariant polynomials of Σ at time k are independent of k.

Remark 2.1. The choice of the backward shift operator $d=z^{-1}$ allowed us to prove the independence of pole structure of Σ of time k. The same result does not hold if the forward operator z is used [16]. In particular in [14] it is shown that the structure of null poles may depend on k.

Moreover, $\chi(q, p, \omega)$ characterizes also the class of rational matrices that can be realized by an ω-periodic system of the form (2.1), (2.2). The solution of the minimal realization problem for the periodic case is described by a system reachable and observable at any time whose matrices have generally time-varying dimensions. In general, the subspaces of reachable states and/or observable states may have time-varying dimensions. Therefore, it is natural, in order to consistently solve the minimal realization problem, to allow for state-space description having timevarying dimensions. The possibility of computing a "quasi" minimal (reachable and observable at lest in one time) uniform (fixed-dimension) realization is also available. Efficient algorithms for the computation of minimal or quasi minimal realization of a given transfer matrix are introduced in [6] and [9].

Remark 2.2 Note that, given a transfer matrix $H(d)=D^{-1}(d) N(d)=\bar{N}(d) \bar{D}^{-1}(d)$ $\in \mathbb{C}^{q \omega \times p \omega}$ with $D(d)$ and $N(d) r l p$ polynomial matrices and $\bar{D}(d)$ and $\bar{N}(d) r r p$ polynomial matrices and both $D(0)$ and $\bar{D}(0)$ non singular, then a sufficient condition for $H(d)$ belong to the class $\chi(q, p, \omega)$ is that $N(0)=0$ and $\bar{N}(0)=0$.

3. CONTROL SYSTEM STRUCTURE AND PROBLEM STATEMENT

Assume that system Σ is minimal (reachable and observable at all times), and consider an ω-periodic minimal controller Σ_{G} for system Σ acting in the feedback control structure of Figure 1 and described by

$$
\begin{align*}
x_{G}(k+1) & =A_{G}(k) x_{G}(k)+B_{G}(k) e_{2}(k) \tag{3.1}\\
y_{2}(k) & =C_{G}(k) x_{G}(k)+D_{G}(k) e_{2}(k) \tag{3.2}
\end{align*}
$$

where $x_{G}(k) \in \mathbb{R}^{n_{G}(k)}$ is the state, with $n_{G}(k+\omega)=n_{G}(k)$, and

$$
\begin{align*}
& e_{1}(k):=u_{1}(k)-y_{2}(k), \tag{3.3}\\
& e_{2}(k):=u_{2}(k)+y_{1}(k), \tag{3.4}
\end{align*}
$$

with $y_{1}(k)=y(k)$ (the output of $\left.\Sigma\right), e_{1}(k)=u(k)$ (the input of Σ) and $u_{1}(k)$ and $u_{2}(k)$ external inputs.

The $\omega p \times \omega q$ associated transfer matrix of Σ_{G} at time k is expressed by

$$
\begin{equation*}
W_{k}^{G}(d)=L_{k}^{G} d\left(I_{n_{G}(k)}-d E_{k}^{G}\right)^{-1} J_{k}^{G}+M_{k}^{G} \tag{3.5}
\end{equation*}
$$

where matrices $L_{k}^{G} \in \mathbb{R}^{\omega p \times n_{G}(k)}, E_{k}^{G} \in \mathbb{R}^{n_{G}(k) \times n_{G}(k)}, J_{k}^{G} \in \mathbb{R}^{n_{G}(k) \times \omega q}$ and $M_{k}^{G} \in$ $\mathbb{R}^{\omega p \times \omega q}$ are defined as matrices L_{k}, E_{k}, J_{k} and M_{k} with matrices $A(\cdot), B(\cdot)$ and $C(\cdot)$ substituted by matrices $A_{G}(\cdot), B_{G}(\cdot), C_{G}(\cdot)$ respectively and with $\left(M_{k}^{G}\right)_{i i}=$ $D_{G}(i-1+k), i=1, \ldots, \omega$.

Fig. 1. The feedback control structure.
Causality of system Σ_{G} implies that $W_{k}^{G}(d)$ belongs to the class $\chi(p, q, \omega)$.
Let $W_{k}^{G}(d)$ be factored as

$$
\begin{equation*}
W_{k}^{G}(d)=P_{k}^{-1}(d) Q_{k}(d)=\bar{Q}_{k}(d) \bar{P}_{k}^{-1}(d) \tag{3.6}
\end{equation*}
$$

where $P_{k}(d)$ and $Q_{k}(d)$ are $r l p$ polynomial matrices and $\bar{P}_{k}(d)$ and $\bar{Q}_{k}(d)$ are $r r p$ polynomial matrices. The problem considered in this paper is formally stated as follows.

Problem 3.1. Given an ω-periodic system Σ reachable and observable at all times, and m causal polynomials $s_{1}(d), s_{2}(d), \ldots, s_{m}(d)$ such that $s_{i+1}(d)$ divides $s_{i}(d)$, find a minimally realized ω-periodic controller Σ_{G} described by (3.1), (3.2) and acting in the feedback system of Figure 1, such that the closed loop system $\Sigma_{f b}$ be minimally realized and its invariant polynomials be associated of $s_{i}(d), i=1,2, \ldots, m$.

4. PROBLEM SOLUTION

Denote by $\Sigma_{f b}$ the ω-periodic system reported in Figure 1 and described by (2.1), (2.2), (3.1), (3.2), (3.3) and (3.4) with input $u(k)$ and output $y(k)$ of Σ equal to $e_{1}(k)$ and $y_{1}(k)$, respectively.

Define:

$$
v(k):=\left[\begin{array}{ll}
u_{1}^{\prime}(k) & u_{2}^{\prime}(k)
\end{array}\right]^{\prime}, w_{1}(k):=\left[\begin{array}{ll}
y_{1}^{\prime}(k) & e_{1}^{\prime}(k)
\end{array}\right]^{\prime}, w_{2}(k):=\left[\begin{array}{ll}
y_{2}^{\prime}(k) & e_{2}^{\prime}(k) \tag{4.1}
\end{array}\right]^{\prime}
$$

the ω-periodic feedback system $\Sigma_{f b}$ is described by the following equations:

$$
\begin{align*}
& {\left[\begin{array}{c}
x(k+1) \\
x_{G}(k+1)
\end{array}\right]=} {\left[\begin{array}{cc}
A(k)-B(k) D_{G}(k) C(k) & -B(k) C_{G}(k) \\
B_{G}(k) C(k) & A_{G}(k)
\end{array}\right]\left[\begin{array}{c}
x(k) \\
x_{G}(k)
\end{array}\right] } \\
&+\left[\begin{array}{cc}
B(k) & -B(k) D_{G}(k) \\
0 & B_{G}(k)
\end{array}\right] v(k), \tag{4.2}\\
& w_{1}(k)=\left[\begin{array}{cc}
C(k) & 0 \\
-D_{G}(k) C(k) & -C_{G}(k)
\end{array}\right]\left[\begin{array}{c}
x(k) \\
x_{G}(k)
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
I & -D_{G}(k)
\end{array}\right] v(k), \tag{4.3}\\
& w_{2}(k)=\left[\begin{array}{cc}
D_{G}(k) C(k) & C_{G}(k) \\
C(k) & 0
\end{array}\right]\left[\begin{array}{c}
x(k) \\
x_{G}(k)
\end{array}\right]+\left[\begin{array}{cc}
0 & D_{G}(k) \\
0 & I
\end{array}\right] v(k) . \tag{4.4}
\end{align*}
$$

Denote with $W_{k}^{1}(d)$ and $W_{k}^{2}(d)$ the associated transfer matrices at time k of the ω-periodic feedback system $\Sigma_{f b}$ relating input $v(\cdot)$ with outputs $w_{1}(\cdot)$ and $w_{2}(\cdot)$, respectively.

Introducing the lifted representations of inputs and outputs of $\Sigma_{f b}$:

$$
\begin{align*}
u_{k}^{1}(h) & :=\left[u_{1}^{\prime}(k+h \omega) u_{1}^{\prime}(k+1+h \omega) \cdots u_{1}^{\prime}(k+\omega-1+h \omega)\right]^{\prime}, \tag{4.5}\\
u_{k}^{2}(h) & :=\left[u_{2}^{\prime}(k+h \omega) u_{2}^{\prime}(k+1+h \omega) \cdots u_{2}^{\prime}(k+\omega-1+h \omega)\right]^{\prime}, \tag{4.6}\\
v_{k}(h) & :=\left[v^{\prime}(k+h \omega) v^{\prime}(k+1+h \omega) \cdots v^{\prime}(k+\omega-1+h \omega)\right]^{\prime}, \tag{4.7}\\
y_{k}^{1}(h) & :=\left[y_{1}^{\prime}(k+h \omega) y_{1}^{\prime}(k+1+h \omega) \cdots y_{1}^{\prime}(k+\omega-1+h \omega)\right]^{\prime}, \tag{4.8}\\
e_{k}^{1}(h) & :=\left[e_{1}^{\prime}(k+h \omega) e_{1}^{\prime}(k+1+h \omega) \cdots e_{1}^{\prime}(k+\omega-1+h \omega)\right]^{\prime}, \tag{4.9}\\
w_{k}^{1}(h) & :=\left[w_{1}^{\prime}(k+h \omega) w_{1}^{\prime}(k+1+h \omega) \cdots w_{1}^{\prime}(k+\omega-1+h \omega)\right]^{\prime}, \tag{4.10}\\
y_{k}^{2}(h) & :=\left[y_{2}^{\prime}(k+h \omega) y_{2}^{\prime}(k+1+h \omega) \cdots y_{2}^{\prime}(k+\omega-1+h \omega)\right]^{\prime} \tag{4.11}\\
e_{k}^{2}(h) & :=\left[e_{2}^{\prime}(k+h \omega) e_{2}^{\prime}(k+1+h \omega) \cdots e_{2}^{\prime}(k+\omega-1+h \omega)\right]^{\prime}, \tag{4.12}\\
w_{k}^{2}(h) & :=\left[w_{2}^{\prime}(k+h \omega) w_{2}^{\prime}(k+1+h \omega) \cdots w_{2}^{\prime}(k+\omega-1+h \omega)\right]^{\prime} \tag{4.13}
\end{align*}
$$

it can be verified the existence of appropriate unimodular matrices U_{a} and U_{b} such that the following relations are satisfied:

$$
\begin{align*}
& {\left[\begin{array}{l}
u_{k}^{1}(h) \\
u_{k}^{2}(h)
\end{array}\right]=U_{a} v_{k}(h)} \tag{4.14}\\
& {\left[\begin{array}{l}
y_{k}^{1}(h) \\
e_{k}^{1}(h)
\end{array}\right]=U_{b} w_{k}^{1}(h),} \tag{4.15}\\
& {\left[\begin{array}{l}
y_{k}^{2}(h) \\
e_{k}^{2}(h)
\end{array}\right]=U_{a} w_{k}^{2}(h) .} \tag{4.16}
\end{align*}
$$

Then, the associated transfer matrices $W_{k}^{1}(d)$ and $W_{k}^{2}(d)$ of $\Sigma_{f b}$ at time k satisfy the following relations:

$$
\begin{align*}
& W_{k}^{1}(d)=U_{b}^{-1}\left[\begin{array}{ll}
W_{k}^{y_{1} u_{1}}(d) & W_{k}^{y_{1} u_{2}}(d) \\
W_{k}^{e_{1} u_{1}}(d) & W_{k}^{e_{1} u_{2}}(d)
\end{array}\right] U_{a} \tag{4.17}\\
& W_{k}^{2}(d)=U_{a}^{-1}\left[\begin{array}{ll}
W_{k}^{y_{2} u_{1}}(d) & W_{k}^{y_{2} u_{2}}(d) \\
W_{k}^{e_{2} u_{1}}(d) & W_{k}^{e_{2} u_{2}}(d)
\end{array}\right] U_{a} \tag{4.18}
\end{align*}
$$

where $W_{k}^{y_{i} u_{j}}(d)$ and $W_{k}^{e_{i} u_{j}}(d)$ denote the associated transfer matrices at time k of the ω-periodic feedback system $\Sigma_{f b}$ relating input $u_{j}(\cdot), j=1,2$ with output $y_{i}(\cdot)$, $e_{i}(\cdot) i=1,2$, respectively.

Denoting as

$$
\begin{align*}
& F_{k}^{1}(d)=P_{k}(d) \bar{A}_{k}(d)+Q_{k}(d) \bar{B}_{k}(d) \tag{4.19}\\
& F_{k}^{2}(d)=A_{k}(d) \bar{P}_{k}(d)+B_{k}(d) \bar{Q}_{k}(d) \tag{4.20}
\end{align*}
$$

and arguing as in [23] it can be shown that

$$
W_{k}^{1}(d)=U_{b}^{-1}\left[\begin{array}{l}
\bar{B}_{k}(d) \tag{4.21}\\
\bar{A}_{k}(d)
\end{array}\right]\left(F_{k}^{1}(d)\right)^{-1}\left[\begin{array}{ll}
P_{k}(d) & \left.-Q_{k}(d)\right] U_{a},
\end{array}\right.
$$

$$
W_{k}^{2}(d)=U_{a}^{-1}\left[\frac{-\bar{Q}_{k}(d)}{\bar{P}_{k}(d)}\right]\left(F_{k}^{2}(d)\right)^{-1}\left[\begin{array}{ll}
B_{k}(d) & A_{k}(d) \tag{4.22}
\end{array}\right] U_{a} .
$$

We are now in a position to prove the following main theorem.
Theorem 4.1 Problem 3.1 admits a solution if and only if $m \leq \min (\omega p, \omega q)$.
Proof. Necessity. Under the hypothesis on reachability and observability at all times of the ω-periodic systems Σ and Σ_{G}, by Lemma 2.1 applied to $\Sigma_{f b}$ it can be shown that the ω-periodic system $\Sigma_{f b}$ is reachable at all times and observable through the outputs $w_{1}(\cdot)$ and $w_{2}(\cdot)$ at all times. Then (4.2) and (4.3) constitute a minimal realization of transfer matrix $W_{k}^{1}(d)$ and (4.2) and (4.4) constitute a minimal realization of transfer matrix $W_{k}^{2}(d)$. Moreover, for each time k, the nonunit invariant polynomials of the ($\omega p \times \omega p$) polynomial matrix $F_{k}^{1}(d)$ are associated of the nonunit invariant polynomials of the ($\omega q \times \omega q$) polynomial matrix $F_{k}^{2}(d)$ and both are associated of the nonunit invariant polynomials at time k of the ω-periodic feedback system $\Sigma_{f b}$ [23]. This implies that the number m of the invariant polynomials at time k of the ω-periodic feedback system $\Sigma_{f b}$ can not be larger than $m \leq \min (\omega p, \omega q)$.

Sufficiency. As $A_{k}(d)$ and $B_{k}(d)$ are $r l p$ and $\bar{A}_{k}(d)$ and $\bar{B}_{k}(d)$ are rrp, equations (4.19) and (4.20) can be solved for arbitrary $F_{k}^{1}(d)$ and $F_{k}^{2}(d)$. Hence, if $m \leq \min (\omega p, \omega q)$, the $s_{i}(d), i=1, \ldots, m$ can be assigned to $\Sigma_{f b}$ as invariant polynomials choosing $F_{k}^{1}(d)$ and $F_{k}^{2}(d)$ as polynomial matrices whose nonunit invariant polynomial are associate (two polynomials are called associate if their ratio is a scalar [23]) of the $s_{i}(d), i=1, \ldots, m$ and then to solve (4.19) or (4.20) with respect to the pairs $\left(P_{k}(d), Q_{k}(d)\right)$ or $\left(\bar{P}_{k}(d), \bar{Q}_{k}(d)\right)$ respectively. Moreover, as the invariant polynomials of $\Sigma_{f b}$ are independent of k, the solutions of (4.19) and (4.20) can be found for arbitrary k.

For an arbitrary integer k, all the solutions $P_{k}(d)$ and $Q_{k}(d)$ of (4.19) are given by

$$
\left[\begin{array}{ll}
P_{k}(d) & \left.Q_{k}(d)\right]=\left[\begin{array}{ll}
F_{k}^{1}(d) & T_{k}(d)
\end{array}\right] U_{k}(d) \tag{4.23}
\end{array}\right.
$$

where $U_{k}(d)$ is the unimodular matrix given by

$$
U_{k}(d)=\left[\begin{array}{ll}
G_{k}(d) & H_{k}(d) \\
-B_{k}(d) & A_{k}(d)
\end{array}\right]
$$

$G_{k}(d)$ and $H_{k}(d)$ are polynomial matrices such that

$$
G_{k}(d) \bar{A}_{k}(d)+H_{k}(d) \bar{B}_{k}(d)=I_{\omega p},
$$

and $T_{k}(d)$ is an arbitrary polynomial matrix. For the solution (4.23) be adequate for Problem 3.1, $T_{k}(d)$ must be such that
4a) $\quad P_{k}(d)$ and $Q_{k}(d)$ are $r l p$,
4b) $\quad P_{k}^{-1}(d) Q_{k}(d) \in \chi(p, q, \omega)$.

Analogously, for an arbitrary integer k, all the solutions of (4.20) are given by

$$
\left[\begin{array}{c}
\bar{P}_{k}(d) \tag{4.24}\\
\bar{Q}_{k}(d)
\end{array}\right]=\bar{U}_{k}(d)\left[\begin{array}{c}
F_{k}^{2}(d) \\
\bar{T}_{k}(d)
\end{array}\right]
$$

where $\bar{U}_{k}(d)$ is the unimodular matrix given by

$$
\bar{U}_{k}(d)=\left[\begin{array}{ll}
\bar{G}_{k}(d) & -\bar{B}_{k}(d) \\
\bar{H}_{k}(d) & \bar{A}_{k}(d)
\end{array}\right]
$$

$\bar{G}_{k}(d)$ and $\bar{H}_{k}(d)$ are polynomial matrices such that

$$
A_{k}(d) \bar{G}_{k}(d)+B_{k}(d) \bar{H}_{k}(d)=I_{\omega q}
$$

and $\bar{T}_{k}(d)$ is an arbitrary polynomial matrix. For the solution (4.24) be adequate to Problem 3.1, $\bar{T}_{k}(d)$ must be such that:
$4 \overline{\mathrm{a}}) \bar{P}_{k}(d)$ and $\bar{Q}_{k}(d)$ are $r r p$,
$4 \overline{\mathrm{~b}}) \quad \bar{Q}_{k}(d) \bar{P}_{k}(d)^{-1} \in \chi(p, q, \omega)$.

It remains to show that matrices and $T_{k}(d)$ and $\bar{T}_{k}(d)$ such that the pairs $\left(P_{k}(d)\right.$, $\left.Q_{k}(d)\right)$ and $\left(\bar{P}_{k}(d), \bar{Q}_{k}(d)\right)$ satisfy properties $4 \mathrm{a}, 4 \mathrm{~b}$ and $4 \overline{\mathrm{a}}, 4 \overline{\mathrm{~b}}$ respectively, can always be found.

With reference to solutions (4.24), matrix $\bar{T}_{k}(d)$ can be found as follows. By the causality of $\Sigma, A_{k}(0)$ is non singular, so that left primeness of $A_{k}(d)$ and $B_{k}(d)$ implies left primeness of $A_{k}(d)$ and $d B_{k}(d)$. This in turn implies that the equation

$$
\begin{equation*}
A_{k}(d) \bar{P}_{k}^{a}(d)+d B_{k}(d) \bar{Q}_{k}^{a}(d)=F_{k}^{2}(d) \tag{4.25}
\end{equation*}
$$

can be solved with respect to $\bar{P}_{k}^{a}(d)$ and $\bar{Q}_{k}^{a}(d)$ for any $F_{k}^{2}(d)$. For an arbitrary integer k the general solution of (4.25) is

$$
\left[\begin{array}{c}
\bar{P}_{k}^{a}(d) \tag{4.26}\\
\bar{Q}_{k}^{a}(d)
\end{array}\right]=\bar{U}_{k}^{a}(d)\left[\begin{array}{c}
F_{k}^{2}(d) \\
\bar{T}_{k}^{a}(d)
\end{array}\right]
$$

where $\bar{U}_{k}^{a}(d)$ is a unimodular matrix given by

$$
\bar{U}_{k}^{a}(d)=\left[\begin{array}{ll}
\bar{G}_{k}^{a}(d) & -d \bar{B}_{k}(d) \\
\bar{H}_{k}^{a}(d) & \bar{A}_{k}(d)
\end{array}\right]
$$

$\bar{G}_{k}^{a}(d)$ and $\bar{H}_{k}^{a}(d)$ are polynomial matrices satisfying

$$
\begin{equation*}
A_{k}(d) \bar{G}_{k}^{a}(d)+d B_{k}(d) \bar{H}_{k}^{a}(d)=I_{\omega q} \tag{4.27}
\end{equation*}
$$

and $\bar{T}_{k}^{a}(d)$ is an arbitrary polynomial matrix. The unimodularity of $\bar{U}_{k}^{a}(d)$ implies that if $\bar{T}_{k}^{a}(d)$ is chosen right coprime with $F_{k}^{2}(d)$, also $\bar{P}_{k}^{a}(d)$ and $\bar{Q}_{k}^{a}(d)$ are right coprime. Taking into account that by the causality of $\Sigma_{f b}$ and (4.25), $\bar{P}_{k}^{a}(0)$ is nonsingular, one has that also $\bar{P}_{k}^{a}(d)$ and $d \bar{Q}_{k}^{a}(d)$ are right coprime, so that by putting $\bar{G}_{k}(d)=\bar{G}_{k}^{a}(d), \bar{H}_{k}(d)=d \bar{H}_{k}^{a}(d), \bar{T}_{k}(d)=d \bar{T}_{k}^{a}(d)$ one has that the pair $\left(\bar{P}_{k}(d), \bar{Q}_{k}(d)\right)$ given by

$$
\begin{align*}
& \bar{P}_{k}(d)=\bar{P}_{k}^{a}(d)=\bar{G}_{k}(d) F_{k}^{2}(d)-\bar{B}_{k}(d) \bar{T}_{k}(d) \tag{4.28}\\
& \bar{Q}_{k}(d)=d \bar{Q}_{k}^{a}(d)=\bar{H}_{k}(d) F_{k}^{2}(d)+\bar{A}_{k}(d) \bar{T}_{k}(d) \tag{4.29}
\end{align*}
$$

defines a class of solutions (4.24) satisfying $4 \bar{a}$ and $4 \overline{\mathrm{~b}}$ (see Remark 2.2).

By arguing in a similar way, one has that the pair

$$
\begin{align*}
P_{k}(d) & =F_{k}^{1}(d) G_{k}(d)-T_{k}(d) B_{k}(d) \tag{4.30}\\
Q_{k}(d) & =F_{k}^{1}(d) H_{k}(d)+T_{k}(d) A_{k}(d) \tag{4.31}
\end{align*}
$$

where $G_{k}(d)=G_{k}^{a}(d), H_{k}(d)=d H_{k}^{a}(d)$ with $G_{k}^{a}(d)$ and $H_{k}^{a}(d)$ such that

$$
G_{k}^{a}(d) \bar{A}_{k}(d)+H_{k}^{a}(d) d \bar{B}_{k}(d)=I_{\omega p}
$$

and where $T_{k}(d)=d T_{k}^{a}(d), T_{k}^{a}(d)$ being any polynomial matrix left prime with $F_{k}^{1}(d)$, defines a class of solutions of (4.19) satisfying 4a and 4b (see Remark 2.2). Hence, under the assumption $m \leq \min (\omega p, \omega q)$, the existence of solutions of Problem 3.1 has been constructively established.

5. CONCLUSIONS

In this paper the pole placement problem for linear discrete-time periodic systems has been considered. This problem has been formulated in the more general context of the invariant polynomial assignment, whence pole placement follows as a particular case. Necessary and sufficient conditions for problem solvability have been given in Theorem 3.1. The sufficiency proof of this theorem gives a parameterization of all controllers solving the problem in terms of causal transfer matrices that are minimally realizable with a periodic state-space representation. The proof has been performed in two steps. First, the set of all admissible solutions has been formally defined, then a procedure to effectively construct an admissible solution has been provided.
(Received February 14, 1996.)

REFERENCES

[1] B. D. O. Anderson and J. B. Moore: Decentralized control using time-varying feedback. In: Control and Dynamic Systems, Vol. 22 (C.T. Leondes, ed.), Academic Press, London 1985, pp. 85-115.
[2] S. Bittanti: Deterministic and stochastic linear periodic systems. In: Time Series and Linear Systems (S. Bittanti, ed.), Springer-Verlag, Berlin 1986.
[3] S. Bittanti, P. Colaneri and G. De Nicolao: The difference periodic Riccati equation for the periodic prediction problem. IEEE Trans. Automat. Control AC-33 (1988), 706.
[4] P. Bolzern, P. Colaneri and R. Scattolini: Zeros of discrete-time linear periodic systems. IEEE Trans. Automat. Control AC-31 (1986), 1057.
[5] P. Colaneri: Output stabilization via pole-placement of discrete-time linear periodic systems. IEEE Automat. Control AC-36 (1991), 739.
[6] P. Colaneri and S. Longhi: The realization problem for linear periodic systems. Automatica 31 (1995), 5, 775-779.
[7] M. A. Dahleh, P. G. Voulgaris and L.S. Valavani: Optimal and robust controllers for periodic and multirate systems. IEEE Trans. Automat. Control AC-37 (1992), 1, 9099.
[8] J. H. Davis: Stability conditions derived from spectral theory: discrete systems with periodic feedback. SIAM J. Control 10 (1972), 1, 1-13.
[9] I. Gohberg, M. A. Kaashoek and L. Lerer: Minimality and realization of discrete timevarying systems. Oper. Theory: Adv. Appl. 56 (1992), 261-296.
[10] O. M. Grasselli, A. Isidori and F. Nicolò: Output regulation of a class of bilinear systems under constant disturbances. Automatica 15 (1979), 189-195.
[11] O. M. Grasselli, A. Isidori and F. Nicolò: Dead-beat control of discrete-time bilinear systems. Internat. J. Control 32 (1980), 1, 31-39.
[12] O. M. Grasselli and S. Longhi: On the stabilization of a class of bilinear systems. Internat. J. Control 37 (1983), 2, 413-420.
[13] O. M. Grasselli and S. Longhi: Disturbance localization by measurements feedback for linear periodic discrete-time systems. Automatica 24 (1988), 375-385.
[14] O. M. Grasselli and S. Longhi: Zeros and poles of linear periodic discrete-time systems. Circuits Systems Signal Process. 7 (1988), 361-380.
[15] O. M. Grasselli and S. Longhi: Pole-placement for nonreachable periodic discrete-time systems. Math. Control Signals Systems 4 (1991), 439-455.
[16] O. M. Grasselli and S. Longhi: Finite zero structure of linear periodic discrete-time systems. Internat. J. Systems Sci. 22 (1991), 1785-1806.
[17] V. Hernandez and A. Urbano: Pole-placement problem for discrete-time linear periodic systems. Internat. J. Control 50 (1989), 361-371.
[18] T. Kaczorek: Pole placement for linear discrete-time systems by periodic outputfeedback. Systems Control Lett. 6 (1985), 267-269.
[19] T. Kaczorek: Invariant factors and pole/variant zero assignments by periodic outputfeedback for multivariable systems. In: Preprints of the 10th IFAC Congress, Munich 1987, Vol. 9, pp. 138-143.
[20] T. Kaczorek: Linear Control Systems, Volume 2. Research Studies Press LTD, Taunton 1993.
[21] P. P. Khargonekar, K. Poolla and A. Tannenbaum: Robust control of linear timeinvariant plants using periodic compensators. IEEE Trans. Automat. Control AC-30 (1985), 1088.
[22] M. Kono: Eigenvalue assignment in linear periodic discrete-time systems. Internat. J. Control 32 (1980), 1, 149-158.
[23] V. Kučera: Discrete Linear Control - The Polynomial Equation Approach. J. Wiley \& Sons, Chichester 1979.
[24] R. A. Mayer and C.S. Burrus: A unified analysis of multirate and periodically timevarying digital filters. IEEE Trans. Circuits and Systems CSA-22 (1975), 162-168.
[25] F. Ohkawa: Model reference adaptive control system for discrete linear time-varying systems with periodically varying parameters and time delay. Internat. J. Control 44 (1986), 171-179.
[26] B. Park and E. I. Verriest: Canonical forms on discrete linear periodically time-varying systems and a control application. In: Proc. of the 28th IEEE Conf. on Decision and Control, Tampa 1989, 1220-1225.
[27] J.L. Willems, V. Kučera and P. Brunovsky: On the assignment of invariant factors by time-varying feedback strategies. Systems Control Lett. 5 (1984), 75-80.

Prof. Dr. Leopoldo Jetto and Prof. Dr. Sauro Longhi, Dipartimento di Elettronica ed Automatica, Università degli Studi di Ancona, via Brecce Bianche, 60131 Ancona. Italy.

[^0]: ${ }^{1}$ Work supported by the Ministero dell'Università e della Ricerca Scientifica.

