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ESTIMATION OF DISCONTINUOUS PARAMETERS IN 
GENERAL NONAUTONOMOUS PARABOLIC SYSTEMS 

AZMY S. ACKLEH1 AND BEN G. FlTZPATRICK2 

In this paper we present a unified convergence theory for estimating discontinuous par
ameters in a general class of nonautonomous parabolic systems. The application of this 
theory to estimate parameters in the Euler-Bernoulli beam equation, flow equations, and 
the Fokker-Planck population model is discussed. 

1. INTRODUCTION 

Identifying discontinuous parameters is crucial in many applications, including biore-
mediation of contaminated groundwater, in population biology problems, and in 
physical models for flexible structures. For example, the reproduction function of an 
individual in a population model is usually represented in terms of a discontinuous 
function of the form 

, v f 0 yB <y <yA 

I p(t,y) yA<y 

where yB is the birth size or age and yA is the adult size or age (see for example, 
[11]). The stiffness of a beam in a flexible structure may decrease over a long period 
of t ime and could form a discontinuity at a certain t ime, due to a crack or other 
damage. Fluctuations in water tables due to precipitation may cause rapid changes 
in groundwater velocity field. The problems considered here involve applications of 
partial differential equation models, nonautonomous models with coefficients or other 
parameters which are (possibly) discontinuous in the t ime and/or space variable. 
From the point of view of computing parameter estimates, one must typically work 
with a numerical approximation scheme for integrating the differential equation, 
compare this simulation result to the observed data, and iterate over the parameter 
space until an acceptable least squares cost is obtained. A major issue in such 
computations is the impact of the numerical approximation on the estimation. We 
seek to analyze the convergence of minimizers of these approximate problems, as the 
discretization of the differential equation becomes finer. 
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General theory for parameter identification in an abstract setting can be found 
in [8]. In t h a t work (and the many references contained therein) one finds that the 
main components in inverse problem analyses are compactness of parameter spaces, 
continuity of the system state with respect to the parameter, and convergence of 
numerical approximations that is uniform with respect to the parameters and con
sistent with the topology of the observation space. General theorems are available 
to guarantee the parameter convergence of interest, if one can verify compactness, 
continuity and uniform convergence as mentioned above (see in particular pp. 143— 
145 of [8]). For the autonomous case the authors in [7] developed a rather general 
abstract theoretical framework for parameter convergence and inverse problem. The 
sesquilinear form approach contained therein provides a unified way to handle a wide 
variety of problems, with conditions t h a t can be verified in a straightforward man
ner. In the paper [1] results which extend the framework of [7] to nonautonomous 
parabolic problems were established, in order to allow general coverage of many prob
lems, together with verifiable conditions on the sesquilinear form that determines 
the dynamics. 

In the papers [16, 17] the authors developed convergence theory for estimating 
spatially discontinuous parameters in the autonomous scalar parabolic system, as 
well as, the autonomous second-order hyperbolic system arising from 1-D surface 
seismic problems. In both of these papers the parameters were restricted to the 
following 1-D spatially discontinuous form 

q(x) = ipo(x) + ] Г # Є i ( æ ) Vi(x) 

where <pi, i = 0 , . . . , v, are continuous functions and Hf., i = 1 , . . . , v, is the usual 
Heaviside function (H^(x) = 1, x € (£, 1], and H^(x) = 0, otherwise) on [0,1]. Our 
goal here is to further extend these continuity, compactness, and convergence results 
to general nonautonomous evolution systems with discontinuous (in t ime and/or 
space) parameters. We remark that in our subsequent analysis we use a more general 
parameter space then the one used above. In particular, our parameters can be time 
varying discontinuous functions defined on [0, T] x Q,, where Q, is a bounded subset of 
Rn. In addition, we do not restrict our parameters to have a specific discontinuous 
structure (see Section 2 for the definition of our parameter space). 

Our theory is based on the weak version of the system in terms of sesquilinear 
forms used in [7] and [1]. The theory depends on the following properties of the 
time and parameter dependent sesquilinear form a(t, q) (• , •) describing the system: 
continuity with respect to the parameter, uniform boundedness (both in time and 
the parameter) , and uniform coercivity in time and the parameter. 

The paper is organized as follows. In Section 2, we present a theoretical frame
work for the approximation. The application of this theory to estimating discon
tinuous (both in t ime and space) parameters in the Euler-Bernoulli beam equation, 
flow equations, and the Fokker-Planck model is discussed in Section 3. Numerical 
findings are the topic of Section 4. 
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2. PARAMETER IDENTIFICATION 

In this section, we consider an abstract, parameter dependent evolution system. 
We begin with some basic notation. Let H be a Hilbert space with inner product 
(•, •) and corresponding norm | • |. Let V be a Hilbert space that is densely and 
continuously imbedded in H, with norm || • || and imbedding constant K : for each 
<j> G V, we have \<j)\ < K||^||. We use these spaces to form a Gelfand triple structure 
V^H = H* ^V*. 

We consider the following abstract differential equation on H 

f u(t,q) = A(t,q)u(t,q) + f(t,q), 

\ u(0,q) = uo(q). 

We denote by q the parameter to be estimated. Since we are interested in discontinu
ous-in-time parameters, we take as our parameter set 

BVoo = { / € ^ ( ( 0 , T ) , Q ) : feBV([0,T],Q), | | / | | L ~ ( [ 0 ( T ] , Q ) <Mx and TV(f) <M2} 

where, 
M 

TV(f) = suPYJ\\f(U+i)-f(U)\\Q 
t = i 

the supremum taken over all finite partitions 0 = t\ < • • • < tM = T, with Q 
being compactly embedded in the normed linear space Q. It is well known that 
HV([0,T],Q) is compactly embedded in the space L1((0,T),Q) (see, [9]). Hence, 
since BVoo is a closed subset of BV([0,T],Q) then it is compact in L1((0,T),Q). 
The generality of the "range space" Q allows us to consider various types of spatially 
dependent parameters. 

The mapping q —> f(-,q) is assumed to be continuous from BVoo C L1(0,T; Q) 
into H. The operator A is assumed to be determined by a time and parameter 
dependent sesquilinear form on V; i.e., <r(- ,-)(-,•) : [0,oo) x HVoo x V x V —> C, 
where <r(t,q) (•, •) is sesquilinear for each t G [0,oo) and q G BVoo- Concerning a, 
we make the following assumptions. 

(E0) The function <r(-,q)(<f>, I/J) is measurable on [0, oo), for fixed <j>, tp G V 
and q G HK». 

(El) There exists K0 > 0 such that <r(t, q) ($, ip)\ < K0\\<f>\\ • \\i>\\ \f<f>, ip G V, 
q G BVoo uniformly in t on each interval [0,T]. 

(E2) There exists c0 > 0, A0 G R such that <r(t, q) (<f>,<f>) + A0|< |̂2 > c0||</>||2, 
V^ G V, q G BVoo uniformly in t on each interval [0, T]. 

(E3) For each <f> G V, there is a sequence of functions fJ.N(t) such that for any 
qN —> q in BVoo, then for any interval [0,T] we have 

rn 

lim / | ^ ( ť ) | 2 d ť = 0, 
Лt—ooJ0 
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and for a. e. t and each ip € V, 

Ht,q)(<t>,ip)-<T(t,qN)(<t>^)\<LlN(t)-\\n. 

We note here tha t the assumption (E3) above is less restrictive then the as
sumption (E3) announced earlier in [2]. Such modification allows the conver
gence theory for estimating discontinuous (both in time and space) parameters 
to hold. It is a well-known consequence of the Riesz Theorem that , under the 
assumptions (EO) _ (E2) there exists a family of uniquely determined linear 
operators A(t,q) : dom(A(t,q)) —+ H, with dense domains, satisfying 

cr(t,q)((f>,rP) = {-A(t,q)<f>,^), 

for all 4> E dom A(t, q), ip G V. 

The main goal of this paper involves the convergence of parameter estimates de
termined from approximations of the above dynamics. Toward that end, we consider 
an approximation method based on a sequence of Hilbert spaces H , N = 1,2, . . . , 
with orthogonal projections PN : H —> H . To obtain convergence results, the 
following assumption about these approximations will be needed. 

( A l ) . The subspaces HN are subsets of V, and Vu £ V, we have that ||P^w—v\\ —•0, 
as N —+ oo. 

Assumption (Al ) is satisfied by many finite element and spectral schemes (see [8, 
10, 15]). The Galerkin approach to approximation involves restricting a(t,q) to 
H^ x H^, yielding bounded linear operators AN(t,q) satisfying 

CT(t,q)(<j>N ,^N) = -(AN (t,q)<i>N ,^N). 

Using the above assumptions we have the following theorem: 

T h e o r e m 2 .1 . Suppose that ( E 0 ) - ( E 3 ) , and (Al) hold, and that {qN}%=1 C 

HVoo satisfying qN —* q in the L1((0, T), Q) topology. Then we have that uN (t, q ) —> 

u(t,q), in H, uniformly on [0,T]. 

P r o o f . We first define zN = uN — PNu. It is sufficient to show that zN (t) —* 0, 
uniformly in t. Now, V0 6 H^, we have that 

(zN,<f>)v*,v = {uN -u + (d/dt)(u-PNu),<f>)v*,v 

= (ilN -U,(j)) + (d/&t)(u-PNU,<t))V.y 

= (uN - it, <f>)v*,v + (d/dt) (u - PNu, <f>)H 

= (iiN -U,4>)V*y. 

Using this fact we have that 

1 1 | ^ | » = (zN,zN) = (uN-u,zN) 

= -a(t,qN)(uN,zN) + a(t,q)(u,zN) 

-(f(t,q)-PNf(t,qN),zN)-
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Hence adding and subtracting a few terms and using coercivity, we have that for 
a.e. t > 0, 

U-W|2 I „ IU!Vi|2 \ u i V | 2 

2dT ' " " " ' ' 
< a(t, qN) (u - PNu, zN) + a(t, q) (u, zN) - a(t, qN) (u, zN) 

+ \f(t,;q)-PNf(t,;qN)\\zN\ 
< K0\\u - PNu\\ • | |*"| | + fIN(t)\\zN\\ + \f(t, q) - PNf(t, qN)\ -\zN\. 

Choosing e = CQ and integrating both sides and using standard inequalities of the 
form ab < | a 2 + -^b2 we get. 

i|zW(*)|2 < I^j\\u-PNufdt + C^\zN\'dt+^^\^(t)\'dt 

+ 1 f\f(t,q)-PNf(t,qN)\2dt. 
Ze Jo 

A standard application of Gronwall's inequality together with the dominated 
convergence theorem we get 

\zN(t)\2->0 

uniformly on [0, T]. • 

We have thus obtained, based on the assumptions given above, that uN(t; qN) —> 
u(t; q) in H, when qN —> q in the L1((0, T), Q) topology. To put this result into the 
context of least squares estimation, we consider a continuous map C: H —> Z, where 
Z is a normed linear space. Given z E Z, one determines an appropriate parameter 
value for the system by minimizing 

J(q) = \\Cu(q)-z\\2. 

The continuous dependence results above indicate that a minimizer exists within the 
compact set BVQQ. 

In order to compute minimizers, we must make some approximations. The ap
proximation uN of the state variable u, as discussed above, lead to a cost functional 

JN(q) = \\CuN(q)-z\\2
z 

to be minimized. The above convergence results guarantee that if { t f*}^- ! C BVOQ 

satisfying qN —> q in Ll((0,T),Q) then JN(qN) —* J(q), which will give us (see, 
e.g., pp. 143-145 of [8]) subsequential convergence of minimizers. 

In the next section we present some examples, to illustrate the application of this 
general theory. 

3. APPLICATIONS 

In this section we present three examples to which the theoretical framework of 
the previous section apply. We hope, thus, to give the reader a sense of the wide 
applicability of this unified theory. 
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3.1. Euler-Bernoulli beam equation with Kelvin-Voigt damping 

Consider the following second order hyperbolic equation which describes the trans
verse vibrations of a cantilevered Euler-Bernoulli beam with Kelvin-Voigt internal 
damping. 

ytt + (EIyxx + cDIyxxt)xx = f(t,x) (3.1) 

y(t,0) = yx(t,0) = 0 

EIyxx(t, I) + cDIyxxt(t, /) = 0, 

(EIyxx(t, 1) + cDIyxxt(t, l))x = 0 

y(0, x) = y0(x), yt(0, x) = yi(x). 

Here, the function y(t, x) is the displacement along the beam at time t at position x. 
The parameter EI(t, x) is the stiffness coefficient, and cDI(t, x) is the Kelvin-Voigt 
damping coefficient. The function / represents external distributed forces applied 
to the beam. For details on this model, see [6]. 

Equation (3.1) may be written as a first-order system in the following way: Define 
w(t, x) = [y(t, x), ^(t, x))T and F = [0, f(t, x)]T. Then denoting -^ by D2, we see 
that (3.1) is equivalent to 

wt(t, x) = A(t, q)w(t, x) + F(t, x), (3.2) 

where (formally) 

Л = 
0 I 

-D2(EID2) -D2(cDID2) 

with the initial condition w(0) = WQ = (yo,yi). 
To write equation (3.2) in a weak formulation, we define the following spaces 

H2(0) /) = {u E H2(0, /)|ti(0) = ti«(0) = 0} 

H = H2(0,/)xL2(0,/) 

V = H£(0,/)xH2(0,/). 

The inner product on the L2(0,/) will be denoted by (•, •) and for the space 
H£(0,1) we use the inner product 

{(<f>,*/>)) = (<l>xx,lpxx) 

and the associated norm ||| • |||. It is easily shown that this norm is equivalent to the 
usual H|(0,/) norm using Poincare's inequality. The inner products for the spaces 
H, V will be taken to be the usual product space inner products, and will be denoted 
as in the abstract formulation (•, •) and | • [, and (•, -)v and || • || respectively. Then as 
in [7] the weak form of the beam can be written in terms of the following sesquilinear 
form: with w = (u, v) and X = (<f>, ifi) elements of V, define 

a(t, q) (w, X) = -((v, tf>)) + ax(t, q) (u, V>) + a2(v, j , ) , 
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where, 

<ri(t>q)(u,i)) = (EIuxx,ipxx), 

a2(t,q)(v,xp) = (cDIvxx,tl>xx). 

Then with w = (y, y), the weak form of equation (3.2) can be written 

(w(t), X) + a(t, q) (w(t), X) = (F(t), X), 

for X ev 
In terms of the abstract formulation developed in the previous section we will set 

q = (EI,cDI),Q = (0,l), 
Q = L1(Q)xL1(Q) 

and 

Q = {(EI, cDI) e (BV(Q))2 : d0 < EI(x) < d1} d2 < cDI(x) < d3, 

TV(EI) < d4, TV(cDI) < d5} 

Compactness of the set Q in Q is a well known result (see for example [13]). Standard 
arguments and the fact that EI(t,x) > d0 and cDI(t,x) > d2 easily verify the 
assumptions (£0) — (£2). For verification of (£3) we let w = (u, v), X = ((f), ip) £ V, 
and suppose that qN —> q in L1((0,T),Q). Then we have that 

\a(t, q) (w, X) - a(t, qN) (w, X)\ < \a,(t, q) (u, -/,) - a,(t, qN) (u, t/»)| 

+ W2(t,q)(v,ij)-(T1(t,q
N)(v,iP)\ 

< (J \(EI(x))(t)-(EIN(x))(t)\2\uxx\
2dxy^ | ^ « | 2 d x V 

+ Qf \(cDI(x))(t)-(cDIN(x))(t)\2\vxx\
2dxYn \ipxx\

2dx 

Hence we have that 

\a(t, q) (w, X) - a(t, qN) (w, X)\ < p(t).\\X\\Vi 

where 

./ 
ti*) = U\(EI(x))(t)-(EIN(x))(t)\2\uxx\

2dx 

+ (J |(cí?/(.r))(ť)-(cz?J
7v(í-))(ť)|2|t;iF!r|

2dí 

It remains to show now that 

lim / | ^ ( ť ) | 2 d ť = 0, 
N-+ooJ0 

to verify that (£3) holds. To this end, we will restate the following theorem (see 
page 198 in [12]). 
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Theorem 3 .1 .1 . Let (S, ^s,^) and (E, S^,A) be measure spaces which are either 
both finite or both positive and a-finite, and let (R, £#,/>) be their product. Let 
1 < p < oo and let F be a .v-integrable function from S to LP(E, X.£, A, X) where 
X is a real or complex H-space. Then there is a p-measurable function f on R 
to X, which is uniquely determined except for a set of p-measure zero, and such 
that f(s,-) = F(s) for iv-almost all s £ S. Moreover for A-almost all t, f(-,t) is 
zv-integrable on S, and fs f(s, •) v(ds) = fs F(s) u(ds) in LP(E, E^, A, X). 

We will now prove the following lemma, 

Lemma 3 .1.1 . Let Q be a bounded set in Rn. Suppose that 

(i) f , / e w M 
(ii) Q = Ll(Q) 

(iii) Q = {aeQ: Halloo < Q, TV (a) < C2} 

(iv) fN -> / in the L1((0,T),Q) topology 

(v) <7eL2((0,T),L2(ft)) fixed. 

Then, 

P r o o f . By Theorem 3.1.1 there exist a unique fN,f G L1((0,T) x Q) such that 
the following hold for a. e. t 

I \f(t, x) - fN(t, x)\ dx = I \(f(x)) (t) - (fN(x)) (t)\ dx. 
Jn Jn 

Since fN —> / , as N —> oo in the L1((0,T),Q) topology then we have that 
/ — fN —» 0 in L1((0,T) x Q), which in turn implies that fN -+ f in measure on the 
product space (0,T) x Q. 

Hence, 

[ (Xl(/(x)) {t)"{fN{x)) w|219]2 dx)dt 

= f (K]^\J(t,x)-fN(t,x)\2\g\2dx^dt 

By the definition of Q,jve have that |(/(*))(*)|, \{fN(x))(t)\ < Cu for a.e. t and 
x. Thus, the functions fN and / are uniformly bounded (a.e. in the product space); 
thus, the result follows by applying the dominated convergence theorem. • 

Using Lemma 3.1.1, it is straightforward to see that 

N 

and hence (S3) is verified. 

T 
lim / \nN(t)\2dt = Q 

Jo 
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3 .2 . Estimation of diffusion coefficient in flow equations 

In this example we consider the following equation 

ut- V(a(t,x)Vu) = f(t,x) 

u(t,x) = 0, (t,x)e(0,T)xdQ 

u(o, x) = UQ(X) x e Q 

which describes the flow of a fluid through the medium with permeability a(t,x). 
Here Q is assumed to be open bounded domain in Rn. We note that convergence 
theory for estimating diffusion coefficient in the above model for the autonomous 
case (a = a(x)) has been considered in [14], 

In terms of the abstract theory if we define H = L2(Q), and V = HQ(Q), the 
above equation can be written in the following weak form as follows 

(ut,<j>) + <r(t,a)(u,<l>)=(f,<f>} foi(f)eV 

where, 
a(t, a) (u, <j>) = (aVw, V<j>). 

In terms of our theoretical setting we define the set Q = Ll(Q.) and 

Q = {ae BV(Q) :0<d0< a(x) < dx a. e. in Q, TV (a) < c2}. 

Clearly Q is a compact set £ Q. Standard arguments and the fact that a(t,x) > do 
easily verify the assumptions (£0)-(E2) . For verification of (S3) suppose that 
aN —> a in the L1((0, T), Q) topology. Then we have that 

\a(t,a)(u,xP)-a(t,aN)(u,iP)\ 

< ( f \(a(x)) (t) - (aN(x)) (t)\2 \Vu\2 dx J " ( I |V^|2 dx 

We define 

UN(t) = (J \(a(x)) (t) - (aN(x)) (t)\2 \Vu\2 dx 

and again, by Lemma 3.1.1, we see that 

1/2 

lim / | ^ ( ť ) | 2 d ť = 0. 

3.3. The Fokker-Planck population model 

Consider the following "Fokker-Planck" model which is used to model the dynamics 
of many structured populations (see, e.g., [3, 4, 7]): 

Ut + (Gu)x = —q^u XQ < x < x\ 
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where, 
(Gu) (t,x) = qi(t, x) u(t, x) - (q2(t, x) u(t, x))x, 

•Xi 

(Gu)(t,x0)= Í ^ q4(t,ţ)u(t,ţ)dţ, 
JXQ 

(Gu)(t,xl) = 0, 

u(0,x) = UQ(X). 

Here, u(t, x) is the density of individuals in the interval (x, x + dx) at time t. The 
term Gu is the population flux and the boundary condition at x0 represents the 
recruitment of new individuals. The boundary at x\ models the fact that no indi
viduals grow beyond size X\. For more details, please refer to [3, 4, 7]. 

By defining H = L2(x0, xi) and V = H1(x0, x\) the associated sesquilinear form 
is given by 

pXi 

a(t, q) (u, ip) = -(Gu, ipx) + (q3u, rf>) - xp(x0) / q4(t, f) u(t, f) d£. 
Jx0 

The above equation can be written in the following weak form 

{ut,^) + a(t,q)(u,ij;) = 0 Vip€V. 

In terms of the theory developed in Section 2 we define the sets 

Q = Ll(x0,xi) x W1'co(x0,xi) x L1(x0,x1) x L1(x0,xi) 

and, 

Q = {(?i,92,?3,94) eQ\TV(qi)<d1} Halloo <d2, i = 1,3,4, 

II^IIPVI.^ < d3 and q2(x) >d4> 0}. 

Standard arguments can be used to verify that (SO) - (£2) hold for this problem 
(see for example, [3]). To verify (S3) similar techniques as in the above two examples 
can be used to show that 

\a(t, q) (u, <t>) - a(t, qN) (u, <f,)\ < /i(ť) | | 4 | | v 

where, 

»N(t) = ( i"* \(qN(*))(t)-(qi(x))(t)\2\u\2d 
\Jx0 

+ ( i'1 \(qN(x))(t)-(q2(x))(t)\2\uxfd 
\Jx0 

+ ( H \(q2x
N(x))(t)-(q2x(x))(t)f\u\2dx 

\Jx0 

+ fri|(g3
v^))W-(93W)(ť)l2H2d 

\Jx0 

+ ( i*1 \(qN(*))(t)-(q4(x))(t)\2W\2d 
\Jx0 
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By Lemma 3.1.1 we have that 

im / 
At—ooJ0 

4. NUMERICAL RESULTS 

lim / \fiN(t)\2dt = 0. 
l—ooJO 

For the inverse problem numerical experiments, we focus on the model 

ytt + (EI(t) yxx + 0.01yxxt)xx 

1 
= 100sin(57Tt) X —X[.495,.505](-.) 

y(t,0) = yx(t, 0) = 0 

EIyxx(t, 1) + cDIyxxt(t, 1) = 0, 

(EIyxx(t, 1) + cDIyxxt(t, l))x = 0 

y(0,x) = y0(x), yt(0,x) = yr(x). 

Note that this is a special case of the model (3.1). Here the forcing function approx
imates a S function in the spatial variable. 

In our computational methods, we estimated the stiffness parameter EI as a func
tion of time from computationally generated data. For the simulations we present 
here, our FORTRAN program uses 15, uniformly spaced, cubic B-splines to approx
imate the solution of the Euler Bernoulli differential equation and the identification 
algorithm uses 10, uniformly spaced, piecewise constant functions to estimate the 
parameter. For the generated data, we used for EI the function 

r 12 t < 0.35 
EI(t) = 

I 10 *>0.35 

which is constant with respect to the spatial variable. 
For observation data, we sampled the displacement u(ti, x = 1) at 200 uniformly 

spaced time points ti in the time interval [0,1], as generated with the above model. 
To test the behavior of the least squares identification procedure, we used as data 
the actual model generated signal, as well as the signal modified by Gaussian noise: 
Zi = u(ti, 1) x (1 + €i), was used for data, with e; a random sample from a zero mean 
Gaussian random number generator. We used a = .01 and a = .05 for standard 
deviations for the noise. 

To implement the above mentioned compactness constraints, we used the follow
ing penalized least squares functional 

200 . 1 

J(EI) = y2\zi-u(ti,l;EI)\2 + f3 J\EI(t)\2 + a dt 
i=i Jo 

with a small positive constant and two different choices of fi, depending on the 
noise level. Note that the integral term is (at least for smooth EI) a differentiate 
approximation to the total variation of EI. 
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In Figure 1, we presented the estimated (dashed-line) versus the true (solid-line) 
function EI. We used the constant function EI = 12 as our initial guess in the 
optimization, which was carried out using the package lmdif 1 from net l i b . The 
regularization parameter 0 used was 1 0 - 4 and a = 10~5. 
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Fig. 1. 

Figures 2 and 3 represent the same procedure as Figure 1 when the data was 
corrupted by the above described noise. The solid line is again the true EI; the 
dashed line is the estimated EI with a = .01 and a = 0.05, respectively. The 
regularization parameter values used for the two estimation runs were a = 10~5, 
/3 = 1 0 - 4 and j3 = 10 - 3 , respectively. 
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(Received February 14, 1996.) 

REFERENCES 

[1] A. S. Ackleh and B. G. Fitzpatrick: Estimation of time dependent parameters in gen
eral parabolic evolution systems. J. Math. Anal. Appl. 203 (1996), 464-480. 

[2] A. S. Ackleh and B. G. Fitzpatrick: Estimation of temporally discontinuous parameters 
in general parabolic evolution systems. In: Proceedings of the 3 r IEEE Mediterranean 
Symposium on New Directions in Control and Automation, vol. 1, pp. 280-286. 

[3] H. T. Banks: Computational techniques for inverse problems in size structured stochas
tic population models. In: Control of Partial Differential Equations (A. Bermudez, 
ed.), (Lecture Notes in Control and Inform. Sci. 114), Springer-verlag, Berlin 1989, 
pp. 3-10. 

[4] H. T. Banks, L. W. Botsford, F. Kappel and C. Wang: Modeling and estimation in size 
structured population models. In: Mathematical Ecology, Proceeding of the Autumn 
Course Research Seminars (T. G. Hallam, L.J. Gross and S. A. Levin, eds.), World 
Scientific, 1988, pp. 521-541. 

[5] H. T. Banks and J. M. Crowley: Parameter Estimation for Distributed Systems Arising 
in Elasticity. LCDS Report No. 81-24, Brown University. In: Proc. Symposium on 
Engineering Sciences and Mechanics, National Cheng Kung University, Tainan 1981, 
pp. 158-177. 

[6] H. T. Banks, J. M. Crowley and I. G. Rosen: Methods for the identification of material 
parameters in distributed models for flexible structures. Mat. Apl. Comput. 5 (1986), 
2, 139-168. 

[7] H.T. Banks and K. Ito: A unified framework for approximation in inverse problems 
for distributed parameter systems. Control Theory Advanced Technology 4 (1988), 1, 
73-90. 

[8] H.T. Banks and K. Kunisch: Estimation Techniques for Distributed Parameter Sys
tems. Birkhauser, Boston-Basel 1989. 



556 A.S. ACKLEH AND B.G. FITZPATRICK 

[9] V. Barbu: Convexity and optimization in Banach spaces. Editura Academiei, Holland 
1986. 

10] C. Canuto and A. Quateroni: Approximation results for orthogonal polynomials in 
Sobolev spaces. Math. Comp. 38 (1982), 157, 67-86. 

11] O. Diekmann, M. Gyllenberg and H. R. Thieme: Perturbing evolutionary systems 
by step responses and cumulative outputs. Differential Integral Equations 8 (1995), 
1205-1244. 

12] N. Dunford and T. Schwartz: Linear Operators Part L General Theory. Interscience 
Publishers, New York 1958. 

13] E. Giusti: Minimal Surfaces and Functions of Bounded Variations. Birkhauser, 
Boston-Basel 1976. 

14] S. Gutman: Identification of discontinuous parameters in flow equations. SIAM J. 
Control Optim. 28 (1990), 1049-1060. 

15] C. Johnson: Numerical Solution of Partial Differential Equations by the Finite Element 
Method. Cambridge Press, Cambridge 1987. 

16] P. K. Lamm: Estimation of discontinuous coefficients in parabolic systems: Applica
tions to reservoir simulation. SIAM J. Control Optim. 25 (1987), 18-37. 

17] P. K. Lamm and K. A. Murphy: Estimation of discontinuous coefficients and boundary 
parameters for hyperbolic systems. Quart. Appl. Math. ^6 (1988), 1-22. 

Dr. AzmyS. Ackleh, Department of Mathematics, University of Southwestern Louisiana, 
Lafayette, LA 7050^-1010. U.S.A. 

Dr. Ben G. Fitzpatrick, Center for Research in Scientific Computation and Department 
of Mathematics, North Carolina State University, Raleigh, NC 27695-8205. U.S.A. 


