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COALITIONAL STABILITY AND RATIONALITY 
IN COOPERATIVE GAMES 

A N T O N S T E F A N E S C U 

We propose a new solution concept which characterizes stable agreements in cooperative 
games. Although it is a refinement of an earlier solution concept introduced by McKelvey, 
Ordeshook and Winer [6], there are some similitudes with other solutions of cooperative 
games. The new concept may be defined both for transferable and non-transferable utility 
games and it is shown that it exists for very large classes of games. 

1. INTRODUCTION 

Traditionally, the formal definition of cooperative games involves coalitions and pay
offs, and in this framework a solution must satisfy some stability conditions. But 
all solution theories begin by defining a set of rational outcomes. Thus, the clas
sical solution concepts as core and von Neumann-Morgenstern solutions are sets of 
imputations, payoff vectors satisfying the individual rationality and a strong form 
of collective rationality. Other solutions, as the kernel and various bargaining sets 
are formed by payoff configurations which subdivide the global payoff vectors into 
coalitionally rational payoffs associated with the disjoint coalitions of a parti t ion 
of the players set. In this last situation, a solution predicts the coalitions which 
will be formed and the payoffs for each such coalition. In a somewhat different ap
proach a solution predicts configurations in which the coalitions are not necessarily 
disjoint. In this case, each player makes his option for one or more coalitions which 
seems to be profitable for him. In fact, such solution predicts potentially reasonable 
coalitions and payoffs for the negociation which will take place before players will 
commit themselves to the effective coalitions. This is the case of the competitive sol
utions of McKelvey, Ordeshook and Winer [6], but also of other solutions proposed 
by Albers [1], Cross [5], Bennett [3]. 

The new concept of uniform competitive solution closely follows the definition of 
the earlier notion of competitive solution. One major property of such a solution 
is the existence under very general conditions. As well as the original concept, an 
uniform competitive solution is a stable set of proposals, but it also satisfies the 
rationality requirement in a stronger form than the competitive solutions. 

As usually, in the present paper, the set of players will be denoted by N = 
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{ 1 , . . . ,n} and for any coalition C C N, IRC stands for the set of the |C|-dimensional 
vectors. The projection of x E IR onto the subspace IR will be denoted by xc 
and for any subset A C IR we will write pre A for the set {xc \x E ^4}. (For a 
singleton coalition C = {i} we will write simply pr{A). Also, x(C) denotes the sum 
^2iec xi- -f x> V a r e ^w o v e c tors in the same Euclidean space, then x > y denotes 
the usual ordering defined by X{ > yt- for all i, x > y means x > y, x ^ y and x ^$> y 
will be used when X{ > yi for all i. 

A rz-person cooperative game in the characteristic function form is defined by 
the pair (N, V), where V is a set-valued function on 2^ which associates with each 
coalition S a subset V(S) of IR . Conventionally, V(S) represents the set of effective 
payoffs of S i.e. the set of all possible utility vectors that can be obtained by the 
members of the coalition S. The most general situation described by the pair (N, V) 
is of the non-transferable utility (NTU) games, but any transferable utility (TU) 
game may be also represented as above. Traditionally, a TU game is defined by its 
characteristic function v : 2^ i—* IR, where v(S) is interpreted as the total payoff that 
the coalition S can make independent of actions of the players outside S. Obviously, 
in the TU case V can be defined as 

V(S) = {x£US\x(S)<v(S),x>as} (I) 

where a E IR is a given vector. As usually, we will take a to be 0. 

2. COMPETITIVE AND UNIFORM COMPETITIVE SOLUTIONS 

Although the definition and the general properties of the solutions studied in the 
present paper are not dependent of any additional assumptions, we will consider the 
pair (N, V) satisfying the following three conditions: 

(i) V(C) is a closed (possibly empty) subset of IR for every C £2N. 

(ii) For every k E N, vk = snp(V({k} DprkV(N)) < oo. 

(iii) For every coalition C E 2N, the set {x E V(C) | xk > vk for all k E C} is 
bounded from above. 

Some other usual properties of the characteristic function, will be employed in 
the next. 

(iv) x E V(C), y E IRC, y<x^ye V(C). 

(v) C C D => V(C) C prcV(D). 

Condition (iv), referred to as "comprehensiveness", allows for the free disposal of 
utility for any coalition. 

Property (v) will be called "weak monotonicity" and insures that an utility which 
is effective for a coalition is still available for its members if they commit to a larger 
coalition. 

For the main existence result of Section 3 the game (N, V) will be subjected to a 
less usual condition: 
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(vi) If x, y £ V(S), for some S E2N such that Xk > yk for some k £ S and £; = yi 
for all i ^ k then there exists z £ ^(5*) such that z^ = yk and 2; > X{ for all 
ie:S\{fc}. 

This condition states that, within the set of effective payoffs of a given coalition 
it is always possible to improve the utility of all other players if one player accepts 
to diminish his own utility. 

Note that any TU game satisfies the conditions (i)-(iv) and (vi). 
For the remainder of this section it is no matter if the pair (N, V) will be a TU 

or a NTU game. 

Definition 1. A proposal of the game (N, V) is a pair (x, S), where S £ 2^ , S ^ 0 
and z <5 1/(5) Dpr 5 l / (N ) . 

Intuitively, a proposal represents an offer that a coalition could make. The payoff 
x is effective for 5 but it must be feasible too, i. e. it can be extended up to a payoff 
vector of V(N). 

For the following discussion, we will consider a finite collection S of proposals 
with no coalition associated with more than one proposal: S = {(uc,C) \ C £ C} 
where C C2N. 

Definition 2 (McKelvey, Ordeshook, Winer [6]). S is a competitive solution (c.s.) 
if it satisfies the following two conditions: 

There are no C, D £ C such that uCnD > uCnD. (2) 

If (x, S) is a proposal such that xsnc > usnc f o r some C £ C 

then there exist D £ C such that uSnD > xsnD • (3) 

Definition 3 (Stefanescu [7]). S is an uniform competitive solution (u.c.s.) if the 
following conditions are satisfied: 

ucnD = ucnD f o r e v e r y C,DeC (4) 

If (x, S) is a proposal such that xsnc > usnc f°r some C £ C 

then there exist D e C and k e S D D such that uf > Xk- (5) 

In summary both the competitive solutions and the uniform competitive sol
utions are stable configurations of proposals. This stability is internal (condition 
(2), respectively (4)) and external (condition (3), respectively (5)). The classical 
domination relation is replaced here by the preference relation of the pivotal play
ers of two proposals (the players which belong to both coalitions associated with 
the considered proposals). As it will be shown in the next section these solutions 
respond to the rationality principles. It would be also interesting to point out the 
relationships with other solution concepts. Particularly, the core and the aspirations 
are closely related of the c.s., respectively, u.c.s. 
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Def in i t ion 4 . The core of the game (N, V) is the set: 

C(N, V) = {u £ ^ ( N ) | there is no proposal (x, S) such that x ~^> us}. 

D e f i n i t i o n 5. An aspiration is a payoff vector u G E satisfying the following 
two conditions: 

\J{C\uceV(C)} = N. (6) 

If (x, S) is a proposal such that x > us then x = us- (7) 

3. GENERAL NTU GAMES 

Let S be either a c.s. or an u.c.s. and set K = U c e c C• 

If K = N the solution will be said complete. 

In the general case, let us define the |A'|-dimensional vector w by: 

Wk = max{uc | k G C, C G C} 

and call w the ideai payoff vector associated with S. 

The next result establishes the individual rationality of both solutions defined in 
Section 2. 

P r o p o s i t i o n 3 . 1 . For any c.s. or u.c.s. Wk > Vk for all k G K. 

The coalitional rationality is expressed in somewhat different terms for u.c.s. and 
c.s. 

P r o p o s i t i o n 3 .2 . Let (uc,C) G S. If S ia an u.c.s. (c.s.) then uc is a Pareto-
opt imum (weak Pareto-optimum) of V(C) C\ prcV(N). 

It was firstly shown in McKelvey, Ordeshook and Winer [6] that if the core is 
nonempty then a single-proposal competitive solution always exists. This result can 
be extended to the u.c.s. and a converse implication also holds. 

P r o p o s i t i o n 3 .3 . Let (N, V) be any cooperative game such that C(N, V) 7̂  0. If 
u G C(N, V) then S = {(u, N)} is a c.s. 

P r o p o s i t i o n 3.4 . Assume (N, V) be a cooperative game satisfying the conditions 
(iv) and (vi). If C(N, V) 5- 0 and u G C(N, V) then S = {(u, N)} is an u.c.s. 
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P r o p o s i t i o n 3 .5 . If S = {(u,N)} is either a (complete) u.c.s. or a c.s. then 
u E C(N, V). Consequently, C(N, V) -- 0. 

As an important consequence of the previous results it follows that any sufficient 
condition for the nonemptiness of the core is a sufficient condition for the existence 
of the c.s. Particularly, balanced or (ordinal) convex games admits c.s. The same 
conclusion holds for the u.c.s. if the NTU games satisfy conditions (iv) and (vi). 

In the following we will pay more attention for the complete uniform competitive 
solutions (c.u.c.s.). A new characterization of a c.u.c.s. follows from the two next 
propositions. 

P r o p o s i t i o n 3 .6 . Let S = {(u ,C) \ C E C} be a c.u.c.s. and w the associated 
ideal payoff. Then: 

wc E (V(C) n prcV(N)) for all CeC. (8) 

If (x, S) is a proposal and x > ws then x = ws- (9) 

Note tha t for the u.c.s., wc = uc for every C E C. Therefore, the converse of the 
previous proposition immediately follows. 

P r o p o s i t i o n 3 .7. Assume C be a collection of coalitions whose union is N and 
w E IR such tha t the conditions (8) and (9) are satisfied. Then, S = {(wc, C)\C E 
C} is a c.u.c.s. Moreover, w is the ideal payoff associated with S. 

Finally the relationships between the c.u.c.s. and the aspirations can be estab
lished. 

P r o p o s i t i o n 3 .8 . Assume (N, V) be a NTU game satisfying (iv) and (vi). If S is 
a c.u.c.s. then the associated ideal payoff w is an aspiration. 

P r o p o s i t i o n 3 .9. If the game (N, V) satisfies (v) and u is an aspiration then 
S = {(uC) C) | C E C} where C = {C \ uc E ( 7 ( C ) n p r c 7 ( N ) ) } is a c.u.c.s. 

The main result of this section establishes the existence of the u.c.s. Moreover, 
the completeness of this solution can be also guaranteed. 

T h e o r e m 3 .10 . Let (N, V) be a cooperative game in the characteristic function 
form satisfying the properties ( i ) - ( v i ) . If V(N) / 0 then the game admits complete 
uniform competitive solutions (c.u.c.s.). 

P r o o f . Note firstly that the set of coalitions W = {C E 2N | V(C) ^ 0} is 
nonempty and closed with respect to the set-inclusion relation, i.e. it satisfies the 
following property: 

c ew, cCD=>Dew. 
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Pick T G W such that \T\ = min{|C| \C G W } . Obviously, u* = -oo for all k G T 
and then it follows by (i) and (iii) that V(T) is closed and bounded from above. 
Then there exists a Pareto optimum point of V(T) f) prT(N), say z. 

Set M = N \ T. The "reduced game" (M, VM) is defined by: 

VM(C) = | J {x G JRC \(x, zs) G V(C U S)} 
SCT 

for any 0 / C C M. 
One can easily verify that the game (M,VM) satisfies the conditions (i)-(vi). 
Suppose that it admits a c.u.c.s. and let y G H its associated ideal payoff 

vector. Obviously, y toghether the set C of the coalitions involved in the proposals 
of the solution satisfy the conditions (8) and (9) of Proposition 3.6. Of course, for 
each C G C there is ;S C T such that (yc, zs) G V(C U S). Set C = C U S and 
C = {C = C U S I C G C}. The crucial step of the proof consists by showing that 
the n-vector u = (y,z) and the set C satisfy the conditions (8) and (9). Then, by 
Proposition 3.7, the original game admits a c.u.c.s. 

Since (8) immediately follows from (v) and the definition of C we must verify 
condition (9). 

To the contrary, assume (x, E) be a proposal of the game (N, V) such that x > UE-
Obviously, £ H M ^ 0, i.e. E = CUS with C / 0, C C M and S C T. Since 
(%c,zs) G V(E) it follows that xc G VM(C). So that it is impossible to have 
xc > «c = Vc, otherwise the definition of y would be violated. Therefore, xc = yc 
and xc > zs- Let k G S be such that Xk > z^. Then, by (vi) there is w G V(E) such 
that Wi > Xi = yi for every i G C and Wj > Zj for all j G S. Hence, wc G Vjf(C) 
and wc ^ yc, & contradiction. 

Now the theorem can be proved in two steps. In the first step, considering 
W = 2N \ {0} show, by induction on n = \N\, that (N, V) has a c.u.c.s. 

For n = 1, V({1}) is a nonvoid compact and {(v\, {1})} is a c.u.c.s. Assume that 
every game with at most n — 1 players has a c.u.c.s. and let (N, V) be a game with 
|N | = n. Set M = N \ {n} and consider the game (M, VM). Since VM(C) ^ 0 for all 
C ^ 0, C C M, it follows by induction that (M, VM) has a c.u.c.s. Taking T = {n} 
in the above it will follow that (N, V) has a c.u.c.s. too. 

The second step concerns with the general case. Since for the reduced game 
(M, VM) it is obvious that WM = {C C M \ VM(C) ^ 0} = 2 M \ {0}, the conclusion 
of the first step can be used. Then, the desired result follows from the first part of 
the proof. D 

4. TU GAMES 

As it was already mentioned, any TU game satisfies all conditions (i)-(iv) and (vi). 
Hence most results stated in the previous section holds for the TU games without 
special assumptions. 

Since the existence of the c.u.c.s. is dependent of the property (v) it seems that 
the conclusion of the Theorem 3.8 would be also dependent of the monotonicity of 
the game. Obviously if the characteristic function v is non-decreasing then the TU 
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game has a c.u.c.s. However, as it was shown in Stefanescu [8], the monotonicity of 
u is not necessary. 

T h e o r e m 4 .1 (Stefanescu [8]). If the characteristic function of a TU game is 
non-negative, then a c.u.c.s. always exists. 

Despite the existing similarities between theirs definitions the c.s. and u.c.s. are 
different notions. We can exemplify this assertion by producing two simple examples. 

E x a m p l e 1 n = 3. u({l}) = u({2}) = 1.05; v({0}) = 0; ^({1,2}) = u(N) = 2; 

1 / ({ l ,3}) = /v({2,3}) = 0.9. 

The set of proposals: S = {((0.9,1.1), {1,2}), ((1.1,0.9, 0), N)} is a c.s. but not 
a u.c.s. (condition (4) is violated). 

E x a m p l e 2 n = 3. u({i}) = 1, i = 1,2,3; u({i,j}) = 2 if {i,j} C {1 ,2 ,3} ; 

u(N) = 3. 

Of course S = {((1,1) , {1,2}), ((1,1), {1,3}), ( (1,1) , {2,3})} is an u.c.s. which is 
not a c.s. Indeed, ((1.5,1.5,0), N) is a proposal which is strictly prefered to the first 
proposal of S by the pivotal players, and the axiom (3) is not verified. 

The last result of this section give a necessary and sufficient condition for the 
existence of the c.s. It is interesting to note tha t for the class of TU games involved 
here the c.s. exists only when it coincides with an u.c.s. We will consider in the 
following the TU games whose characteristic functions are strictly superadditive i.e. 
satisfy the condition: 

C , L V 0 , CDD = ®^v(C) + v(D)<v(CUD). 

T h e o r e m 4 .2 (Stefanescu [8]). Assume v be strictly superadditive and non-
negative. Then the TU game (N, V) admits a c.s. if and only if C(N, V) / 0. 
Moreover, in this case every c.s. is an u.c.s. at the same time. 

(Received May 18, 1995.) 
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