MONOGENICITY OF PROBABILITY MEASURES BASED ON MEASURABLE SETS INVARIANT UNDER FINITE GROUPS OF TRANSFORMATIONS

JÜRGEN HILLE AND DETLEF PLACHKY

Let \mathcal{A} denote a σ -algebra of subsets of a set Ω , G a finite group of $(\mathcal{A}, \mathcal{A})$ -measurable transformations $g: \Omega \to \Omega$, F(G) the set consisting of all $\omega \in \Omega$ such that $g(\omega) = \omega$, $g \in G$, is fulfilled, and let $\mathcal{B}(G, \mathcal{A})$ stand for the σ -algebra consisting of all sets $\mathcal{A} \in \mathcal{A}$ satisfying $g(\mathcal{A}) = \mathcal{A}, g \in G$. Under the assumption $f(\mathcal{B}) \in \mathcal{A}^{|G|}$, $\mathcal{B} \in \mathcal{B}(G, \mathcal{A})$, for $f: \Omega \to \Omega^{|G|}$ defined by $f(\omega) = (g_1(\omega), \ldots, g_{|G|}(\omega))$, $\omega \in \Omega$, $\{g_1, \ldots, g_{|G|}\} = G$, where |G| stands for the number of elements of G, $\Omega^{|G|}$ for the |G|-fold Cartesian product of Ω , and $\mathcal{A}^{|G|}$ for the |G|-fold direct product of \mathcal{A} , it is shown that a probability measure P on \mathcal{A} is uniquely determined among all probability measures on \mathcal{A} by its restriction to $\mathcal{B}(G, \mathcal{A})$ if and only if $P^*(F(G)) = 1$ holds true and that $F(G) \in \mathcal{A}$ is equivalent to the property of \mathcal{A} to separate all points $\omega_1, \omega_2 \in F(G), \omega_1 \neq \omega_2$, and $\omega \in F(G), \omega' \notin F(G)$, by a countable system of sets contained in \mathcal{A} . The assumption $f(\mathcal{B}) \in \mathcal{A}^{|G|}$, $\mathcal{B} \in \mathcal{B}(G, \mathcal{A})$, is satisfied, if Ω is a Polish space and \mathcal{A} the corresponding Borel σ -algebra.

1. INTRODUCTION

The main result of this article concerns characterizations of the property of a probability measure P defined on a σ -algebra \mathcal{A} of subsets of a set Ω to be uniquely determined among all other probability measures defined on \mathcal{A} by its restriction to some sub- σ -algebra \mathcal{B} , which consists in this article of all sets $A \in \mathcal{A}$ satisfying $A = g(A), g \in G$, where G denotes a finite group of $(\mathcal{A}, \mathcal{A})$ -measurable transformations $g : \Omega \to \Omega$. For example the results of the second part of this article might be applied to the special group of permutations acting on \mathbb{R}^n or the finite group consisting of 2^n elements acting on \mathbb{R}^n by changing the sign of the coordinates. In the first case a probability measure P on $\mathcal{B}(\mathbb{R}^n)$, where $\mathcal{B}(\mathbb{R}^n)$ is introduced as the Borel- σ -algebra of \mathbb{R}^n , is uniquely determined by its restriction to the sub- σ -algebra of $\mathcal{B}(\mathbb{R}^n)$ consisting of all permutation-invariant Borel subsets of \mathbb{R}^n , if and only if $P(\Delta) = 1$ is valid, where Δ stands for the diagonal of \mathbb{R}^n . In the second case, a probability measure P on $\mathcal{B}(\mathbb{R}^n)$ is uniquely determined by its restriction to the sub- σ -algebra of $\mathcal{B}(\mathbb{R}^n)$ consisting of all sign-invariant Borel subsets of \mathbb{R}^n , if and only if P is already the one-point mass at the origin of \mathbb{R}^n . In the sequel the underlying model for the investigation of problems of the preceding type will be introduced and studied in detail.

The starting point is the following generalization of a result concerning groups of permutations (cf. [4]) to arbitrary finite groups of transformations.

Lemma 1. Let \mathcal{A} denote a σ -algebra of subsets of some set Ω , G a finite group of $(\mathcal{A}, \mathcal{A})$ -measurable transformations $g : \Omega \to \Omega$, $\mathcal{B}(G, \mathcal{A})$ the σ -algebra consisting of all $A \in \mathcal{A}$ satisfying $A = g(A), g \in G$, and \mathcal{C} an algebra of subsets of Ω generating \mathcal{A} . Then $\mathcal{B}(G, \mathcal{A})$ is generated by $\{\bigcup_{g \in G} g(C) : C \in \mathcal{C}\}$.

Proof. Let \mathcal{D} denote the σ -algebra generated by $\{\bigcup_{g \in G} g(C) : C \in \mathcal{C}\}$. Then $\mathcal{D} \subset \mathcal{B}(G, \mathcal{A})$ holds true, whereas the inclusion $\mathcal{B}(G, \mathcal{A}) \subset \mathcal{D}$ will follow from the observation that \mathcal{M} introduced as the set consisting of all $A \in \mathcal{A}$ such that $\bigcup_{g \in G} g(A) \in \mathcal{D}$ is fulfilled, is a monotone class, since \mathcal{M} already contains the algebra \mathcal{C} generating \mathcal{A} . Clearly $\bigcup_n A_n \in \mathcal{M}$ is valid for any increasing sequence $A_n \in \mathcal{M}$, $n \in \mathbb{N}$, because of $\bigcup_n (\bigcup_{g \in G} g(A_n)) = \bigcup_{g \in G} (\bigcup_n g(A_n))$. Furthermore, for any decreasing sequence $A_n \in \mathcal{M}, n \in \mathbb{N}, \omega \in \bigcap_n (\bigcup_{g \in G} g^{-1}(A_n))$ implies that for any $n \in \mathbb{N}$ there exists some $g_n \in G$ satisfying $g_n(\omega) \in A_n$, i.e. there exists a $g \in G$ such that $g(\omega) \in A_n$ for infinite many $n \in \mathbb{N}$ is fulfilled, since G is finite. Hence, $g(\omega) \in \bigcap_n A_n$ holds true, i.e. the inclusion $\bigcap_n (\bigcup_{g \in G} g^{-1}(A_n)) \subset \bigcup_{g \in G} (g^{-1}(\bigcap_n A_n))$ has been shown, whereas the inclusion $\bigcup_{g \in G} (g^{-1}(\bigcap_{n \in \mathbb{N}} A_n)) \subset \bigcap_n (\bigcup_{g \in G} g^{-1}(A_n))$ is obvious. Therefore, $\bigcap_n (\bigcup_{g \in G} g^{-1}(A_n)) \in \mathcal{D}$ has been proved for any decreasing sequence $A_n \in \mathcal{M}$, i.e. \mathcal{M} is a monotone class.

Remarks.

(i) The assertion of Lemma 1 does not hold longer true, in general, for countable groups of transformations, as the following special case shows:

Let Ω stand for the set \mathbb{R} of real numbers and \mathcal{A} for the Borel σ -algebra of \mathbb{R} , which might be generated by the algebra \mathcal{C} consisting of all finite unions of pairwise disjoint intervals of the type (a, b], where a, b, a < b, are rational numbers including $-\infty$ and ∞ . Furthermore, G is introduced by the countable group consisting of all transformations $g_{\rho} : \mathbb{R} \to \mathbb{R}$ defined by $g_{\rho}(x) = x + \rho$, $x \in \mathbb{R}$, where ρ is some rational number. Then $\bigcup_{\rho} g_{\rho}(\sum_{i=1}^{n} (a_i, b_i]), n \in \mathbb{N} \cup \{0\}$, is equal to \mathbb{R} in the case $n \in \mathbb{N}$ and empty in the case n = 0, i.e. the σ -algebra generated by $\bigcup_{\rho} g_{\rho}(\sum_{i=1}^{n} (a_i, b_i]), a_i < b_i, a_i, b_i$ rational, $i = 1, \ldots, n, n \in \mathbb{N} \cup \{0\}$ is equal to $\{\emptyset, \mathbb{R}\}$, whereas $\mathcal{B}(G, \mathcal{A}) \neq \{\emptyset, \mathbb{R}\}$ holds true, since the set consisting of all rational numbers belongs to $\mathcal{B}(G, \mathcal{A})$.

- (ii) The special case of Lemma 1, where G is the group acting as permutations on \mathbb{R}^n together with \mathcal{A} as the Borel σ -algebra of \mathbb{R}^n leads to a short proof of the well-known fact that $\mathcal{B}(G, \mathcal{A})$ is induced by the order statistics $T : \mathbb{R}^n \to \mathbb{R}^n$ sending $(x_1, \ldots, x_n) \in \mathbb{R}^n$ to the corresponding *n*-tuple, which is increasingly ordered, i.e. $T^{-1}(\mathcal{A}) = \mathcal{B}(G, \mathcal{A})$ is valid in this case.
- (iii) Let G_j denote finite groups of transformations with underlying σ -algebras \mathcal{A}_j , j = 1, 2, then Lemma 1 implies $\mathcal{B}(G_1 \times G_2, \mathcal{A}_1 \otimes \mathcal{A}_2) = \mathcal{B}(G_1, \mathcal{A}_1) \otimes \mathcal{B}(G_2, \mathcal{A}_2)$.

Further applications of Lemma 1 concern a characterization of the atoms of $\mathcal{B}(G, \mathcal{A})$ and the property of $\mathcal{B}(G, \mathcal{A})$ to be countably generated.

Corollary 1. Let \mathcal{A} denote a σ -algebra of subsets of a set Ω , G a finite group of $(\mathcal{A}, \mathcal{A})$ -measurable transformations $g : \Omega \to \Omega$, and $\mathcal{B}(G, \mathcal{A})$ the σ -algebra consisting of all the sets $A \in \mathcal{A}$ satisfying $A = g(A), g \in G$.

Then the following assertions hold true:

- (i) $B \in \mathcal{B}(G, \mathcal{A})$ is an atom of $\mathcal{B}(G, \mathcal{A})$ if and only if $B = \bigcup_{g \in G} g(A)$ is valid for an atom A of \mathcal{A} ,
- (ii) $\mathcal{B}(G, \mathcal{A})$ is countably generated if and only if there exists a countably generated σ -algebra $\mathcal{A}' \subset \mathcal{A}$ such that $g : \Omega \to \Omega$ is $(\mathcal{A}', \mathcal{A}')$ -measurable, $g \in G$, and $\mathcal{B}(G, \mathcal{A}') = \mathcal{B}(G, \mathcal{A})$ is valid.

Proof. For the proof of part (i) let $A \in \mathcal{A}$ denote an atom of \mathcal{A} . Then $B \in \mathcal{B}(G,\mathcal{A})$ defined by $\bigcup_{g \in G} g(A)$ is an atom of $\mathcal{B}(G,\mathcal{A})$, since g(A), $g \in G$, are atoms of \mathcal{A} , too. Therefore, $C \cap g(A)$ is equal to g(A) or empty, $g \in G$, where $C \in \mathcal{B}(G,\mathcal{A})$ is some subset of B, i.e. $C = \bigcup_{g \in H} g(A)$, $H \subset G$. Now g(C) = C, $g \in G$, implies $C = \bigcup_{g \in G} g(A)$, if H is not empty, which shows that C = B is valid or C is empty, i.e. B given by $\bigcup_{g \in G} g(A)$, where A stands for some atom of \mathcal{A} , is indeed an atom of $\mathcal{B}(G,\mathcal{A})$.

For the proof of the converse implication let $B \in \mathcal{B}(G, \mathcal{A})$ stand for an atom of $\mathcal{B}(G, \mathcal{A})$. According to Lemma 1 there exists a countable subset \mathcal{C} of \mathcal{A} such that B already belongs to the σ -algebra \mathcal{B} generated by $\{\bigcup_{g \in G} g(C) : C \in \mathcal{C}\}$. Let B_i , $i \in I$, stand for the atoms of \mathcal{B} and A_j , $j \in J$, for the atoms of the σ -algebra \mathcal{A}' generated by $\{g(C) : C \in \mathcal{C}, g \in G\}$. Then $g : \Omega \to \Omega, g \in G$, is $(\mathcal{A}', \mathcal{A}')$ -measurable according to Lemma 1, since one might replace \mathcal{C} by the countable algebra generated by $\{g(C) : C \in \mathcal{C}, g \in G\}$. Therefore, $\mathcal{B} = \mathcal{B}(G, \mathcal{A}')$ holds true and $\bigcup_{j \in J} A_j = \bigcup_{i \in I} B_i = \Omega$. According to the above considerations $\bigcup_{g \in G} g(A_j), j \in J$, is an atom of $\mathcal{B} = B(G, \mathcal{A}')$. Now $\bigcup_{j \in J} \bigcup_{g \in G} g(A_j) = \Omega$ and $\bigcup_{i \in I} B_i = \Omega$ shows that any B_i , $i \in I$, is of the type $\bigcup_{g \in G} g(A_j)$ for some $j \in J$. In particular, the atom $B \in \mathcal{B}(G, \mathcal{A})$ is of the type $\bigcup_{g \in G} g(A)$ for a certain set $A \in \{A_j : j \in I\}$. Now $A \in \mathcal{A}$ must be an atom of \mathcal{A} , since, otherwise, $B \in \mathcal{B}(G, \mathcal{A})$ would not be an atom of $\mathcal{B}(G, \mathcal{A})$, because $\bigcup_{g \in G} g(A')$ and $\bigcup_{g \in G} g(A \setminus A')$ are disjoint and their union coincides with $\bigcup_{g \in G} g(A)$ for any $A' \in \mathcal{A}$ satisfying $A' \subset A$, i.e. $\bigcup_{g \in G} g(A') = \emptyset$ or $\bigcup_{g \in G} g(A \setminus A') = \emptyset$ is valid, from which $A' = \emptyset$ or A' = Afollows.

For the proof of part (ii) let \mathcal{A}' be some countably generated σ -algebra contained in \mathcal{A} such that $g: \Omega \to \Omega$ is $(\mathcal{A}', \mathcal{A}')$ -measurable, $g \in G$, and $\mathcal{B}(G, \mathcal{A}') = \mathcal{B}(G, \mathcal{A})$ holds true. Then $\mathcal{B}(G, \mathcal{A}') (= \mathcal{B}(G, \mathcal{A}))$ is countably generated according to Lemma 1.

For the proof of the converse implication one might choose $\mathcal{B}(G, \mathcal{A})$ for \mathcal{A}' .

Remarks.

(i) Let \mathcal{A} be a countably generated σ -algebra of subsets of a given set Ω . Then there exists a countably generated sub- σ -algebra \mathcal{A}_1 of \mathcal{A} and a sub- σ -algebra \mathcal{A}_2 of \mathcal{A} containing \mathcal{A}_1 such that it is not countably generated and that $g: \Omega \to \Omega, g \in G$, is both $(\mathcal{A}_1, \mathcal{A}_1)$ -measurable and $(\mathcal{A}_2, \mathcal{A}_2)$ -measurable; further $\mathcal{B}(G, \mathcal{A}_1) = \mathcal{B}(G, \mathcal{A}_2) = \mathcal{B}(G, \mathcal{A})$ holds true if and only if the set \mathcal{E} consisting of all atoms of \mathcal{A} not belonging to $\mathcal{B}(G, \mathcal{A})$ is uncountable, which might be proved as follows:

Starting from the assumption $\mathcal{B}(G, \mathcal{A}_2) = \mathcal{B}(G, \mathcal{A})$, where \mathcal{A} is countably generated and where \mathcal{A}_2 is a sub- σ -algebra of \mathcal{A} such that $g : \Omega \to \Omega$ is $(\mathcal{A}_2, \mathcal{A}_2)$ -measurable, $g \in G$, it is sufficient to show that \mathcal{A}_2 is already countably generated, if \mathcal{E} is countable. For this purpose one observes that $\mathcal{A} \cap \Omega_0^c \subset$ $\mathcal{B}(G, \mathcal{A}) \cap \Omega_0^c = \mathcal{B}(G, \mathcal{A}_2) \cap \Omega_0^c \subset \mathcal{A}_2 \cap \Omega_0^c$ holds true for Ω_0 introduced as $\bigcup_{E \in \mathcal{E}} E$. Therefore, $\mathcal{A} \cap \Omega_0^c = \mathcal{A}_2 \cap \Omega_0^c$ is valid, from which it follows that \mathcal{A}_2 is countably generated.

For the proof of the other implication let \mathcal{A}_2 stand for the σ -algebra generated by \mathcal{A}_1 and the atoms of \mathcal{A} , where \mathcal{A}_1 coincides with $\mathcal{B}(G, \mathcal{A})$. It will be shown that \mathcal{A}_2 is not countably generated, if \mathcal{E} is uncountable. The assumption on \mathcal{A}_2 to be countably generated results in an existence of a countable set $\{C_n : n \in \mathbb{N}\}$ of atoms of \mathcal{A} such that, for any $A \in \mathcal{A}_2$, there exists a set $B \in \mathcal{A}_1$ satisfying $A\Delta B \subset \bigcup_{n=1}^{\infty} C_n$. Therefore, any $C_0 \in \mathcal{E} \setminus \{g(C_n) : n \in \mathbb{N}, g \in G\}$ satisfies $C_0\Delta B_0 \subset \bigcup_{n=1}^{\infty} C_n$ for some $B_0 \in \mathcal{A}_1$, which leads to $C_0 \subset B_0$ because of $C_0 \cap C_n = \emptyset$, $n \in \mathbb{N}$. Finally, $C_0 \neq g_0(C_0)$ is valid for some $g_0 \in G$, which results in $g_0(C_0) \cap C_0 = \emptyset$, i.e. $g_0(C_0) \subset B_0 \cap C_0^c \subset \bigcup_{n=1}^{\infty} C_n$ holds true because of $g_0(C_0) \subset g_0(B_0) = B_0$. Hence, there exists a set C_{n_0} satisfying $g_0(C_0) = C_{n_0}$, i.e. one arrives at the contradiction $C_0 = g_0^{-1}(C_{n_0})$.

- (ii) Let \mathcal{A} stand for a σ -algebra of subsets of a set Ω , G for a group not necessarily finite, of $(\mathcal{A}, \mathcal{A})$ -measurable transformations $g : \Omega \to \Omega$, and let \mathcal{P} stand for the set consisting of all G-invariant probability measures P on A, i.e. $P = P^{g}, g \in G$, is valid. Then it is well-known (cf. [1], p. 38-39) that the extremal points of \mathcal{P} might be characterized by the property of G-ergodicity, i.e. $P \in \mathcal{P}$ is G-ergodic if and only if P restricted to the σ -algebra \mathcal{A}_P consisting of all sets $A \in \mathcal{A}$ satisfying $P(A\Delta g(A)) = 0$, $g \in G$, is already $\{0,1\}$ -valued. In case G is finite, the property of $P \in \mathcal{P}$ to be G-ergodic is equivalent to the property of $P \in \mathcal{P}$ that its restriction to $\mathcal{B}(G, \mathcal{A})$ is $\{0, 1\}$ valued. Under the additional assumption that \mathcal{A} is countably generated, any $P \in \mathcal{P}$ is G-ergodic, according to Corollary 1, if and only if there exist an atom $A \in \mathcal{A}$ and $g_k \in G$, k = 1, ..., n, such that $g_k(A)$, k = 1, ..., n, are pairwise disjoint and $P(g_k(A)) = \frac{1}{n}$, k = 1, ..., n, holds true. This result is not longer valid for infinite groups of transformations, as a special case shows in which the underlying set Ω is a compact, metrizable group G with A as the corresponding Borel σ -algebra. In this case \mathcal{P} only contains the normalized Haar measure, if G is chosen for the corresponding group of $(\mathcal{A}, \mathcal{A})$ -measurable transformations $q: \Omega \to \Omega$.
- (iii) The conclusion that the property of \mathcal{A} to be countably generated implies that $\mathcal{B}(G, \mathcal{A})$ is also countably generated might also be drawn from the observation that $\frac{1}{|G|} \sum_{g \in G} I_{g(\mathcal{A})}$, where |G| stands for numbers of elements of G, is for any

 $A \in \mathcal{A}$ a regular, proper version of the conditional distribution $P(A|\mathcal{B}(G,\mathcal{A}))$, where P is an arbitrary G-invariant probability measure on \mathcal{A} (cf. [2]).

(iv) Let \mathcal{A}_j denote σ -algebras of subsets of some set Ω_j , $j = 1, \ldots, n$ $(n \ge 2)$. Then the atoms of the *n*-fold direct product $\mathcal{A}_1 \otimes \ldots \otimes \mathcal{A}_n$ might be characterized by the property to be of the type $A_1 \times \ldots \times A_n$, where each $A_j \in \mathcal{A}_j$ is an atom of \mathcal{A}_j , $j = 1, \ldots, n$. Clearly, sets of this type are atoms of $\mathcal{A}_1 \otimes \ldots \otimes \mathcal{A}_n$. The converse direction might be proved with the aid of the observation that any countably generated σ -algebra has atoms such that their union coincides with the underlying set. In particular, let G denote the symmetric group of order nacting as $(\mathcal{A}^n, \mathcal{A}^n)$ -measurable permutations $g : \Omega^n \to \Omega^n$, where Ω^n stands for the *n*-fold Cartesian product of the set Ω and \mathcal{A}^n for the *n*-fold direct product of the σ -algebra \mathcal{A} of subsets of Ω . In this case, the atoms of $\mathcal{B}(G, \mathcal{A}^n)$ are of the type $\bigcup_{\pi \in \gamma_n} \mathcal{A}_{\pi(1)} \times \ldots \times \mathcal{A}_{\pi(n)}$, where $A_j \in \mathcal{A}$, $j = 1, \ldots, n$, are atoms of \mathcal{A} and γ_n is the symmetric group of order n consisting of all permutations $\pi : \{1, \ldots, n\} \to \{1, \ldots, n\}$.

The conclusion of part (iii) of the preceding remark, namely that $\mathcal{B}(G, \mathcal{A})$ is countably generated for finite groups of $(\mathcal{A}, \mathcal{A})$ -measurable transformations $g : \Omega \to \Omega$, if \mathcal{A} is countably generated, is not in general valid for countable groups as the following example shows:

Example 1. Let Ω stand for the unit circle {exp $ix : x \in \mathbb{R}$ } with the corresponding σ -algebra \mathcal{A} and let P stand for the Haar measure of this compact group Ω with $P(\Omega) = 1$. Furthermore, let G be introduced as the countable group of $(\mathcal{A}, \mathcal{A})$ measurable transformations $g_{\rho}: \Omega \to \Omega$ defined by $g_{\rho}(e^{ix}) = e^{i(x+\rho)}, x \in \mathbb{R}, \rho \in \mathbb{Q}$, where \mathbb{Q} stands for the set of rational numbers. It will be shown that P restricted to $\mathcal{B}(G,\mathcal{A})$ is $\{0,1\}$ -valued under the assumption that $\mathcal{B}(G,\mathcal{A})$ is countably generated, which results in the contradiction that $P(\{\exp i(x + \mathbb{Q})\}) = 1$ must be valid for some atom exp $i(x + \mathbb{Q}), x \in \mathbb{R}$, of $\mathcal{B}(G, \mathcal{A})$. It remains to prove that one arrives, from the assumption on $\mathcal{B}(G,\mathcal{A})$ to be countably generated, at a $\{0,1\}$ -valued restriction of P to $\mathcal{B}(G,\mathcal{A})$, which might be seen as follows: For any set $\exp(iB) \in \mathcal{B}(G,\mathcal{A})$, where B is a Borel subset of \mathbb{R} , the equation $\exp(iB) \cap \exp(iB + \rho) = \exp(iB), \ \rho \in \mathbb{Q}$, yields $P(\exp(iB) \cap \exp i(B + \rho)) = P(\exp(iB)), \ \rho \in \mathbb{Q}$, from which $P(\exp(iB) \cap$ $\exp i(B+x) = P(\exp(iB)), x \in \mathbb{R}$, follows, since the function defined by $x \to \infty$ $P(\exp(iB) \cap \exp i(B+x)), x \in \mathbb{R}$, is continuous (cf. [6], p. 191). Therefore, for any $x \in \mathbb{R}$ and all sets $e^{iB} \in \mathcal{B}(G, \mathcal{A})$, where B is a Borel subset of \mathbb{R} , there exists a *P*-zero set N_x such that $I_{\exp(iB)}(\exp iy) \cdot I_{\exp i(B+x)}(\exp iy) = I_{\exp(iB)}(\exp iy)$ for $\exp iy \notin N_x$ and $y \in \mathbb{R}$ holds true, if $\mathcal{B}(G, \mathcal{A})$ is countably generated, since one might start from a countable algebra generating $\mathcal{B}(G, \mathcal{A})$ and apply a monotone class argument. Now $e^{iB} \in \mathcal{B}(G, \mathcal{A})$, where B is a Borel subset of \mathbb{R} , implies that $e^{i(B-x)} \in \mathcal{B}(G,\mathcal{A}), \ x \in \mathbb{R}$, which implies $I_{\exp(iB)}(\exp iy) \cdot I_{\exp i(B+x)}(\exp iy) =$ $I_{\exp(iB)}(\exp iy)$ for all $\exp iy \notin N_0$ with $y \in \mathbb{R}$ and all $x \in \mathbb{R}$, from which one derives the equation $I_{\exp(iB)}(\exp iy)P(\exp i(y-B)) = I_{\exp(iB)}(\exp iy)$, $\exp iy \notin N_0$ with $y \in \mathbb{R}$. Finally $P(\exp(iB)) > 0$ yields the existence of a value $\exp iy \in \exp iB$ satisfying $\exp iy \notin N_0$ with $y \in \mathbb{R}$, i.e. $P(\exp i(y - B)) = P(\exp(-iB)) = 1$ and,

therefore, $P(\exp(iB)) = 1$ is valid, since $P(\exp(iB)) > 0$ implies $P(\exp(-iB)) > 0$, i.e. B might be replaced by -B.

2. MAIN RESULTS

In the sequel the property of a probability measure P on the σ -algebra \mathcal{A} to be monogenic with respect to the σ -algebra $\mathcal{B}(G, \mathcal{A})$ consisting of all G-invariant sets belonging to \mathcal{A} , i.e. $A \in \mathcal{B}(G, \mathcal{A})$ if and only if $A = g(A), g \in G$, holds true, will be characterized by properties of approximation, where P is called monogenic with respect to $\mathcal{B}(G, \mathcal{A})$ if and only if P is uniquely determined among all probability measures on \mathcal{A} by its restriction $P|\mathcal{B}(G, \mathcal{A})$ to $\mathcal{B}(G, \mathcal{A})$.

Lemma 2. Let \mathcal{A} denote a σ -algebra of subsets of a set Ω , G a finite group of $(\mathcal{A}, \mathcal{A})$ -measurable transformations $g : \Omega \to \Omega$, and $\mathcal{B}(G, \mathcal{A})$ the σ -algebra of all G-invariant sets belonging to \mathcal{A} . Then a probability measure P on \mathcal{A} is monogenic with respect to $\mathcal{B}(G, \mathcal{A})$ if and only if $P((\bigcup_{g \in G} g(\mathcal{A})) \setminus (\bigcap_{g \in G} g(\mathcal{A}))) = 0$ holds true for any $\mathcal{A} \in \mathcal{A}$.

Proof. Clearly, if P has this property of approximation, then P is monogenic with respect to $\mathcal{B}(G, \mathcal{A})$, since $\bigcap_{g \in G} g(A) \subset A \subset \bigcup_{g \in G} g(A)$ and $\bigcap_{g \in G} g(A)$, $\bigcup_{g \in G} g(A) \in \mathcal{B}(G, \mathcal{A})$, $A \in \mathcal{A}$, is valid.

For the proof of the converse implication one might start from the observation that \overline{P} defined by $\frac{1}{|G|} \sum_{g \in G} P^g$ (|G| number of elements of G) is a probability measure on \mathcal{A} , whose restriction $\overline{P}|\mathcal{B}(G,\mathcal{A})$ to $\mathcal{B}(G,\mathcal{A})$ coincides with $P|\mathcal{B}(G,\mathcal{A})$. Therefore, the property of P to be monogenic with respect to $\mathcal{B}(G,\mathcal{A})$ implies that P is already G-invariant, i.e. $P^g = P$, $g \in G$, holds true. Furthermore, P is an extremal point of the convex set consisting of all probability measures on \mathcal{A} whose restriction to $\mathcal{B}(G,\mathcal{A})$ coincides with $P|\mathcal{B}(G,\mathcal{A})$. Hence, for any $A \in \mathcal{A}$, there exists a $B \in \mathcal{B}(G,\mathcal{A})$ satisfying $P(A\Delta B) = 0$, where Δ stands for the symmetric difference (cf. [7]). This property of approximation fulfilled by P together with the property of P to be G-invariant results in $P(A\Delta(\bigcup_{g \in G} g(A))) = 0$ and $P(A\Delta(\bigcap_{g \in G} g(A))) = 0$ from which $P((\bigcup_{g \in G} g(A)) \setminus (\bigcap_{g \in G} g(A))) = 0$ follows. \Box

The remaining part of this article is devoted to the problem of simplifying the monogenicity criterion of Lemma 2. In this connection the set F(G) consisting of all $\omega \in \Omega$ which are kept fixed under all $g \in G$, i.e. $\omega = g(\omega), g \in G$, holds true, plays an essential role.

Lemma 3. Let \mathcal{A}^n denote the *n*-fold direct product of the σ -algebra \mathcal{A} of subsets of some set Ω and let G denote the finite group of $(\mathcal{A}^n, \mathcal{A}^n)$ -measurable transformations $g: \Omega^n \to \Omega^n, \Omega^n$ being the *n*-fold Cartesian product of Ω , associated with some subgroups of the symmetric group γ_n of all permutations of $\{1, \ldots, n\}$. Then a probability measure P on \mathcal{A}^n is monogenic with respect to $\mathcal{B}(G, \mathcal{A}^n)$ if and only if $P^*(F(G)) = 1$ holds true, where P^* stands for the outer probability measure of P.

Monogenicity of Probability Measures Based on Measurable Sets Invariant ...

Proof. Clearly, $P^*(F(G)) = 1$ is according to Lemma 2 sufficient for the property of P to be monogenic with respect to $\mathcal{B}(G, \mathcal{A}^n)$, since $(\bigcup_{g \in G} g(A)) \setminus (\bigcap_{g \in G} g(A)) \subset (F(G))^c$ is valid for all $A \in \mathcal{A}^n$.

For the proof of the converse implication one might introduce the following equivalence relation on $\{1, \ldots, n\}$ defined by $i \sim j$ for $i, j \in \{1, \ldots, n\}$ if and only if there exists some $\gamma \in \Gamma$ such that $i = \gamma(j)$ is valid, where Γ stands for the subgroup of the symmetric group γ_n associated with G. Let $[i_1], \ldots, [i_k], i_1 < \ldots < i_k, i_j \in \{1, \ldots, n\}, j = 1, \ldots, k$, denote the corresponding equivalence classes. It will now be shown that $F(G) \subset \bigcup_{m=1}^{\infty} (A_{m,1} \times \ldots \times A_{m,n})$ for $A_{m,j} \in \mathcal{A}, j = 1, \ldots, n, m \in \mathbb{N}$, implies $\sum_{m=1}^{\infty} P(A_{m,1} \times \ldots \times A_{m,n}) \geq 1$, from which the assertion $P^*(F(G, \mathcal{A})) = 1$ follows. For this purpose one should take into consideration that Lemma 2 leads to the following equations up to some P-zero set:

$$I_{A_{m,1}} \times \ldots \times I_{A_{m,n}}$$

$$= I_{\bigcap_{g \in G} g(A_{m,1} \times \ldots \times A_{m,n})}$$

$$= I_{\bigcap_{g \in G} (\Omega \times \ldots \times \Omega \times \bigcap_{j \in [i_1]} A_{m,j} \times \Omega \times \ldots \times \Omega \times \bigcap_{j \in [i_2]} A_{m,j} \times \Omega \times \ldots \times \Omega \ldots \times \bigcap_{j \in [i_k]} A_{m,j} \times \Omega \times \ldots \times \Omega)},$$

where $[i_1] \cup \ldots \cup [i_k] = \{1, \ldots, n\}$ is valid. Finally, let π denote the projection of Ω^n onto $\Omega^{\{i_1,\ldots,i_k\}}$ introduced as the k-fold Cartesian product of Ω . Then $P(A_{m,1} \times \ldots \times A_{m,n}) = P^{\pi}(\bigcap_{j \in [i_1]} A_{m,j} \times \ldots \times \bigcap_{j \in [i_k]} A_{m,j})$ is implied by the preceding equations. Now $F(G) \subset \bigcup_{m=1}^{\infty} (A_{m,1} \times \ldots \times A_{m,n})$, together with $F(G) = \{(\omega_1,\ldots,\omega_n) \in \Omega^n : \omega_i = \omega_j, i, j \in [i_\nu], \nu \in \{1,\ldots,k\}\}$, yields the inclusion $\Omega^{\{i_1,\ldots,i_k\}} \subset \bigcup_{m=1}^{\infty} (\bigcap_{j \in [i_1]} A_{m,j} \times \ldots \times \bigcap_{j \in [i_k]} A_{m,j})$, from which $\sum_{m=1}^{\infty} P(A_{m,1} \times \ldots \times A_{m,n}) = \sum_{m=1}^{\infty} P^{\pi}(\bigcap_{j \in [i_1]} A_{m,j} \times \ldots \times \bigcap_{j \in [i_k]} A_{m,j}) \ge P^{\pi}(\Omega^{\{i_1,\ldots,i_k\}}) = 1$ follows, i.e. monogenicity of P with respect to $\mathcal{B}(G, \mathcal{A}^n)$ implies $P^*(F(G)) = 1$.

Remarks.

(i) If G is associated with the symmetric groups γ_n , then F(G) is equal to the diagonal Δ of Ω^n . It is known that $\Delta \in \mathcal{A}^n$ is equivalent to the property of \mathcal{A} to separate points $\omega \in \Omega$ by a countable system of sets belonging to \mathcal{A} . A short proof of this characterization of $\Delta \in \mathcal{A}^n$ might be based on the fact that the atoms of \mathcal{A}^n are of the type $A_1 \times \ldots \times A_n$, where $A_j \in \mathcal{A}, j = 1, \ldots, n$, are atoms of \mathcal{A} (cf. part (iv) of the remark following Corollary 1). The assumption $\Delta \in \mathcal{A}^n$ implies $\Delta \in \mathcal{A}^n_0$, where \mathcal{A}_0 is a countably generated sub- σ -algebra of \mathcal{A} . Therefore, Δ is equal to the union of atoms of \mathcal{A}_0^n of the type $A_1 \times \ldots \times A_n$, where $A_j \in \mathcal{A}_0$, j = 1, ..., n, are atoms of \mathcal{A}_0 , i.e. A_j , j = 1, ..., n, must be singletons. Hence, any countable generator \mathcal{C} of \mathcal{A}_0 separates points $\omega \in \Omega$. The converse implication follows easily from the fact that Δ^c is the union of sets of the type $\Omega \times \ldots \times \Omega \times A \times \Omega \times \ldots \times \Omega \times A^c \times \Omega \times \ldots \times \Omega$, where A runs through some countable subsets of \mathcal{A} , which might be assumed to be closed with respect to complements. The property of \mathcal{A} to separate points $\omega \in \Omega$ by a countable system of sets belonging to \mathcal{A} implies that the cardinality of the underlying set Ω exceeds the cardinality of the set \mathbb{R} of real numbers. In particular, $\pi_1 - \pi_2$ is not $(\mathcal{A} \otimes \mathcal{A}, \mathcal{A})$ -measurable, where $\pi_j : \Omega \times \Omega, j = 1, 2,$

are the projections associated with the Banach space Ω , if the cardinality of Ω exceeds the cardinality of \mathbb{R} and \mathcal{A} is the corresponding Borel σ -algebra (cf. [5]).

(ii) The case P*(Δ) = 1 together with P_{*}(Δ) = 0 is possible, where P_{*} stands for the inner probability measure of P as the following special case shows: Let Ω be an uncountable set, let A be the σ-algebra of subsets of Ω generated by all singletons {ω}, ω ∈ Ω, i.e. A = {A ⊂ Ω : A or A^c is a countable subset of Ω}, and let P stand for the probability measure on A defined by P(A) = 0, if A is a countable subset of Ω, resp. P(A) = 1, if A^c is a countable subset of Ω. Then it is not difficult to see that (P ⊗ P)*(Δ) = 1 and (P ⊗ P)_{*}(Δ) = 0 is valid.

In the sequel Lemma 3 will be extended to arbitrary finite groups of transformations. The special case of a finite group G of transformations $g: \Omega \to \Omega$ with $F(G) \notin \{\emptyset, \Omega\}$ together with the σ -algebra \mathcal{A} consisting of the sets $\emptyset, \Omega, F(G)$, and $(F(G))^c$, i.e. $\mathcal{B}(G, \mathcal{A}) = \mathcal{A}$ is valid, shows that some additional assumption must be introduced, which is given in the following

Theorem 1. Let \mathcal{A} denote a σ -algebra of subsets of a set Ω , G a finite group of $(\mathcal{A}, \mathcal{A})$ -measurable transformations $g : \Omega \to \Omega$, $\mathcal{B}(G, \mathcal{A})$ the σ -algebra consisting of all G-invariant sets belonging to \mathcal{A} , F(G) the set consisting of all $\omega \in \Omega$ satisfying $g(\omega) = \omega$, $g \in G$, $f : \Omega \to \Omega^{|G|}$, where |G| stands for the number of elements of G, the mapping defined by $f(\omega) = (g_1(\omega), \ldots, g_{|G|}(\omega)), \ \omega \in \Omega$, G = $\{g_1, \ldots, g_{|G|}\}, \ \Omega^{|G|}$ the G-fold Cartesian product of Ω , and $\mathcal{A}^{|G|}$ the |G|-fold direct product of \mathcal{A} . Under the assumption $f(B) \in \mathcal{A}^{|G|}, B \in \mathcal{B}(G, \mathcal{A})$, the following assertions hold true:

- (i) A probability measure P on A is monogenic with respect to B(G, A) if and only if P*(F(G)) = 1 is valid, where P* stands for the outer probability measure of P.
- (ii) F(G) ∈ A holds true if and only if there exists a countable system contained in A which separates all points ω₁, ω₂ ∈ F(G), ω₁ ≠ ω₂, and ω ∈ F(G), ω' ∉ F(G).

Proof. The finite group $G = \{g_1, \ldots, g_{|G|}\}$ induces a subgroup S_G of the symmetric group $\gamma_{|G|}$ of permutations of $\{1, \ldots, |G|\}$ according to $\pi_g(1, \ldots, |G|) = (g_{\pi(1)}, \ldots, g_{\pi(|G|)})$, where π stands for the permutation of $\{1, \ldots, |G|\}$ associated with $g \in G$ by $(g_1g, \ldots, g_{|G|}g) = (g_{\pi(1)}, \ldots, g_{\pi(|G|)})$. In particular, $f^{-1}(A_1 \times \ldots \times A_{|G|}) = \bigcap_{g \in G} g(A) \in \mathcal{B}(G, \mathcal{A})$ is valid for $A_1 = \ldots = A_{|G|} = A \in \mathcal{A}$ according to Lemma 1, from which $\mathcal{B}(G, \mathcal{A}) = f^{-1}(\mathcal{C})$ follows, where \mathcal{C} stands for the σ -algebra of subsets of $\Omega^{|G|}$ generated by all sets of the type $A_1 \times \ldots \times A_{|G|}$, $A_1 = \ldots = A_{|G|} = A \in \mathcal{A}$. This observation shows that monogenicity of the probability measure P^f on $\mathcal{A}^{|G|}$ with respect to $\mathcal{B}(S_G, \mathcal{A}^{|G|})$, where P^f stands for the $(\mathcal{A}, \mathcal{A}^{|G|})$ -measurable mapping f, implies that P is monogenic with respect to $\mathcal{B}(G, \mathcal{A})$. This follows, according to Lemma 2, from the equation

 $P^{f}(A_{1} \times \ldots \times A_{|G|} \setminus \bigcap_{\pi \in S_{G}} A_{\pi(1)} \times \ldots \times A_{\pi(|G|)}) = 0, A_{j} \in \mathcal{A}, j = 1, \ldots, |G|,$ since the special case $A_{j} = \Omega, j = 2, \ldots, |G|$ and $A_{1} = g_{1}(A), A \in \mathcal{A}$, results in $P(A \setminus f^{-1}(B_{1} \times \ldots \times B_{|G|})) = 0, B_{j} = A, j = 1, \ldots, |G|,$ if one takes into consideration that the subgroup of $\gamma_{|G|}$ associated with S_{G} acts transitively on $\{1, \ldots, |G|\}$.

For the converse implication, namely that monogenicity of P with respect to $\mathcal{B}(G, \mathcal{A})$ implies that P^f is monogenic with respect to $\mathcal{B}(\mathcal{S}_G, \mathcal{A}^{|G|})$ one might start from the equation $P(A \setminus B) = 0$, $A \in \mathcal{A}$, $B = \bigcap_{g \in G} g(A)$, according to Lemma 2. Now, $f(B) \in \mathcal{A}^{|G|}$ is valid by assumption, from which $P^f(A_1 \times \ldots \times A_{|G|} \setminus f(B)) = 0$ follows for $A_j \in \mathcal{A}$, $j = 1, \ldots, |G|$, where B stands for $\bigcap_{g \in G} g(C)$ and C for $\bigcap_{j=1}^{|G|} g_j^{-1}(A_j) = f^{-1}(A_1 \times \ldots \times A_{|G|}) \in \mathcal{A}$. Finally, $f(B) \in \mathcal{B}(\mathcal{S}_G, \mathcal{A}^{|G|})$, which is implied by $B \in \mathcal{B}(G, \mathcal{A})$, shows that P^f is monogenic with respect to $\mathcal{B}(\mathcal{S}_G, \mathcal{A}^{|G|})$ if and only if P is monogenic with respect to $\mathcal{B}(G, \mathcal{A})$.

Now everything is prepared for the proof of part (i) of Theorem 1. For this purpose let P stand for a probability measure on \mathcal{A} being monogenic with respect to $\mathcal{B}(G, \mathcal{A})$. Then P^f is monogenic with respect to $\mathcal{B}(\mathcal{S}_G, \mathcal{A}^{|G|})$, i.e. $(P^f)^*(F(\mathcal{S}_G)) = 1$ holds true according to Lemma 3. Now $f^{-1}(F(\mathcal{S}_G)) = F(G)$ together with the assumption $f(B) \in \mathcal{A}^{|G|}$, $B \in \mathcal{B}(G, \mathcal{A})$, leads to $P^*(F(G)) = 1$, since the coverings of F(G) entering into the definition of $P^*(F(G))$ might have been chosen to belong to $\mathcal{B}(G, \mathcal{A})$. Clearly, the property of P to fulfill the last equation $P^*(F(G)) = 1$ implies, with regard to Lemma 2, that P is monogenic with respect to $\mathcal{B}(G, \mathcal{A})$ because of $\bigcup_{g \in G} g(\mathcal{A}) \setminus \bigcap_{g \in G} g(\mathcal{A}) \subset (F(G))^c$, $\mathcal{A} \in \mathcal{A}$, i.e. part (i) of Theorem 1 has been proved.

The proof of part (ii) of Theorem 1 might be based on the observation that the subgroup of $\gamma_{|G|}$ associated with \mathcal{S}_{G} acts transitively on $\{1, \ldots, |G|\}$, from which $F(\mathcal{S}_G) = \{(\omega_1, \ldots, \omega_{|G|}) : \omega_1 = \ldots = \omega_{|G|} = \omega, \ \omega \in \Omega\}$ follows. Now the assumption $f(B) \in \mathcal{A}^{|G|}$, $B \in \mathcal{B}(G, \mathcal{A})$ together with the condition $F(G) \in \mathcal{A}$ results in $f(\Omega) \cap F(\mathcal{S}_G) = f(F(G)) \in \mathcal{A}^{|G|}$. Therefore, $f(F(G)) \in \hat{\mathcal{A}}^{|G|}$ for a certain countably generated sub- σ -algebra $\hat{\mathcal{A}}$ of \mathcal{A} holds true. Now the atoms of $\hat{\mathcal{A}}^{[G]}$ are of the type $A_1 \times \ldots \times A_{|G|}$, where $A_j \in \hat{\mathcal{A}}, \ j = 1, \ldots, |G|$, are atoms of $\hat{\mathcal{A}}$ (cf. part (iv) of the remark following Corollary 1), and the union of all atoms of $\hat{\mathcal{A}}^{|G|}$ coincides with $\Omega^{[G]}$. Hence, the atoms of $\hat{\mathcal{A}}^{[G]}$, whose union coincides with f(F(G)), are of the type $A_1 \times \ldots \times A_{|G|}$, where $A_j \in \mathcal{A}, j = 1, \ldots, |G|$, are singletons of the type $\{\omega\}, \omega \in F(G)$, i.e. any countable system of sets generating $\hat{\mathcal{A}}$ separates all points $\omega_1, \omega_2 \in F(G)$, $\omega_1 \neq \omega_2$ and $\omega \in F(G)$, $\omega' \notin F(G)$. Conversely, the existence of a countable system $\mathcal{C} \subset \mathcal{A}$ with this property of separation results in $f(\Omega) \cap F(\mathcal{S}_G) \in \mathcal{A}^{|G|}$ because the complement of $f(\Omega) \cap F(\mathcal{S}_G) = f(F(G))$ consists of the union of the sets of the type $A_1 \times \ldots \times A_{|G|}, A_j = C \in \mathcal{C}, A_k = C^c, j, k \in$ $\{1, \ldots, |G|\}, j \neq k, A_i = \Omega, i \in \{1, \ldots, |G|\} \setminus \{j, k\}$, since one might assume without loss of generality that C is already closed with respect to complements. Finally, $f(F(G)) \in \mathcal{A}^{|G|}$ together with $f^{-1}(f(F(G))) = F(G)$ yields $F(G) \in \mathcal{A}$, i.e. part (ii) of Theorem 1 has been proved.

Remarks.

(i) The condition $f(B) \in \mathcal{A}^{|G|}$, $B \in \mathcal{B}(G, \mathcal{A})$, is fulfilled, if Ω is a Polish space and \mathcal{A} the correspondingBorel σ -algebra (cf. [3], p. 276).

(ii) The σ-algebra generated by all sets of the type A₁ × ... × A_{|G|}, A₁ = ... = A_{|G|} = A ∈ A, which occurs in the proof of Theorem 1, has been characterized in [4].

In the final part of this article a further rather simple condition will be introduced, which yields simultaneously $F(G) \in \mathcal{A}$ and the characterization of monogenicity of a probability measure P on \mathcal{A} with respect to $\mathcal{B}(G, \mathcal{A})$ by P(F(G)) = 1.

Theorem 2. Let \mathcal{A} denote a σ -algebra of subsets of a set Ω , G a finite group of $(\mathcal{A}, \mathcal{A})$ -measurable transformations $g : \Omega \to \Omega$, $\mathcal{B}(G, \mathcal{A})$ the σ -algebra consisting of all G-invariant sets belonging to \mathcal{A} , and F(G) the set $\{\omega \in \Omega : g(\omega) = \omega, g \in G\}$. Under the assumption that \mathcal{A} separates all points $\omega, g(\omega), \omega \in \Omega, g \in G, \omega \neq g(\omega)$, by a countable system of sets belonging to \mathcal{A} , the following assertions hold true:

- (i) $F(G) \in \mathcal{A}$,
- (ii) a probability measure P on \mathcal{A} is monogenic with respect to $\mathcal{B}(G, \mathcal{A})$ if and only if P(F(G)) = 1 is valid.

Proof. Let $\mathcal{C} \subset \mathcal{A}$ stand for a countable system such that for $\omega \in \Omega$, $g \in G$, $\omega \neq g(\omega)$, there exists a $C \in \mathcal{C}$ satisfying $\omega \in C$, $g(\omega) \notin C$ or $\omega \notin C$, $g(\omega) \in C$. Then $\bigcup_{C \in \mathcal{C}} ((\bigcup_{g \in G} g(C)) \setminus (\bigcap_{g \in G} g(C))) = (F(G))^c$ holds true, from which P(F(G)) = 1 follows, if P is monogenic with respect to $\mathcal{B}(G, \mathcal{A})$, since this property implies according to Lemma 2 the equation $P((\bigcup_{g \in G} g(C)) \setminus (\bigcap_{g \in G} g(C))) = 0$. Clearly, P(F(G)) = 1 yields, by Lemma 2 being applied, that P is monogenic with respect to $\mathcal{B}(G, \mathcal{A})$.

Remarks.

- (i) The property of A to separate points ω, g(ω), ω ∈ Ω, g ∈ G, ω ≠ g(ω), by a countable system of sets belonging to A is shared by all countably generated σ-algebras A of subsets of Ω satisfying {ω} ∈ A, ω ∈ Ω, since such σ-algebras separates all points ω₁, ω₂ ∈ Ω, ω₁ ≠ ω₂, by a countable system of sets belonging to the corresponding σ-algebra.
- (ii) In case G is associated with the symmetric group γ_n of all permutations π of {1,...,n} acting (Aⁿ, Aⁿ)-measurably on Ωⁿ, the property of Aⁿ to separate points ω, g(ω), ω ∈ Ωⁿ, g ∈ G, ω ≠ g(ω), by a countable system of sets belonging to Aⁿ, is equivalent to the property of A to separate all points ω₁, ω₂ ∈ Ω, ω₁ ≠ ω₂, by a countable system of sets belonging to A. This follows from the observation that any σ-algebra generated by some system C of sets belonging to this σ-algebra and separating a given set of points by some countable system of sets belonging to this σ-algebra defined by some separates this given set of points by a countable system of sets belonging to C.

An application of Theorem 2 and Lemma 1 results in

Corollary 2. Let \mathcal{A}_j denote σ -algebras of subsets of some set Ω_j , G_j finite groups of $(\mathcal{A}_j, \mathcal{A}_j)$ -measurable transformations $g: \Omega \to \Omega$, $\mathcal{B}(G_j, \mathcal{A}_j)$ the σ -algebra consisting of all G_j -invariant sets belonging to \mathcal{A}_j , j = 1, 2, and $\mathcal{B}(G_1 \times G_2, \mathcal{A}_1 \otimes \mathcal{A}_2)$ the σ -algebra consisting of all $(G_1 \times G_2)$ -invariant sets belonging to $\mathcal{A}_1 \otimes \mathcal{A}_2$. Then $\mathcal{B}(G_1 \times G_2, \mathcal{A}_1 \otimes \mathcal{A}_2) = \mathcal{B}(G_1, \mathcal{A}_1) \otimes \mathcal{B}(G_2, \mathcal{A}_2)$ is valid and under the assumption that \mathcal{A}_j separates all points ω_j , $g(\omega_j)$, $\omega_j \in \Omega_j$, $g \in G_j$, $\omega_j \neq g(\omega_j)$, j = 1, 2, the following assertion holds true: A probability measure P on $\mathcal{A}_1 \otimes \mathcal{A}_2$ is monogenic with respect to $\mathcal{B}(G_1 \times G_2, \mathcal{A}_1 \otimes \mathcal{A}_2)$ if and only if the corresponding marginal probability measures P_j of P on \mathcal{A}_j are monogenic with respect to $\mathcal{B}(G_j, \mathcal{A}_j)$, j = 1, 2.

Proof. Lemma 1 implies $\mathcal{B}(G_1 \times G_2, \mathcal{A}_1 \otimes \mathcal{A}_2) = \mathcal{B}(G_1, \mathcal{A}_1) \otimes \mathcal{B}(G_2, \mathcal{A}_2)$ and monogenicity of the marginal probability measures P_j on \mathcal{A}_j with respect to $\mathcal{B}(G_j, \mathcal{A}_j), j = 1, 2$, of some probability measure P on $\mathcal{A}_1 \otimes \mathcal{A}_2$, leads, according to Theorem 2, to $P_j(F(G_j)) = 1, j = 1, 2$, from which $P(F(G_1) \times F(G_2)) =$ $P(F(G_1) \times \Omega_2) \cap (\Omega_1 \times F(G_2)) = 1$ follows, i.e. $P(F(G_1 \times G_2)) = 1$ holds true because of $F(G_1 \times G_2) = F(G_1) \times F(G_2)$, i.e. P is monogenic with respect to $\mathcal{B}(G_1 \times G_2, \mathcal{A}_1 \otimes \mathcal{A}_2)$. Conversely, $P(F(G_1 \times G_2)) = 1$, which follows by means of Theorem 2 from monogenicity of P with respect to $\mathcal{B}(G_1 \times G_2, \mathcal{A}_1 \otimes \mathcal{A}_2)$, implies $P_j(F(G_j)) = 1, j = 1, 2$, i.e. P_j is monogenic with respect to $\mathcal{B}(G_j, \mathcal{A}_j), j = 1, 2.\Box$

Remarks.

- (i) Theorem 2 remains valid for countable groups, since Lemma 2 holds true for countable groups, too. However, Theorem 2 (and also Theorem 1) is not longer true for uncountable groups even in the case where Ω is an uncountable Polish space and \mathcal{A} is the σ -algebra of Borel subsets of Ω , which might be seen as follows: For any analytic subset $A_0 \notin \mathcal{A}$ of Ω the equation $\bigcap_{B \in \mathcal{A}_0} B = A_0$ is valid, where \mathcal{A}_0 stands for all Borel subsets $B \in \mathcal{A}$ containing A_0 and \mathcal{A} denotes the Borel σ -algebra of Ω (cf. [3], Theorem 8.3.1, and [3], Corollary 8.2.17 together with [8], p. 422 in connection with the existence of A_0). Furthermore, let G denote the group of $(\mathcal{A}, \mathcal{A})$ -measurable mappings $g: \Omega \to \Omega$ such that there exists a set $B \in \mathcal{A}_0$ with the property $g(x) = x, x \in B, g(x) \neq 0$ $x, x \in \Omega \setminus B$, where g is a one-to-one transformation of Ω which maps Ω onto Ω . In particular, g^{-1} is $(\mathcal{A}, \mathcal{A})$ -measurable (cf. [3], Theorem 8.3.2 and Proposition 8.3.5), $F(G) = A_0 \notin A$ is valid, and $\mathcal{B}(G, A) = \{B \in A : B \subset A_0\}$ or $B^c \subset A_0$ holds true, since for $c_1, c_2 \in \Omega \setminus A_0, c_1 \neq c_2$, there exists a mapping $g \in G$ satisfying $g(c_1) = c_2$, i.e. $A_0^c \cap B \neq \emptyset$ for a set $B \in \mathcal{B}(G, \mathcal{A})$ implies $A_0^c \cap B = A_0^c$. In particular, $\mathcal{B}(G, \mathcal{A})$ is not countably generated, since otherwise for any $\omega \in A_0^c$ there would exist an atom C of $\mathcal{B}(G,\mathcal{A})$ containing ω . Now $C \cap A_0^c \neq \emptyset$ implies $C^c \subset A_0$, i.e. $A_0^c \subset C$. Therefore, there exists an element $\omega' \in C$ with the property $\omega' \in A_0$ because of $A_0^c \neq C$. Finally $\{\omega'\} \in \mathcal{B}(G,\mathcal{A})$ results in the fact that $C \setminus \{\omega'\}$ is a proper subset of C, i.e. C would not be an atom of $\mathcal{B}(G, \mathcal{A})$.
- (ii) The model described by (i) admits the following characterization in connection with the question whether a probability measure P defined on \mathcal{A} has the property to be an extremal point of the set \mathcal{P} consisting of all probability

measures Q defined on A and satisfying $Q|\mathcal{B}(G,\mathcal{A}) = P|B(G,\mathcal{A}) : P \in \mathcal{P}$ is an extremal point of \mathcal{P} if and only if $\overline{P}(A_0^c \cap B) = \overline{P}(A_0^c)\delta_{\omega}(B), B \in \mathcal{A}$, is valid for some $\omega \in A_0^c$, where \bar{P} stands for the completion of P restricted to the σ -algebra consisting of the universally measurable subsets of Ω (cf. [3], Corollary 8.4.3) and where δ_{ω} denotes the one-point mass at $\omega, \omega \in \Omega$. This observation follows from the fact that for any $B \in \mathcal{A}$ there exists a set $B' \in \mathcal{B}(G, \mathcal{A})$ such that $I_{B'} = I_B$ *P*-a.e. holds true (cf. [7]), from which either $\bar{P}(A_0^c \cap B) = 0$ in the case $B' \subset A_0$ or $\bar{P}(A_0^c \cap B^c) = 0$ in the case $B^{\prime c} \subset A_0$ follows, i.e. the probability measure Q defined on A by $Q(B) = \bar{P}(A_0^c \cap B)/\bar{P}(A_0^c), B \in \mathcal{A}$, in the case $\bar{P}(A_0^c) > 0$ is equal to δ_{ω} for some $\omega \in A_0^c$, since \mathcal{A} is countably generated and contains all singletons $\{\omega\}, \omega \in \Omega$. Hence, $\bar{P}(B \cap A_0^c) = \bar{P}(A_0^c)\delta_{\omega}(B), B \in \mathcal{A}$, is valid. Furthermore, $P(B \cap A_0) = P(B \cap B_0)$, $B \in \mathcal{A}$, where $B_0 \in \mathcal{A}$ satisfies $B_0 \subset A_0$ and $\bar{P}(A_0 \setminus B_0) = 0$, shows that the probability measure defined on \mathcal{A} by $B \to \overline{P}(B \cap A_0)/\overline{P}(A_0), B \in \mathcal{A}$, is monogenic with respect to $\mathcal{B}(G, \mathcal{A})$, from which the assertion about the characterization of extremal points of \mathcal{P} follows. In particular, P is monogenic with respect to $\mathcal{B}(G, \mathcal{A})$ if and only if $\bar{P}(A_0) = 1$, i.e. $P^*(A_0) = 1$ holds true, since monogenicity of P relative to $\mathcal{B}(G, \mathcal{A})$ implies that δ_{ω} , $\omega \in A_0^c$, has the same property in the case $P(A_0^c) > 0$.

Example 2. Let \mathcal{A} denote a countably generated σ -algebra of subsets of a set Ω containing all singletons $\{\omega\}, \omega \in \Omega$, and let G stand for the countable group of $(\mathcal{A}^{\mathbb{N}}, \mathcal{A}^{\mathbb{N}})$ -measurable mappings $g: \Omega^{\mathbb{N}} \to \Omega^{\mathbb{N}}$ acting as a permutation for a finite number of coordinates and keeping the remaining coordinates fixed, where $\Omega^{\mathbb{N}}$ resp. $\mathcal{A}^{\mathbb{N}}$ is introduced as the N-fold Cartesian product of Ω resp. N-fold direct product of \mathcal{A} . Then F(G) is equal to the diagonal Δ of $\Omega^{\mathbb{N}}$ and a probability measure on $\mathcal{A}^{\mathbb{N}}$ of the type $\bigotimes_{n \in \mathbb{N}} P_n$, where $P_n, n \in \mathbb{N}$, are probability measures defined on \mathcal{A} , is monogenic with respect to $\mathcal{B}(G, \mathcal{A}^{\mathbb{N}})$ if and only if $P_n = P_1, n \in \mathbb{N}$, is valid and P_1 coincides with a one-point mass at a certain element $\omega \in \Omega$. This follows from Theorem 2 together with Fubini's theorem.

Example 3. Let \mathcal{A} stand for a countably generated σ -algebra of subsets of a set Ω containing all singletons $\{\omega\}, \omega \in \Omega$, and let $G_j, j = 1, 2$, stand for finite groups of $(\mathcal{A}, \mathcal{A})$ -measurable mappings $g_j : \Omega \to \Omega$, $g_j \in G_j, j = 1, 2$. Then the corresponding group G_{12} of $(\mathcal{A}, \mathcal{A})$ -measurable transformations generated by G_1 and G_2 consists of all elements of the type $h_1 \circ \ldots \circ h_n, h_j \in G_1 \cup G_2, j = 1, \ldots, n, n \in \mathbb{N}$, which implies $F(G_{12}) = F(G_1) \cap F(G_2)$. Now Theorem 2 shows that a probability measure P on \mathcal{A} is monogenic with respect to $\mathcal{B}(G_{12}, \mathcal{A})$ if and only if P is monogenic with respect to $\mathcal{B}(G_1, \mathcal{A})$.

(Received March 29, 1995.)

REFERENCES

^[1] P. Billingsley: Ergodic Theory and Information. Wiley, New York 1965.

^[2] D. Blackwell and L.E. Dubins: On existence and non-existence of proper regular conditional distributions. Ann. Prob. 3 (1975), 741-752.

Monogenicity of Probability Measures Based on Measurable Sets Invariant ...

- [3] D. L. Cohn: Measure Theory. Birkhäuser, Boston 1980.
- [4] E. Grzegorek: Symmetric σ -fields of sets and universal null sets. In: Measure Theory, Lecture Notes in Mathematics, Vol. 945, Oberwolfach 1981, pp. 101–109.
- [5] J. Nedoma: Note on generalized random variables. In: Trans. of the First Prague Conference, Prague 1956, pp. 139-142.
- [6] D. Plachky: Characterization of continuous dependence of distributions on location parameters. In: Trans. of the Eleventh Prague Conference, Vol. A, Prague 1990, pp. 189-194.
- [7] D. Plachky: A multivariate generalization of a theorem of R. H. Farrell. Proc. Amer. Math. Soc. 113 (1991), 163-165.
- [8] D. Plachky: Characterization of discrete probability distributions by the existence of regular conditional distributions respectively continuity from below of inner probability measures. Asymptotic Statistics. In: Proc. of the Fifth Prague Conference, Prague 1993, pp. 421-424.

Dr. Jürgen Hille and Dr. Detlef Plachky, Institut für Mathematische Statistik, Universität Münster, Einsteinstr. 62, D-48149 Münster. Federal Republic of Germany.