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MONOGENICITY OF PROBABILITY MEASURES
BASED ON MEASURABLE SETS INVARIANT
UNDER FINITE GROUPS OF TRANSFORMATIONS

JURGEN HILLE AND DETLEF PLACHKY

Let A denote a o-algebra of subsets of a set 2, G a finite group of (A, A)-measurable
transformations g : @ — Q, F(G) the set consisting of all w € Q such that g(w) =w, g € G,
is fulfilled, and let B(G, A) stand for the o-algebra consisting of all sets A € A satisfying
9(A) = A, g € G. Under the assumption f(B) € A!I°l, B € B(G, A), for f: @ — Ql°!
defined by f(w) = (g1(w),...,9161(w)), w € Q, {g1,..., 911} = G, where |G| stands for
the number of elements of G, Q/C! for the |G|-fold Cartesian product of €2, and A!°! for
the |G|-fold direct product of A, it is shown that a probability measure P on A is uniquely
determined among all probability measures on A by its restriction to B(G, A) if and only if
P*(F(G)) = 1 holds true and that F(G) € A is equivalent to the property of A to separate
all points w1, ws € F(G), w1 # w2, and w € F(G), w' ¢ F(G), by a countable system of
sets contained in A. The assumption f(B) € AlGl B ¢ B(G,A), is satisfied, if Q is a
Polish space and A the corresponding Borel o-algebra.

1. INTRODUCTION

The main result of this article concerns characterizations of the property of a prob-
ability measure P defined on a o-algebra A of subsets of a set 2 to be uniquely
determined among all other probability measures defined on 4 by its restriction to
some sub-c-algebra B, which consists in this article of all sets A € A satisfying
A = g(A), g € G, where G denotes a finite group of (A, A)-measurable transform-
ations g : 2 — €. For example the results of the second part of this article might
be applied to the special group of permutations acting on R™ or the finite group
consisting of 27 elements acting on R™ by changing the sign of the coordinates. In
the first case a probability measure P on B(IR™), where B(IR™) is introduced as the
Borel-o-algebra of R™, is uniquely determined by its restriction to the sub-o-algebra
of B(R™) consisting of all permutation-invariant Borel subsets of R", if and only
if P(A) = 1 is valid, where A stands for the diagonal of R™. In the second case,
a probability measure P on B(R"™) is uniquely determined by its restriction to the
sub-c-algebra of B(IR") consisting of all sign-invariant Borel subsets of R", if and
only if P is already the one-point mass at the origin of R,



376 _ J.HILLE AND D. PLACHKY

In the sequel the underlying model for the investigation of problems of the pre-
ceding type will be introduced and studied in detail.

The starting point is the following generalization of a result concerning groups of
permutations (cf. [4]) to arbitrary finite groups of transformations.

Lemma 1. Let A denote a o-algebra of subsets of some set 2, G a finite group of
(A, A)-measurable transformations g : 2 — Q, B(G, A) the o-algebra consisting of
all A € A satisfying A = g(A), g € G, and C an algebra of subsets of {2 generating
A. Then B(G, A) is generated by {{,c 9(C) : C € C}.

Proof. Let D denote the o-algebra generated by {U,cq 9(C) : C € C}. Then
D C B(G, A) holds true, whereas the inclusion B(G,.A) C D will follow from the ob-
servation that M introduced as the set consisting of all A € A such that J,cq 9(A) €
D is fulfilled, is a monotone class, since M already contains the algebra C generating
A. Clearly |J,, An € M is valid for any increasing sequence A, € M, n € N, because
of U, (Uyeq 9(An)) = Usea(U, 9(An)). Furthermore, for any decreasing sequence
Ane M, neN, w e, (Uspe ¢71(Ay)) implies that for any n € N there exists
some g, € G satisfying g,(w) € A,, i.e. there exists a ¢ € G such that g(w) € A4,
for infinite many n € N is fulfilled, since G is finite. Hence, g(w) € ),, An holds true,
i.e. the inclusion 1, (Ueq 971(An)) C Uyea(97 (N, An)) has been shown, where-
as the inclusion Uyeq (97 (Myen 4r)) C NwUyeq 97 (An)) is obvious. Therefore,
Nn(Uyec 97 (An)) € D has been proved for any decreasing sequence A, € M, i.e.
M is a monotone .class. o -

Remarks.

(i) The assertion of Lemma 1 does not hold longer true, in general, for countable

groups of transformations, as the following special case shows:
Let Q stand for the set R of real numbers and A for the Borel o-algebra of
R, which might be generated by the algebra C consisting of all finite unions
of pairwise disjoint intervals of the type (a,b], where a,b, a < b, are rational
numbers including —oo and co. Furthermore, G is introduced by the countable
group consisting of all transformations g, : R — R defined by g,(z) = = +
p, ¢ € R, where p is some rational number. Then Up 9,1 (ai, b)), n €
N U {0}, is equal to R in the case n € N and empty in the case n = 0,
i.e. the o-algebra generated by U, g,(2_i—;(ai, b]), ai < bi, ai,bi rational,
i=1,...,n, n € NU{0} is equal to {@,R}, whereas B(G, A) # {0, R} holds
true, since the set consisting of all rational numbers belongs to B(G, A).

(ii) The special case of Lemma 1, where G is the group acting as permutations on
R™ together with A as the Borel o-algebra of R" leads to a short proof of the
well-known fact that B(G, A) is induced by the order statistics T : R” — R”
sending (z1,...,zn) € R"™ to the corresponding n-tuple, which is increasingly
ordered, i.e. T71(A) = B(G, A) is valid in this case.

(iii) Let G; denote finite groups of transformations with underlying o-algebras
Aj, 7 = 1,2, then Lemma 1 implies B(G, x Gq, A1 @ A2) = B(G1,A41) ®
B(G3, A3).
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Further applications of Lemma 1 concern a characterization of the atoms of
B(G, A) and the property of B(G,.A) to be countably generated.

Corollary 1. Let A denote a g-algebra of subsets of a set 2, G a finite group of
(A, A)-measurable transformations g : Q — Q, and B(G, A) the o-algebra consisting
of all the sets A € A satistying A = g(A), g € G. '

Then the following assertions hold true:
(i) B € B(G,A) is an atom of B(G, A) if and only if B = [J,¢¢ 9(A) is valid for
an atom A of A,
(if) B(G, A) is countably generated if and only if there exists a countably generated
o-algebra A’ C A such that g : O — Q is (A, A')-measurable, g € G, and
B(G,A') = B(G, A) is valid.

Proof. For the proof of part (i) let A € A denote an atom of 4. Then B €
B(G,.A) defined by | ¢ 9(A) is an atom of B(G, A), since g(4), g € G, are atoms
of A, too. Therefore, C'N g(A) is equal to g(A) or empty, g € G, where C € B(G, A)
is some subset of B, i.e. C' =,y 9(4), H C G. Now g(C) = C, g € G, implies
C = Uyecg 9(4), if H is not empty, which shows that C = B is valid or C is empty,
i.e. B given by |J,cq 9(A), where A stands for some atom of A, is indeed an atom
of B(G, A).

For the proof of the converse implication let B € B(G, A) stand for an atom
of B(G,A). According to Lemma 1 there exists a countable subset C of A such
that B already belongs to the c-algebra B generated by {U,¢q 9(C) : C € C}.
Let B;, i € I, stand for the atoms of B and Aj, j € J, for the atoms of the
o-algebra A’ generated by {¢(C) : C € C, g € G}. Theng : Q — Q, g € G,
is (A’, A’)-measurable according to Lemma 1, since one might replace C by the
countable algebra generated by {¢(C) : C € C, g € G}. Therefore, B = B(G, A’)
holds true and UJ;e; 4; = U;jer Bi = Q. According to the above considerations
U,ec 9(45), j € J, is an atom of B = B(G, A’). Now UjesUgeg 9(45) = Q and

;1 Bi = Q shows that any By, i € I, is of the type [J;ecq 9(A;) for some j € J.
In particular, the atom B € B(G,A) is of the type U,cq 9(A4) for a certain set
A€ {Aj:jeI}. Now A€ A must be an atom of A, since, otherwise, B € B(G, A)
would not be an atom of B(G,A), because |, 9(A’) and U,cq9(A\ A') are
disjoint and their union coincides with | J ¢ 5 9(A) for any A’ € A satisfying A’ C A,
ie. Ujeg 9(A") = 0 or Uyeg 9(A\ A’) = 0 is valid, from which A" =@ or A’ = A
follows.

For the proof of part (ii) let A’ be some countably generated o-algebra contained
in A sucht that g : @ — Q is (A’, A’)-measurable, g € G, and B(G, A’) = B(G, A)
holds true. Then B(G, A")(= B(G, A)) is countably generated according to Lemma 1.

For the proof of the converse implication one might choose B(G, A) for A’. O

Remarks.

(i) Let A be a countably generated o-algebra of subsets of a given set Q. Then
there exists a countably generated sub-o-algebra A; of A and a sub-c-algebra
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Ay of A containing A; such that it is not countably generated and that g :
Q2 — Q, g € G, is both (A1, A1)-measurable and (A3, A;)-measurable; further
B(G, A1) = B(G, Az) = B(G, A) holds true if and only if the set £ consisting
of all atoms of A not belonging to B(G,.A) is uncountable, which might be
proved as follows:

Starting from the assumption B(G, As) = B(G,A), where A is countably
generated and where A, is a sub-c-algebra of A such that ¢ : Q@ — Q is
(Az, Az)-measurable, g € G, it is sufficient to show that A, is already count-
ably generated, if £ is countable. For this purpose one observes that ANQG C
B(G,A) N Q5 = B(G,A) N Q5 C Ay nQf holds true for Qg introduced as
Ugee £ Therefore, ANQF = Ay NQf is valid, from which it follows that A,
is countably generated.

For the proof of the other implication let A, stand for the o-algebra generated
by A; and the atoms of A, where A; coincides with B(G, A). It will be shown
that A, is not countably generated, if £ is uncountable. The assumption
on A, to be countably generated results in an existence of a countable set
{C, : n € N} of atoms of A such that, for any A € Ay, there exists aset B € A,
satisfying AAB C |, Cn. Therefore, any Co € £\ {g(C,) : n € N,g € G}
satisfies CoABy C |, Cn for some By € Ay, which leads to Cy C By because
of ConNCp = 0, n€N. Finally, Cy # ¢go(Ch) is valid for some gy € G, which
results in go(Co) N Ch = B, i.e. go(Co) C BoNC§ C o Crn holds true
because of go(Co) C go(Bo) = Bo. Hence, there exists a set C,,, satisfying
90(Co) = Cy,, i.e. one arrives at the contradiction Cy = g5 *(Ch,)-

Let A stand for a o-algebra of subsets of a set 2, G for a group not necessarily
finite, of (A, A)-measurable transformations ¢ : @ — €, and let P stand
for the set consisting of all G-invariant probability measures P on A, i.e.
P =PI ge@,isvalid. Then it is well-known (cf. [1], p. 38-39) that the
extremal points of P might be characterized by the property of G-ergodicity,
i.e. P € P is G-ergodic if and only if P restricted to the o-algebra Ap
consisting of all sets A € A satisfying P(AAg(A)) = 0, ¢ € G, is already
{0, 1}-valued. In case G is finite, the property of P € P to be G-ergodic is
equivalent to the property of P € P that its restriction to B(G, A) is {0, 1}-
valued. Under the additional assumption that A is countably generated, any
P € P 1s G-ergodic, according to Corollary 1, if and only if there exist an
atom A € A and g € G, k = 1,...,n, such that gx(A), &k = 1,...,n, are
pairwise disjoint and P(gx(A)) = %, k = 1,...,n, holds true. This result is
not longer valid for infinite groups of transformations, as a special case shows
in which the underlying set €2 is a compact, metrizable group G with A as the
corresponding Borel o-algebra. In this case P only contains the normalized
Haar measure, if G is chosen for the corresponding group of (A, A)-measurable
transformations g : Q@ — Q.

The conclusion that the property of A to be countably generated implies that
B(G, A) is also countably generated might also be drawn from the observation
that T—é—[ deG I4(ay, where |G| stands for numbers of elements of G, is for any



Monogenicity of Probability Measures Based on Measurable Sets Invariant . . . 379

A € A a regular, proper version of the conditional distribution P(A|B(G, A)),
where P is an arbitrary G-invariant probability measure on A (cf. [2]).

(iv) Let A; denote o-algebras of subsets of some set ;, j = 1,...,n (n > 2). Then
the atoms of the n-fold direct product A; ®...® A, might be characterized by
the property to be of the type A; x ... x A,, where each A; € A; is an atom
of Aj, j =1,...,n. Clearly, sets of this type are atoms of 4; ® ...® A,. The
converse direction might be proved with the aid of the observation that any
countably generated o-algebra has atoms such that their union coincides with
the underlying set. In particular, let G denote the symmetric group of order n
acting as (A", A™)-measurable permutations g : Q" — Q", where Q" stands for
the n-fold Cartesian product of the set Q and A" for the n-fold direct product
of the o-algebra A of subsets of Q. In this case, the atoms of B(G, A") are of
the type Uwe% Ary X ... X Ag(ny, where A; € A, j = 1,...,n, are atoms
of A and 7, 1s the symmetric group of order n consisting of all permutations
7:{1,...,n} = {1,...,n}.

The conclusion of part (iii) of the preceding remark, namely that B(G,.A) is
countably generated for finite groups of (A, A)-measurable transformations g : Q2 —
2, if A is countably generated, is not in general valid for countable groups as the
following example shows:

Example 1. Let Q stand for the unit circle {exp iz : £ € R} with the corresponding
o-algebra A and let P stand for the Haar measure of this compact group Q with
P(Q2) = 1. Furthermore, let G be introduced as the countable group of (A, .A)-
measurable transformations g, : 2 — € defined by go(e™) = T+ 2 c R, p€Q,
where Q stands for the set of rational numbers. It will be shown that P restricted to
B(G, A) is {0, 1}-valued under the assumption that B(G, A) is countably generated,
which results in the contradiction that P({expi(z+Q)}) = 1 must be valid for some
atomexp i(z+Q), z € R, of B(G, A). It remains to prove that one arrives, from the
assumption on B(G, A) to be countably generated, at a {0, 1}-valued restriction of
P to B(G,.A), which might be seen as follows: For any set exp(iB) € B(G, A), where
B is a Borel subset of R, the equation exp(iB) Nexpi(B + p) = exp(iB), p € Q,
yields P(exp(iB) Nexpi(B + p)) = P(exp(iB)), p € Q, from which P(exp(:B) N
expi(B + z)) = P(exp(iB)), = € R, follows, since the function defined by z —
P(exp(iB) Nexp (B + x)), © € R, is continuous (cf. [6], p. 191). Therefore, for
any z € R and all sets ¢® € B(G,.A), where B is a Borel subset of R, there exists
a P-zero set N such that le,piB)(expiy) - Texpi(B+c)(eXP 1Y) = lexp(in)(exp iy) for
expiy ¢ N, and y € R holds true, if B(G,A) is countably generated, since one
might start from a countable algebra generating B(G,.A) and apply a monotone
class argument. Now €‘® € B(G, A), where B is a Borel subset of R, implies that
e!B-2) ¢ B(G,A), z € R, which implies Texp(iB)(€XP 1Y) - Iexpi(B+z)(eXpiy) =
ILexp(in)(exp ty) for all expiy ¢ No with y € R and all ¢ € R, from which one derives
the equation leyp(ipy(exp ty)P(exp i(y — B)) = lexp(in)(expiy), expiy ¢ No with
y € R. TFinally P(exp(iB)) > 0 yields the existence of a value expiy € expiB
satisfying exp iy ¢ No with y € R, i.e. P(expi(y — B)) = P(exp(—iB)) = 1 and,
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therefore, P(exp(iB)) = 1 is valid, since P(exp(iB)) > 0 implies P(exp(—iB)) > 0,
1.e. B might be replaced by —B.

2. MAIN RESULTS

In the sequel the property of a probability measure P on the o-algebra A to be
monogenic with respect to the g-algebra B(G, A) consisting of all G-invariant sets
belonging to A, i.e. A € B(G, A) if and only if A = g(A), g € G, holds true, will
be characterized by properties of approximation, where P is called monogenic with
respect to B(G,A) if and only if P is uniquely determined among all probability
measures on A by its restriction P|B(G, A) to B(G, A).

Lemma 2. Let A denote a o-algebra of subsets of a set £, G a finite group of
(A, A)-measurable transformations g : @ — Q, and B(G, A) the o-algebra of all
G-invariant sets belonging to .A. Then a probability measure P on A is monogenic
with respect to B(G, A) if and only if P((U,eq 9(4)) \ (Nyeq 9(A))) = 0 holds true
for any A € A. '

Proof. Clearly, if P has this property of approximation, then P is monogenic
with respect to B(G,A), since ;e 9(4) C A C U eq 9(4) and (s 9(4),

Useg 9(4) € B(G, A), A€ A, is valid.

For the proof of the converse implication one might start from the observation
that P defined by ﬁdeG P9 (|G| number of elements of G) is a probability
measure on A, whose restriction P|B(G,.A) to B(G,.A) coincides with P|B(G, A).
Therefore, the property of P to be monogenic with respect to B(G,.A) implies that
P is already G-invariant, i.e. P9 = P, ¢ € G, holds true. Furthermore, P is an
extremal point of the convex set consisting of all probability measures on A whose
restriction to B(G, .A) coincides with P|B(G,.A). Hence, for any A € A, there exists
a B € B(G, A) satisfying P(AAB) = 0, where A stands for the symmetric difference
(cf. [7]). This property of approximation fulfilled by P together with the property of
P to be G-invariant results in P(AA(U,¢q 9(4))) = 0 and P(AA(N,¢q 9(A))) =0
from which P((U,eq 9(4) \ (N,eq 9(4))) = 0 follows. o

The remaining part of this article is devoted to the problem of simplifying the
monogenicity criterion of Lemma 2. In this connection the set F(G) consisting of
all w € Q which are kept fixed under all g € G, i.e. w = g(w), g € G, holds true,
plays an essential role.

Lemma 3. Let A" denote the n-fold direct product of the o-algebra A of subsets of
some set Q and let G denote the finite group of (A", A™)-measurable transformations
g : Q" — Q", Q" being the n-fold Cartesian product of €, associated with some
subgroups of the symmetric group 7, of all permutations of {1,...,n}. Then a
probability measure P on A™ is monogenic with respect to B(G,.A") if and only if
P*(F(G)) = 1 holds true, where P* stands for the outer probability measure of P.
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Proof. Clearly, P*(F(G)) = 1 is according to Lemma 2 sufficient for the proper-
ty of P to be monogenic with respect to B(G, A™), since (U,eq 9(A))\(Nyee 9(4)) C
(F(@))° is valid for all A € A™.

For the proof of the converse implication one might introduce the following equiv-
alence relation on {1,...,n} defined by i ~ j for 7,5 € {1,...,n} if and only if there
exists some y € ' such that ¢ = y(j) is valid, where I' stands for the subgroup of
the symmetric group 7, associated with G. Let [¢1],...,[ix], 1 < ... < @, 1; €
{1,...,n}, 7 = 1,...,k, denote the corresponding equivalence classes. It will now
be shown that F(G) C Up_;(Am,1 X ... X App) for Amj €A, j=1,...,n, m€N,
implies y >} P(Am,1 X ...X Amn) > 1, from which the assertion P*(F(G,A)) =1
follows. For this purpose one should take into consideration that Lemma 2 leads to
the following equations up to some P-zero set:

IAm,l X ... X IA

m,n

=1
E ﬂgeGg(Am,lx“.xAm,n)

1 ;
ﬂgec(ﬂxmxﬂxﬂje[il] Am,,xﬂx...xﬂxﬂjehzl A, XQX”'XQ“'ane[-kI A, i XQX...x0Q)

where [7;]U.. . U[ix] = {1,...,n} is valid. Finally, let = denote the projection of Q"
onto Q1#1:ik} introduced as the k-fold Cartesian product of 2. Then P(A,, 1 x...x
Amn) = P (e, Am.g X - - - X jefi] Am,j) is implied by the preceding equations.
Now F(G) C U _{(Am1 X ... X Ay p), together with F(G) = {(wi,...,wn) €
Q" w; = wj, 1,5 € [i,], v € {1,...,k}}, yields the inclusion Q{#1,ix}
U=t (Njeping Amai X - X Njepix] Am,g)s from which 3570 P(Ap 1 X .. X Apn) =
Yozt P (epin Ami X - - % Njegin] Am,i) = PT(QU3) = 1 follows, i.e. mono-
genicity of P with respect to B(G,.A") implies P*(F(G)) = 1. a

Remarks.

(i) If G is associated with the symmetric groups 7y,, then F(G) is equal to the
diagonal A of Q™. It is known that A € A" is equivalent to the property of
A to separate points w € 2 by a countable system of sets belonging to A. A
short proof of this characterization of A € A" might be based on the fact that
the atoms of A" are of the type Ay x ... x A,, where A; € A, j=1,...,n, are
atoms of A (cf. part (iv) of the remark following Corollary 1). The assumption
A € A" implies A € Ap, where Ay is a countably generated sub-o-algebra of
A. Therefore, A is equal to the union of atoms of A} of the type A1 x...x A,
where A; € Ao, j =1,...,n, are atoms of Ag, i.e. 4;, j =1,...,n, must be
singletons. Hence, any countable generator C of 4 separates points w € Q.
The converse implication follows easily from the fact that A€ is the union of
sets of the type 2 x .. . XQxAXxQx ... xAxX A xQx...xQ, where A runs
through some countable subsets of A, which might be assumed to be closed
with respect to complements. The property of A4 to separate points w € §2
by a countable system of sets belonging to A implies that the cardinality of
the underlying set € exceeds the cardinality of the set R of real numbers. In
particular, m; — w5 is not (A ® A, A)-measurable, where m; : Q@ x Q, j = 1,2,
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are the projections associated with the Banach space , if the cardinality of
Q exceeds the cardinality of R and A is the corresponding Borel o-algebra (cf.
(5]).

(ii) The case P*(A) = 1 together with P.(A) = 0 is possible, where P, stands for
the inner probability measure of P as the following special case shows: Let Q
be an uncountable set, let A be the o-algebra of subsets of 2 generated by all
singletons {w}, w € Q,i.e. A={A CQ:Aor A°is a countable subset of Q},
and let P stand for the probability measure on A defined by P(A) =0, if A
is a countable subset of , resp. P(A) = 1, if A® is a countable subset of .
Then it is not difficult to see that (P ® P)*(A) =1 and (P® P).(A)=0is
valid.

In the sequel Lemma 3 will be extended to arbitrary finite groups of transform-
ations. The special case of a finite group G of transformations g :  — € with
F(G) ¢ {0,9Q} together with the o-algebra A consisting of the sets 0, Q, F(G), and
(F(G))¢, i.e. B(G,A) = A is valid, shows that some additional assumption must be
introduced, which is given in the following

Theorem 1. Let A denote a o-algebra of subsets of a set Q, G a finite group
of (A, A)-measurable transformations g : @ — Q, B(G,A) the o-algebra consist-
ing of all G-invariant sets belonging to A, F(G) the set consisting of all w € Q
satisfying g(w) = w, g € G, f : @ — QIS where |G| stands for the number of
elements of G, the mapping defined by f(w) = (g1(w),...,g16/(w)), w € Q, G =
{91,-- -, 9161}, QIGl the G-fold Cartesian product of Q, and A€l the |G|-fold direct
product of A. Under the assumption f(B) € Al¢l, B € B(G,A), the following
assertions hold true:
(i) A probability measure P on A is monogenic with respect to B(G, .A) if and only
if P*(F(G)) = 1 is valid, where P* stands for the outer probability measure
of P.
(ii) F(G) € A holds true if and only if there exists a countable system contained
in A which separates all points wy,ws € F(G), w; # w2, and w € F(G), ' ¢

F(G).

Proof. The finite group G = {g1,..., 9|6} induces a subgroup Sg of the sym-
metric group 7jg| of permutations of {1,...,|G|} according to m,(1,...,|G|) =
(gr(1)s - - - gr(1GD)), Where m stands for the permutation of {1,...,|G|} associated
with ¢ € G by (919,-..,9/619) = (gz(1),---»9=(cp)- In particular, f=1(A4; x

. X A|G|) = ﬂgEG g(A) S B(G,.A) is valid for Ay = ... = A|G| =Ae€A

according to Lemma 1, from which B(G,A) = f~1(C) follows, where C stands
for the o-algebra of subsets of Q! generated by all sets of the type A; x ... x
Ajg;, A1 = ... = Ajgl = A € A This observation shows that monogenici-
ty of the probability measure P/ on AIS! with respect to B(Sg, Al¢!), where P/
stands for the probability measure on Al¢! induced by the probability measure
P on A and the (A, AlS!)-measurable mapping f, implies that P is monogenic
with respect to B(G,.A). This follows, according to Lemma 2, from the equation
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Pf(A1 X ... X A|G| \DWESG An(l) X ... X A"(]Gl)) =0, 4, €A j=1,...,|G|
since the special case A; = 2, j = 2,...,|G| and 4; = g:(A), A € A, results in
P(A\ f7Y(B1 x ... x Bjg|)) =0, B = A, j=1,...,|G|, if one takes into consider-
ation that the subgroup of 7| associated with Sg acts transitively on {1,...,|G|}.

For the converse implication, namely that monogenicity of P with respect to
B(G, A) implies that P is monogenic with respect to B(Sg, A!¢!) one might start
from the equation P(A\ B) =0, A€ A, B = Nyec 9(A), according to Lemma 2.
Now, f(B) € Al€! is valid by assumption, from which P/(A4; x ... x Ajg|\ f(B)) =
0 follows for A; € A, j = 1,...,|G|, where B stands for ()¢ 9(C) and C for
ﬂ'jG:'I 97" (4;) = f71 (A1 x ... x Ajg)) € A. Finally, f(B) € B(Sg, Al°l), which is
implied by B € B(G, A), shows that P/ is monogenic with respect to B(Sg, Al¢!) if
and only if P is monogenic with respect to B(G, A).

Now everything is prepared for the proof of part (i) of Theorem 1. For this
purpose let P stand for a probability measure on .4 being monogenic with respect to
B(G, A). Then P/ is monogenic with respect to B(Sg, A1), i.e. (PH)*(F(S¢g)) =1
holds true according to Lemma 3. Now f~'(F(S¢)) = F(G) together with the
assumption f(B) € Al9l, B € B(G, A), leads to P*(F(G)) = 1, since the coverings
of F(G) entering into the definition of P*(F'(G)) might have been chosen to belong
to B(G, A). Clearly, the property of P to fulfill the last equation P*(F(G)) = 1
implies, with regard to Lemma 2, that P is monogenic with respect to B(G,.A)
because of [Jyeq 9(4) \ Nyeg 9(4) C (F(G))°, A € A, i.e. part (i) of Theorem 1
has been proved.

The proof of part (ii) of Theorem 1 might be based on the observation that the
subgroup of || associated with S¢ acts transitively on {1,...,|G|}, from which
F(Sc) ={(w1,...,wjg)) ‘w1 = ... = wjg| = w, w € Q} follows. Now the assump-
tion f(B) € Al¢l| B € B(G,A) together with the condition F(G) € A results in
f(Q) N F(Sg) = f(F(G)) € AlGl. Therefore, f(F(G)) € AlS! for a certain count-
ably generated sub-o-algebra A of A holds true. Now the atoms of AIC! are of
the type Ay X ... x Ajg|, where A; € A, j=1,...,|G|, are atoms of A (cf. part
(iv) of the remark following Corollary 1), and the union of all atoms of AIC! coin-
cides with QI Hence, the atoms of A!G!, whose union coincides with f(F(G)),
are of the type A; x ... x Ajg|, where A; € A, j = 1,...,|G]|, are singletons of
the type {w}, w € F(G), i.e. any countable system of sets generating A separates
all points wy,ws € F(G), w1 # w2 and w € F(G), w' ¢ F(G). Conversely, the
existence of a countable system C C A with this property of separation results in
f(Q) N F(Sg) € AlG! because the complement of F(Q) N F(Se) = f(F(Q)) consists
of the union of the sets of the type Ay x ... x A§G|, A;=CeC, Ay =C° j ke
{1,.. |G}, j#k, Ai =Q, 1 €{1,...,|G|} \ {j, k}, since one might assume with-
out loss of generality that C is already closed with respect to complements. Finally,
f(F(G)) € AlS! together with f~(f(F(G))) = F(G) yields F(G) € A, i.e. part
(i1) of Theorem 1 has been proved. O

Remarks.

(i) The condition f(B) € Al€l, B € B(G, A), is fulfilled, if Q is a Polish space
and A the correspondingBorel o-algebra (cf. [3], p. 276).
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(i) The o-algebra generated by all sets of the type A1 x ... x Ajg|, 4y = ... =
Ajg| = A € A, which occurs in the proof of Theorem 1, has been characterized
in {4].

In the final part of this article a further rather simple condition will be introduced,
which yields simultaneously F(G) € A and the characterization of monogenicity of
a probability measure P on A with respect to B(G, A) by P(F(G)) = 1.

Theorem 2. Let A denote a o-algebra of subsets of a set 2, G a finite group of
(A, A)-measurable transformations ¢ : Q@ — Q, B(G,.A) the o-algebra consisting of
all G-invariant sets belonging to A, and F(G) the set {w € Q: g(w) = w, g € G}.
Under the assumption that A separates all points w, g(w), w € Q, g € G, w # g(w),
by a countable system of sets belonging to A, the following assertions hold true:

(i) F(G) e A,

(i) a probability measure P on 4 is monogenic with respect to B(G,A) if and
only if P(F(G)) = 1 is valid.

Proof. Let C C A stand for a countable system such that forw € Q, g € G, w #
g(w), there exists a C € C satisfying w € C, g(w) ¢ Corw ¢ C, g(w) € C. Then
Ucee((Uyes 9(C) \ (Nyeq 9(C))) = (F(G))* holds true, from which P(F(G)) =
1 follows, if P is monogenic with respect to B(G,.A), since this property implies
according to Lemma 2 the equation P((U,cq 9(C)) \ (Myeq 9(C))) = 0. Clearly,
P(F(G)) = 1 yields, by Lemma 2 being applied, that P is monogenic with respect
to B(G, A). . O

Remarks.

(i) The property of A to separate points w, g(w), w € Q, g € G, w # g(w),
by a countable system of sets belonging to A4 is shared by all countably gen-
erated o-algebras A of subsets of Q satisfying {w} € A, w € Q, since such
o-algebras separates all points wy,ws € €2, w1 # w2, by a countable system of
sets belonging to the corresponding o-algebra. :

(i) In case G is associated with the symmetric group ¥, of all permutations 7 of
{1,...,n} acting (A", A™)-measurably on Q", the property of A™ to separate
points w,g(w), w € ", g € G, w # g(w), by a countable system of sets
belonging to A", is equivalent to the property of A4 to separate all points
wi,wy € Q, w) # wy, by a countable system of sets belonging to A. This
follows from the observation that any o-algebra generated by some system C
of sets belonging to this o-algebra and separating a given set of points by
some countable system of sets belonging to this o-algebra, already separates
this given set of points by a countable system of sets belonging to C.

An application of Theorem 2 and Lemma 1 results in



Monogenicity of Probability Measures Based on Measurable Sets Invariant . . . 385

Corollary 2. Let A; denote o-algebras of subsets of some set Q;, G; finite groups
of (Aj, Aj)-measurable transformations ¢ : @ — Q, B(Gj, A;) the o-algebra con-
sisting of all Gj-invariant sets belonging to A;, j = 1,2, and B(G; x G2, A1 ® As)
the o-algebra consisting of all (G; x G2)-invariant sets belonging to A; ® A;. Then
B(G:1 x G2, A1 ® Ay) = B(G1, A1) ® B(G3, A3) is valid and under the assumption
that A; separates all points wj, g(w;), wj € Q;, g € G}, wj # g(w;), 7 = 1,2, the
following assertion holds true: A probability measure P on A; ® Ay is monogenic
with respect to B(G1 x G2, A1 ® A2) if and only if the corresponding marginal prob-
ability measures P; of P on A; are monogenic with respect to B(G;, A;), j = 1,2.

Proof. Lemma 1 implies B(G; x G2, A1 ® A2) = B(G1,41) ® B(G2, As)
and monogenicity of the marginal probability measures P; on A; with respect to
B(Gj,A;), j = 1,2, of some probability measure P on A; ® A2, leads, accord-
ing to Theorem 2, to P;(F(G;)) = 1, j = 1,2, from which P(F(G1) x F(G2)) =
P(F(G1) x 22) N (1 x F(G3)) = 1 follows, i.e. P(F(G; x G3)) = 1 holds true
because of F(Gi x G3) = F(G1) x F(G3), i.e. P is monogenic with respect to
B(G: x G2, A; ® A3). Conversely, P(F(G1 x G2)) = 1, which follows by means of
Theorem 2 from monogenicity of P with respect to B(Gy x Gz, A1 ® Ajz), implies
P;(F(Gj)) =1, j =1,2,1.e. Pjis monogenic with respect to B(Gj,4;), j =1,2.0

Remarks.

(i) Theorem 2 remains valid for countable groups, since Lemma 2 holds true for
countable groups, too. However, Theorem 2 (and also Theorem 1) is not longer
true for uncountable groups even in the case where Q is an uncountable Polish
space and A is the o-algebra of Borel subsets of Q, which might be seen as
follows: For any analytic subset Ag ¢ A of Q the equation (g4, B = Ao is
valid, where Ap stands for all Borel subsets B € A containing A¢ and A denotes
the Borel o-algebra of Q (cf. [3], Theorem 8.3.1, and [3], Corollary 8.2.17
together with [8], p. 422 in connection with the existence of Ag). Furthermore,
let G denote the group of (A, A)-measurable mappings ¢ : € — € such that
there exists a set B € Ap with the property g(z) = z, z € B, g(z) #
z, ¢ € Q\ B, where ¢ is a one-to-one transformation of @ which maps Q
onto . In particular, g~! is (A4,.A)-measurable (cf. [3], Theorem 8.3.2 and
Proposition 8.3.5), F(G) = Ag ¢ A is valid, and B(G,A) ={B € A: B C Ag
or B¢ C Ap} holds true, since for cj,ca € 2\ Ap, ¢1 # ca, there exists a
mapping g € G satisfying g(c1) = ¢z, i.e. A5N B # 0 for a set B € B(G, A)
implies A§ N B = A§. In particular, B(G,.A) is not countably generated, since
otherwise for any w € A§ there would exist an atom C of B(G, A) containing
w. Now C'NA§ # 0 implies C° C Ag, i.e. A§ C C. Therefore, there exists
an element w’ € C with the property w’ € Ay because of A # C. Finally
{w'} € B(G, A) results in the fact that C'\ {«'} is a proper subset of C, i.e.
C would not be an atom of B(G, A).

(i1) The model described by (i) admits the following characterization in connec-

tion with the question whether a probability measure P defined on A has the
property to be an extremal point of the set P consisting of all probability
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measures () defined on A and satisfying 0Q|B(G,A) = 7P|B(G,A) :PepP
is an extremal point of P if and only if P(A§ N B) = P(A§)d.(B), B € A,
is valid for some w € A§, where P stands for the completion of P restrict-
ed to the o-algebra consisting of the universally measurable subsets of Q (cf.
[3], Corollary 8.4.3) and where &, denotes the one-point mass at w, w € Q.
This observation follows from the fact that for any B € A there exists a
set B’ € B(G,A) such that Iy = Ip P-a.c. holds true (cf. [7]), from
which either P(A§ N B) = 0 in the case B’ C Ay or P(A§N B®) = 0 in
the case B’® C Ag follows, i.e. the probability measure @ defined on A by
Q(B) = P(A;N B)/P(AS), B € A, in the case P(AS) > 0 is equal to 6,
for some w € A§, since A is countably generated and contains all singletons
{w}, w € Q. Hence, P(BN A§) = P(A§)6.(B), B € A, is valid. Further-
more, p(B N Ag) = p(B N By), B € A, where By € A satisfies By C Ag
and P{Ao \ Bo) = 0, shows that the probability measure defined on A by
B — P(B N Ag)/P(Ao), B € A, is monogenic with respect to B(G, A), from
which the assertion about the characterization of extremal points of P follows.
In particular, P is monogenic with respect to B(G,.A) if and only if P(4o) = 1,
l.e. P*(Ap) = 1 holds true, since monogenicity of P relative to B(G, A) implies
that é,, w € A§, has the same property in the case P(A§) > 0.

Example 2. Let A denote a countably generated o-algebra of subsets of a set
containing all singletons {w}, w € Q, and let G stand for the countable group of
(AY, AY)-measurable mappings g : QY — QF acting as a permutation for a finite
number of coordinates and keepfng the remaining coordinates fixed, where QY resp.
AYN is introduced as the N-fold Cartesian product of  resp. N-fold direct product
of A. Then F(G) is equal to the diagonal A of Q¥ and a probability measure on
AY of the type X ey Pny where Py, n € N, are probability measures defined on A,
is monogenic with respect to B(G, AY) if and only if P, = P;, n € N, is valid and
P, coincides with a one-point mass at a certain element w € Q. This follows from
Theorem 2 together with Fubini’s theorem.

Example 3. Let A stand for a countably generated o-algebra of subsets of a set Q
containing all singletons {w}, w € Q, and let G;, j = 1,2, stand for finite groups of
(A, A)-measurable mappings g; : Q@ — Q, g; € G;, j = 1,2. Then the corresponding
group Giz of (A, A)-measurable transformations generated by Gy and Gy consists
of all elements of the type hyo...0h,, h; EGiUGs, 7 =1,...,n, n €N, which
implies F(G12) = F(G1)NF(G3). Now Theorem 2 shows that a probability measure
P on A is monogenic with respect to B(G12,.A) if and only if P is monogenic with
respect to B(Gy,.A) and B(Gq, A).

(Received March 29, 1995.)
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