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Let A denote a er-algebra of subsets of a set Q, G a finite group of (.4,.4)-measurable 
transformations g : fi —> Ci, F(G) the set consisting of all u> £ ft such that g(u>) = u>, g £ G, 
is fulfilled, and let B(G,A) stand for the u-algebra consisting of all sets A £ A satisfying 
g(A) = A, g £ G. Under the assumption / ( B ) £ .4'G', B £ B(G,A), for / : Q - fi'G' 
defined by /(a;) = (^i(w),...,<7|G|(<~'))J w € fi, {#i, • • •, # |G |} = O, where |O | stands for 
the number of elements of G, fi'G' for the |O|-fold Cartesian product of Q, and .4'G' for 
the |O|-fold direct product of A, it is shown that a probability measure P on A is uniquely 
determined among all probability measures on .4 by its restriction to B(G, A) if and only if 
P*(F(G)) = 1 holds true and that F(G) £ A is equivalent to the property of A to separate 
all points CJ\,U2 £ F(G), u;i ^ w2, and u> £ F(G), u/ ^ F(G), by a countable system of 
sets contained in A. The assumption / ( B ) £ -4'G ' , B £ B(G,A), is satisfied, if Q is a 
Polish space and A the corresponding Borel <r-algebra. 

1. INTRODUCTION 

The main result of this article concerns characterizations of the property of a prob­
ability measure P defined on a cr-algebra A of subsets of a set Q to be uniquely 
determined among all other probability measures defined on A by its restriction to 
some sub-cr-algebra B, which consists in this article of all sets A £ A satisfying 
A = g(A), g £ G, where G denotes a finite group of («4,.4)-measurable transform­
ations g . Q —* ti. For example the results of the second part of this article might 
be applied to the special group of permutations acting on M.n or the finite group 
consisting of 2 n elements acting on M" by changing the sign of the coordinates. In 
the first case a probability measure P on #(IRn), where B(M.n) is introduced as the 
Borel-cr-algebra of IRn, is uniquely determined by its restriction to the sub-cr-algebra 
of B(Mn) consisting of all permutation-invariant Borel subsets of M.n, if and only 
if -P(A) = 1 is valid, where A stands for the diagonal of Mn. In the second case, 
a probability measure P on B(M.n) is uniquely determined by its restriction to the 
sub-cr-algebra of Z?(IRn) consisting of all sign-invariant Borel subsets of Mn, if and 
only if P is already the one-point mass at the origin of E n . 
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In the sequel the underlying model for the investigation of problems of the pre­
ceding type will be introduced and studied in detail. 

The start ing point is the following generalization of a result concerning groups of 
permutat ions (cf. [4]) to arbitrary finite groups of transformations. 

L e m m a 1 . Let A denote a cr-algebra of subsets of some set Q, G a finite group of 
(.4, .4)-measurable transformations g : Q —> Q, B(G,A) the cr-algebra consisting of 
all A E A satisfying A = g(A), g E G, and C an algebra of subsets of Q generating 
A. Then B(G,A) is generated by {{JgEG g(C) :C EC}. 

P r o o f . Let V denote the cr-algebra generated by {U5eG fl'(C) : C E C}. Then 
V C B(G, A) holds true, whereas the inclusion B(G, A) C V will follow from the ob­
servation tha t M introduced as the set consisting of all A E A such that UogG 9(A) E 
V is fulfilled, is a monotone class, since M already contains the algebra C generating 
A. Clearly U n An E M is valid for any increasing sequence An E M, n E N, because 
o f UniUgeG 9(An)) = UgeG&Jn9(An))- Furthermore, for any decreasing sequence 
An E M, n E N, u> 6 Hn(U s eG 0~ 1 (A . ) ) implies that for any n E N there exists 
some gn E G satisfying gn(u) E An, i.e. there exists a g E G such that g(u>) E An 

for infinite many n E N is fulfilled, since G is finite. Hence, g(u) E f]n An holds true, 
i.e. the inclusion ~)n({JgeG 9~l(An)) C U r g G ^ H f l n A*)) n a s b e e n shown, where­
as the inclusion U ^ G ^ ^ f l n e N A")) c Hn(U 5 eG 9~l(An)) is obvious. Therefore, 
f]n(\JgEG 9~1(An)) E V has been proved for any decreasing sequence An E M, i .e. 
M is a monotone .class. • 

R e m a r k s . 

(i) The assertion of Lemma 1 does not hold longer true, in general, for countable 
groups of transformations, as the following special case shows: 
Let Q, s tand for the set 1R of real numbers and A for the Borel cr-algebra of 
M, which might be generated by the algebra C consisting of all finite unions 
of pairwise disjoint intervals of the type (a,b], where a,b, a < b, are rational 
numbers including —oo and oo. Furthermore, G is introduced by the countable 
group consisting of all transformations gp : M —• E defined by gp(x) = x + 
p, x E M, where p is some rational number. Then [jpgP(Yl,i=i(ai> M)> n ~ 
N U {0}, is equal to M. in the case n E N and empty in the case n = 0, 
i .e. the cr-algebra generated by Upfi 'pdCiL^^') &»'])> a» < *̂> a i ' ^ i rational, 
i = l,...,n, n E N U {0} is equal to {0,M}, whereas B(G,A) / {0,M} holds 
true, since the set consisting of all rational numbers belongs to B(G,A). 

(ii) The special case of Lemma 1, where G is the group acting as permutat ions on 
Mn together with A as the Borel cr-algebra of E n leads to a short proof of the 
well-known fact that B(G,A) is induced by the order statistics T : E n —* M.n 

sending (x\,..., xn) E M.n to the corresponding n-tuple, which is increasingly 
ordered, i .e. T - 1 ( . 4 ) = B(G,A) is valid in this case. 

(iii) Let Gj denote finite groups of transformations with underlying cr-algebras 
Aj, j = 1,2, then Lemma 1 implies B(Gi x G2, A\ 0 A2) = B(G\,A\) <8) 
B(G2,A2). 
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Further applications of Lemma 1 concern a characterization of the atoms of 
B(G,A) and the property of B(G,A) to be countably generated. 

Coro l lary 1 . Let A denote a cr-algebra of subsets of a set £1, G a finite group of 
( .4, .4)-measurable transformations g : Cl —* Q, and B(G,A) the cr-algebra consisting 
of all the sets A £ A satisfying A = g(A), g £ G. 

Then the following assertions hold true: 

(i) B £ B(G,A) is an a tom of B(G,A) if and only if B = \Jg£G g(A) is valid for 
an a tom A of A, 

(ii) B(G, A) is countably generated if and only if there exists a countably generated 
cr-algebra A' C A such tha t g : Q —> Q is ( . / I ' ^^ -measurab le , g £ G, and 
B(G,A') = B(G,A) is valid. 

P r o o f . For the proof of part (i) let A £ A denote an a tom of A. Then B £ 
B(G,A) defined by \JgeG g(A) is an atom of B(G,A), since g(A), g £ G, are atoms 
of A, too. Therefore, Cf)g(A) is equal to g(A) or empty, g £ G, where C £ B(G,A) 
is some subset of B, i .e. C = \Jg€H g(A), H C G. Now g(C) = C, g £ G, implies 
C = UagG i?C^)> ^ -^ is n ° t e m p t y , which shows that C = B is valid or C is empty, 
i.e. B given by UagG fir(^)> where A s tands for some atom of A, is indeed an a tom 
oiB(G,A). 

For the proof of the converse implication let B £ B(G, A) stand for an atom 
of B(G,A). According to Lemma 1 there exists a countable subset C of A such 
that B already belongs to the cr-algebra B generated by {\Jg£G 9(C) : C £ C}. 
Let Bi, i £ I, s tand for the atoms of B and Aj, j £ J , for the atoms of the 
<7-algebra A' generated by {g(C) : C £ C, g £ G}. Then g : Q —> Q, g £ G, 
is ( .4 ' ,A / ) -measurable according to Lemma 1, since one might replace C by the 
countable algebra generated by {g(C) : C £ C, g £ G}. Therefore, B = B(G,A') 
holds true and \JjejAj = JieI B{ = Q. According to the above considerations 
UgeG 9(Aj), j £ J, is an atom of B = B(G,A'). Now \Jj£j \Jg£G g(Aj) = ft and 
\JieI B{ = fi shows that any Bi, i £ I , is of the type U5eG KA?) f°T some j E J. 
In particular, the atom H £ /3(G,.4) is of the type U ^ G G 9(A) for a certain set 
A £ {Aj : j £ / } . Now ,4 £ A must be an atom of A, since, otherwise, H £ B(G,A) 
would not be an a tom of # ( G , . 4 ) , because \J G g(A') and \J G g(A \ A') are 
disjoint and their union coincides with U^eG 9(A) for any A' £ A satisfying A' C A, 
i.e. \JgeG g(A') = 0 or U 5 6 G 9(A \A') = Q is valid, from which A' = 0 or A' = ,4 
follows. 

For the proof of part (ii) let A' be some countably generated cr-algebra contained 
in A sucht tha t g : Q —> fi is ( . 4 ' , ^ - m e a s u r a b l e , fir £ C, and ^ ( C . 4 ' ) = t3(G,.4) 
holds true. Then B(G, A')(= B(G, A)) is countably generated according to Lemma 1. 

For the proof of the converse implication one might choose B(G,A) for A!. • 

R e m a r k s . 

(i) Let A be a countably generated cr-algebra of subsets of a given set Q. Then 
there exists a countably generated sub-cr-algebra .4i of A and a sub-cr-algebra 
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,4 2 of A containing .4i such that it is not countably generated and that g : 
Q —> Q, g e G, is both ( .41,.4immeasurable and (^2, .42)-measurable; further 
B(G,A\) = B(G,A2) = B(G,A) holds true if and only if the set £ consisting 
of all a toms of A not belonging to B(G,A) is uncountable, which might be 
proved as follows: 

Start ing from the assumption B(G,A2) = B(G,A), where A is countably 
generated and where A2 is a sub-cr-algebra of A such that g : Q —> Q is 
(-42 , .42)-measurable, g e G, it is sufficient to show that A2 is already count­
ably generated, if £ is countable. For this purpose one observes tha t AC\£l0 C 
B(G,A) n fig = B(G,A2) n fig C A2 n fig holds true for fi0 introduced as 
UEe£ E' Therefore, A C\ fi0 = .42 n fi0 is valid, from which it follows that A2 
is countably generated. 

For the proof of the other implication let .4 2 s tand for the c-algebra generated 
by A\ and the atoms of A, where A\ coincides with B(G,A). It will be shown 
that A2 is not countably generated, if £ is uncountable. The assumption 
on A2 to be countably generated results in an existence of a countable set 
{Cn : n e N} of atoms of A such that , for any A £ A2, there exists a set B £ ,4i 
satisfying AAB C \Jn = \ <?»• Therefore, any C0 £ £ \ {g(Cn) : n £ E,g £ G} 
satisfies C0A730 C Un°=i @n f ° r some B0 £ A\, which leads to C0 C B0 because 
of C0 n Cn = 0, n e N. Finally, C 0 7̂  <7o(C0) is valid for some g0 £ G, which 
results in g0(C0) C\ C 0 = 0, i.e. flr0(Co) C 5 0 n C0

C C Un°=i C " holds true 
because of g0(C0) C go(B0) = B0. Hence, there exists a set C n o satisfying 
g0(C0) = C n o , i.e. one arrives at the contradiction C0 = g0 (Cno). 

(ii) Let A s tand for a <T-algebra of subsets of a set fi, G for a group not necessarily 
finite, of (.4,.4)-measurable transformations g : fi —> Q, and let V stand 
for the set consisting of all G-invariant probability measures P on A, i.e. 
P = pa, g e G, is valid. Then it is well-known (cf. [1], p. 3 8 - 3 9 ) that the 
extremal points of V might be characterized by the property of G-ergodicity, 
i.e. P £ V is G-ergodic if and only if P restricted to the cr-algebra Ap 
consisting of all sets A £ A satisfying P(AAg(A)) = 0, g £ G, is already 
{0, l}-valued. In case G is finite, the property of P £ V to be G-ergodic is 
equivalent to the property of P £ V tha t its restriction to B(G,A) is {0, 1}-
valued. Under the additional assumption that A is countably generated, any 
P e V is G-ergodic, according to Corollary 1, if and only if there exist an 
a tom A £ A and gy. £ G, k = 1 , . . . , n, such that gk(A), k = 1, . . . , n, are 
pairwise disjoint and P(gk(A)) = - , k = 1 , . . . , n, holds true. This result is 
not longer valid for infinite groups of transformations, as a special case shows 
in which the underlying set Q is a compact, metrizable group G with A as the 
corresponding Borel c-algebra. In this case V only contains the normalized 
Haar measure, if G is chosen for the corresponding group of (A, .4)-measurable 
transformations g : Q —•> Q. 

(iii) The conclusion that the property of A to be countably generated implies tha t 
B(G,A) is also countably generated might also be drawn from the observation 
that rprr ^ £Q Ig(A)i where \G\ stands for numbers of elements of G, is for any 
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A £ A & regular, proper version of the conditional distribution P(A\B(G,A)), 
where H is an arbitrary G-invariant probability measure on A (cf. [2]). 

(iv) Let Aj denote cr-algebras of subsets of some set Qj, j = 1 , . . . , n (n > 2). Then 
the atoms of the n-fold direct product Ai<g>.. .<g>An might be characterized by 
the property to be of the type A\ X . . . X An, where each Aj £ Aj is an a tom 
of Aj, j — 1 , . . . , n. Clearly, sets of this type are atoms of Ai <g> • •. <S> An. The 
converse direction might be proved with the aid of the observation that any 
countably generated cr-algebra has atoms such that their union coincides with 
the underlying set. In particular, let G denote the symmetric group of order n 
acting as ( ,4 n , .4 n ) -measurable permutations g : Qn —*• fin, where Qn stands for 
the n-fold Cartesian product of the set Q and . 4 n for the n-fold direct product 
of the cr-algebra A of subsets of Q. In this case, the atoms of B(G, An) are of 
the type {jw&ln ^ir(i) X . . . X An(n), where Aj £ A, j = 1 , . . . , n , are atoms 
of A and j n is the symmetric group of order n consisting of all permutat ions 
7T : { l , . . . , n } -> { l , . . . , n } . 

The conclusion of part (iii) of the preceding remark, namely that B(G,A) is 
countably generated for finite groups of (A, .4)-measurable transformations g : Q --> 
Q, if A is countably generated, is not in general valid for countable groups as the 
following example shows: 

E x a m p l e 1. Let Q s tand for the unit circle {exp ix : x £ E } with the corresponding 
cr-algebra A and let P stand for the Haar measure of this compact group Q with 
P(Sl) = 1. Furthermore, let G be introduced as the countable group of ( .4,.4)-
measurable transformations gp : Q —> Q defined by gP(elx) = e

l(x+p\ x £ E, p £ Q, 
where Q stands for the set of rational numbers. It will be shown that P restricted to 
B(G,A) is {0, l}-valued under the assumption that B(G,A) is countably generated, 
which results in the contradiction that P ({exp i (x + Q)}) = 1 must be valid for some 
atom exp i(x + Q), x £ E , of B(G, A). It remains to prove that one arrives, from the 
assumption on B(G,A) to be countably generated, at a {0, l}-valued restriction of 
P to B(G, A), which might be seen as follows: For any set exp(iH) £ B(G, A), where 
H is a Borel subset of E , the equation exp(iH) n exp i(B + p) = exp(iB), p £ Q, 
yields P(exp(iB) n exp i(B + p)) = H(exp(fH)), p £ Q, from which P(exp(iB) n 
exp i(B + x)) = P(exp(iB)), x £ E , follows, since the function defined by x —> 
P(exp(iB) C\expi(B + x)), x £ R, is continuous (cf. [6], p. 191). Therefore, for 
any x £ E and all sets elB £ ^ (G,^4) , where H is a Borel subset of E , there exists 
a H-zero set Nx such tha t jexP(iJB)(exp iy) • Iexpi(B+x)(exp iy) = Iexp(iB)(^P iy) for 
expiy (fc Nx and y £ E holds true, if # ( G , . 4 ) is countably generated, since one 
might s tar t from a countable algebra generating t5(G,.4) and apply a monotone 
class argument . Now elB £ B(G,A), where H is a Borel subset of E, implies that 

ei(B-x) e B(G,A), x £ E, which implies 4xP(iB)(exp iy) • Iexpi(B+x)(^piy) = 
I~exp(;.B)(exp iy) for all exp iy ^ N0 with y £ E and all x £ E , from which one derives 
the equation Texp(iB)(exp *'y)H(exp i(y - B)) = Iexp(iB)(^Pw), expiy £ N0 with 
y £ E . Finally P(exp(iB)) > 0 yields the existence of a value exp iy £ exp iB 
satisfying exp iy g N0 with y £ E, i.e. P(expi(y - B)) = P (exp( -zH ) ) = 1 and, 
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therefore, P ( e x p ( i P ) ) = 1 is valid, since P(exp(iB)) > 0 implies P(exp(-iB)) > 0, 
i.e. B might be replaced by —B. 

2. MAIN RESULTS 

In the sequel the property of a probability measure P on the cr-algebra A to be 
monogenic with respect to the cr-algebra B(G, A) consisting of all G-invariant sets 
belonging to A, i .e. A E B(G,A) if and only if A = g(A), g £ G, holds true, will 
be characterized by properties of approximation, where P is called monogenic with 
respect to B(G,A) if and only if P is uniquely determined among all probability 
measures on A by its restriction P\B(G,A) to B(G,A). 

L e m m a 2. Let A denote a cr-algebra of subsets of a set Q, G a finite group of 
( .4, .4)-measurable transformations g : 0 —•• 0 , and B(G,A) the cr-algebra of all 
G-invariant sets belonging to A. Then a probability measure P on A is monogenic 
with respect to B(G, A) if and only if P((Jg£G 9(A)) \ (f]geG g(A))) = 0 holds true 
for any A £ A. 

P r o o f . Clearly, if P has this property of approximation, then P is monogenic 
with respect to B(G,A), since f]geG g(A) CAC \JgeG g(A) and f]geG g(A), 
\JgeGg(A) E B(G,A), A £ A, is valid. 

For the proof of the converse implication one might start from the observation 
tha t P defined by 4 5 ] £ G P 3 (\G\ number of elements of G) is a probability 

measure on A, whose restriction P\B(G,A) to B(G,A) coincides with P\B(G,A). 
Therefore, the property of P to be monogenic with respect to B(G,A) implies tha t 
P is already G-invariant, i .e. P9 = P , g £ G, holds true. Furthermore, P is an 
extremal point of the convex set consisting of all probability measures on A whose 
restriction to B(G,A) coincides with P\B(G,A). Hence, for any A £ A, there exists 
a B £ B(G,A) satisfying P(AAB) = 0, where A stands for the symmetric difference 
(cf. [7]). This property of approximation fulfilled by P together with the property of 
P to be G-invariant results in P(AA(Jg£G g(A))) = 0 and P(AA(f]geG g(A))) = 0 
from which P((\JgeG g(A)) \ (f]geG g(A))) = 0 follows. • 

The remaining part of this article is devoted to the problem of simplifying the 
monogenicity criterion of Lemma 2. In this connection the set F(G) consisting of 
all u £ Q which are kept fixed under all g £ G, i.e. to = g(to), g £ G, holds true, 
plays an essential role. 

L e m m a 3 . Let An denote the n-fold direct product of the cr-algebra A of subsets of 
some set Q and let G denote the finite group of (.4", .4n)-measurable transformations 
g : Qn —• fin, Cln being the n-fold Cartesian product of Q, associated with some 
subgroups of the symmetric group yn of all permutations of { 1 , . . . , n } . Then a 
probability measure P on An is monogenic with respect to B(G,An) if and only if 
P*(F(G)) = 1 holds true, where P* stands for the outer probability measure of P . 
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P r o o f . Clearly, P*(F(G)) = 1 is according to Lemma 2 sufficient for the proper­
ty of P to be monogenic with respect to B(G, An), since ({JgeG g(A))\(f] eG g(A)) C 
(F(G))C is valid for all A E An. 

For the proof of the converse implication one might introduce the following equiv­
alence relation on { 1 , . . . , ft} defined by i ~ j for i,j £ {1,... ,n] if and only if there 
exists some 7 £ V such that i = y(j) is valid, where T stands for the subgroup of 
the symmetric group j n associated with G. Let [«i], . . . ,[«*], i\ < ... < ik, ij £ 
{ 1 , . . . , n}, j = 1 , . . . , k, denote the corresponding equivalence classes. It will now 
be shown tha t F(G) C Um=i(-4m.i x •• . x A m . „ ) for Amj £ A, j = l,...,n, m £ N, 
implies J2m=i P(Am,i x . . . x y4m,n) > 1, from which the assertion P*(F(G,A)) = 1 
follows. For this purpose one should take into consideration that Lemma 2 leads to 
the following equations up to some p-zero set: 

IAml x . . . x IAmn 

= Zn-€o^».-x-xA~.-) 
= 7 n g e G ^ x - x n > A e [ H i A m ' j x n x - ' x ^ 

where [i{] U . . . U [ik] = { 1 , . . . , ft} is valid. Finally, let ir denote the projection of Qn 

onto fi{u.-»»fe} introduced as the Ar-fold Cartesian product of Q. Then P(Amti x .. .x 

Am,n) = PT(C\je[ii] Am,j x . . . x nj6[ifc] l^mj) is implied by the preceding equations. 
Now F(G) C U m - . i ( - V i x ••• x Am,n), together with F(G) = { (wi , . . . , w n ) £ 
fi" : w,- = cjy, i , j £ [«"„], ^ £ [ 1 | - • • ! * } } , yields the inclusion n<»-»-t<fc} c 

Um = l(nj6[.-i] A™>J X • • • X h/epfc] ^ m , ; ) , from which Ylm=l P(Am,l X . . . X A m > n ) = 

E m = i P*(rii6Pil A^i x • • • x r W > ] -4mj) > P*(n< ' - - - ' *>) = 1 follows, i. e. mono­
genicity of P with respect to B(G,An) implies P*(F(G)) = 1. • 

R e m a r k s . 

(i) If C7 is associated with the symmetric groups 7 n , then E(C7) is equal to the 
diagonal A of Qn. It is known that A £ An is equivalent to the property of 
A to separate points to £ Q by a countable system of sets belonging to A. A 
short proof of this characterization of A £ An might be based on the fact tha t 
the a toms of An are of the type A\X .. .x An, where Aj £ A, j = 1 , . . . ,ft, are 
atoms of A (cf. part (iv) of the remark following Corollary 1). The assumption 
A £ An implies A £ An, where AQ is a countably generated sub-<r-algebra of 
A. Therefore, A is equal to the union of atoms of An of the type A\X .. .x An, 
where Aj € AQ, j = 1 , . . . , ft, are atoms of AQ, i. e. Aj, j = 1 , . . . , n, must be 
singletons. Hence, any countable generator C of AQ separates points u> £ Q. 
The converse implication follows easily from the fact tha t A c is the union of 
sets of the type Qx...xQxAxQx...xQ,xAcxQx...xQ, where A runs 
through some countable subsets of A, which might be assumed to be closed 
with respect to complements. The property of .4 to separate points u> £ Q 
by a countable system of sets belonging to A implies tha t the cardinality of 
the underlying set Q exceeds the cardinality of the set M of real numbers. In 
particular, xi — 7r2 is not (A 0 . 4 , . /^-measurable, where Wj : f i x f i , ; = l , 2 , 
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are the projections associated with the Banach space Q, if the cardinality of 
Q exceeds the cardinality of M. and A is the corresponding Borel cr-algebra (cf. 
[5])-

(ii) The case P*(A) = 1 together with P*(A) = 0 is possible, where P* stands for 
the inner probability measure of P as the following special case shows: Let Q 
be an uncountable set, let A be the cr-algebra of subsets of Q generated by all 
singletons {ui}, u> ~Q, i.e. A = {A C Q : A or Ac is a countable subset of Q}, 
and let P stand for the probability measure on A defined by P(A) = 0, if A 
is a countable subset of Q, resp. P(A) = 1, if Ac is a countable subset of Q. 
Then it is not difficult to see tha t ( P ® P)*(A) = 1 and ( P ® P )* (A) = 0 is 
valid. 

In the sequel Lemma 3 will be extended to arbitrary finite groups of transform­
ations. The special case of a finite group G of transformations g : Q —> Q with 
F(G) (fc {0, Q} together with the cr-algebra A consisting of the sets 0, Q, F(G), and 
(F(G))c, i .e. B(G,A) = A is valid, shows that some additional assumption must be 
introduced, which is given in the following 

T h e o r e m 1. Let A denote a cr-algebra of subsets of a set Q, G a finite group 
of («4,.4)-measurable transformations g : Q —> Q, B(G,A) the cr-algebra consist­
ing of all C7-invariant sets belonging to A, F(G) the set consisting of all u> ~\ Q 
satisfying g(u>) = ui, g ~ G, f : Q —* fi'G', where \G\ stands for the number of 
elements of G, the mapping defined by f(u>) = (gi(u),... ,g\G\(u>)), u> ~ Q, G = 
{9i, • • -,9\G\}, ^ ' G ' the G-fold Cartesian product of Q, and yt 'G ' the |C7|-fold direct 
product of A. Under the assumption f(B) ' ^4 'G ' , B ~ B(G,A), the following 
assertions hold true: 

(i) A probability measure P on A is monogenic with respect to B(G, A) if and only 
if P*(F(G)) = 1 is valid, where P* stands for the outer probability measure 

of P . 

(ii) F(G) £ A holds true if and only if there exists a countable system contained 
in A which separates all points u>i,U)2 ~ F(G), U)\ ^ u>2, and u> £ F(G), ui' £ 
F(G). 

P r o o f . The finite group C7 = {gi,..., g\G\} induces a subgroup SG of the sym­
metric group f\G\ of permutat ions of { 1 , . . . , |C7|} according to ng(l,. .., |C7|) = 
(9K(I)) • • • )9ir(\G\))> where TX stands for the permutat ion of {1 , . . . , |C7 |} associated 
with g ~ G by (gig,... ,g\G\g) = (sr--(i), • • • ,9wQG\))- In particular, f~l(Ax x 
. . . x A\G\) = C\geG9(A) G B(G,A) is valid for Ax = . . . = A\G\ = A e A 
according to Lemma 1, from which B(G,A) = f~l(C) follows, where C stands 
for the cr-algebra of subsets of OjG ' generated by all sets of the type A\ x . . . x 
A\G\, A\ = ... = A\G\ = A ~ A. This observation shows that monogenici-
ty of the probability measure PI" on .4'G' with respect to B(SG,A^), where P? 
stands for the probability measure on yt 'G ' induced by the probability measure 
P on A and the (^4,^4'G ')-measurable mapping / , implies that P is monogenic 
with respect to B(G,A). This follows, according to Lemma 2, from the equation 
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pf(A\ x . . . x A\G\ \ f)nesa ATr(i) x . . . x A<lG\)) = 0, Aj £ A, j = I,..., \G\, 
since the special case Aj = Q, j = 2 , . . . , |G| and yli = (71(A), A £ A, results in 
P(A\ / _ 1 ( H i x . . . x B\G\)) = 0, Bj = A, j = 1,..., \G\, if one takes into consider­
ation tha t the subgroup of 7 |G | associated with SG acts transitively on { 1 , . . . , |G |} . 

For the converse implication, namely that monogenicity of P with respect to 

B(G,A) implies that P-l" is monogenic with respect to B(SG,A^) one might start 

from the equation P(A \ B) = 0, A £ A, B = f]geG g(A), according to Lemma 2. 

Now, f(B) £ , 4 ' G ' is valid by assumption, from which Pf(Ai x . . . x A\G\ \ f(B)) = 

0 follows for Aj £ A, j = 1 , . . . , |G | , where B stands for f]g£G 9(C) an<^ @ f ° r 

PifJ19j1(Aj) = f~1(A1 x . . . x A\G\) £ A. Finally, f(B) £ B(SG,AW), which is 

implied by B £ B(G,A), shows that P-!" is monogenic with respect to B(SG , A'G') if 

and only if P is monogenic with respect to B(G,A). 

Now everything is prepared for the proof of part (i) of Theorem 1. For this 
purpose let P stand for a probability measure on A being monogenic with respect to 
B(G,A). T h e n P ' is monogenic with respect to B(SG,A^), i.e. (P*)*(F(SG)) = 1 
holds true according to Lemma 3. Now f~1(F(SG)) = F(G) together with the 
assumption f(B) £ , 4 ' G | , B £ B(G,A), leads to P*(F(G)) = 1, since the coverings 
of F(G) entering into the definition of P*(F(G)) might have been chosen to belong 
to B(G,A). Clearly, the property of P to fulfill the last equation P*(F(G)) = 1 
implies, with regard to Lemma 2, that P is monogenic with respect to B(G,A) 
because of \JgeGg(A) \ f]geG d(A) C (F(G))C, A £ A, i.e. part (i) of Theorem 1 
has been proved. 

The proof of part (ii) of Theorem 1 might be based on the observation that the 
subgroup of 7 |G | associated with SG acts transitively on { 1 , . . . , |G |} , from which 
F(SG) = { (c^ i , . . . , ^ | G | ) : Wi = . . . = co\G\ = to, to £ £1} follows. Now the assump­
tion / (H ) £ - 4 | G ' , H G B(G,A) together with the condition F(G) £ A results in 
f(Q) C\F(SG) = f(F(G)) £ . 4 ' G ' . Therefore, f(F(G)) £ . 4 ' G ' for a certain count-
ably generated sub-cr-algebra A of A holds true. Now the atoms of .4'G' are of 
the type A\ X . . . x A\G\, where Aj £ A, j = I,..., \G\, are atoms of A (cf. part 
(iv) of the remark following Corollary 1), and the union of all atoms of .4'G' coin­
cides with Oj G ' . Hence, the atoms of .4'G', whose union coincides with f(F(G)), 
are of the type A\ X ... X A\G\, where Aj £ A, j = 1 , . . . , |G|, are singletons of 
the type {a;}, to £ F(G), i .e. any countable system of sets generating A separates 
all points U\,LQ2 £ F(G), LOX ^ LO2 and u> £ F(G), u/ ^ F(G). Conversely, the 

existence of a countable system C C A with this property of separation results in 
f(Q) n F(SG) £ A'G| because the complement of f(Q) n F(SG) = f(F(G)) consists 
of the union of the sets of the type A\ X . . . x A\G\, Aj = C £ C, At = Cc, j , k £ 
{ 1 , . . . , |G | } , j ^ k, Ai = 0., i £ {1,..., |G|} \ {j, k}, since one might assume with­
out loss of generality tha t C is already closed with respect to complements. Finally, 
f(F(G)) £ A^ together with f~1(f(F(G))) = F(G) yields F(G) £ A, i.e. part 
(ii) of Theorem 1 has been proved. • 

R e m a r k s . 

(i) The condition / (H ) £ .4'GI, B £ B(G,A), is fulfilled, if Q is a Polish space 
and A the correspondingBorel cr-algebra (cf. [3], p. 276). 
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(ii) The cr-algebra generated by all sets of the type A\ x . . . x A\Q\, A\ = ... = 
A\G\ = A E A, which occurs in the proof of Theorem 1, has been characterized 
in [4]. 

In the final part of this article a further rather simple condition will be introduced, 
which yields simultaneously F(G) £ A and the characterization of monogenicity of 
a probability measure P on A with respect to B(G,A) by P(F(G)) = 1. 

T h e o r e m 2 . Let A denote a cr-algebra of subsets of a set Q, G a finite group of 
(*4,.4)-measurable transformations g : Q —> Q, B(G,A) the cr-algebra consisting of 
all G-invariant sets belonging to A, and F(G) the set {u £ Q : g(u) = u), g £ G}. 
Under the assumption tha t A separates all points u>, g(u)), u> £ Q, g £ G, u) / g(ui), 
by a countable system of sets belonging to A, the following assertions hold true: 

(i) F(G) £ A, 

(ii) a probability measure P on A is monogenic with respect to B(G,A) if and 
only if P(F(G)) = 1 is valid. 

P r o o f . Let C C A s tand for a countable system such that for u> £ Q, c / £ G , u) ^ 
g(u)), there exists a C £ C satisfying u) £ G, g(u;) £ C or u) £ C, g(u) £ G. Then 
Uc6c((U,6Gff(C0) \ (rWff(C))) = (He))' holds true, from which P(F(G)) = 
1 follows, if P is monogenic with respect to B(G,A), since this property implies 
according to Lemma 2 the equation P((U 5 gG 9(C)) \ (C\geG 9(C))) = 0. Clearly, 
P(F(G)) = 1 yields, by Lemma 2 being applied, tha t P is monogenic with respect 
to B(G, A). , • 

R e m a r k s . 

(i) The property of A to separate points u), g(u>), u) £ Q, g £ G, w / 5 ^ ) ) 
by a countable system of sets belonging to A is shared by all countably gen­
erated c-algebras A of subsets of Q satisfying {to} £ A, ui £ Q, since such 
cr-algebras separates all points u;i,u;2 £ 0,, u>\ ̂  u>2, by a countable system of 
sets belonging to the corresponding cr-algebra. 

(ii) In case G is associated with the symmetric group j n of all permutations it of 
{1,.. . ,n} acting (>4n , .4n)-measurably on f2n, the property of «4n to separate 
points ui,g(u)), to £ Qn, g £ G, ui ^ <7(u;), by a countable system of sets 
belonging to An, is equivalent to the property of A to separate all points 
u;i,u;2 6 H.. o>i ^ CJ2, by a countable system of sets belonging to A. This 
follows from the observation that any cr-algebra generated by some system C 
of sets belonging to this cr-algebra and separating a given set of points by 
some countable system of sets belonging to this cr-algebra, already separates 
this given set of points by a countable system of sets belonging to C. 

An application of Theorem 2 and Lemma 1 results in 
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Coro l lary 2 . Let Aj denote cr-algebras of subsets of some set Qj, Gj finite groups 
of (^4j,^4j)-measurable transformations g : Q, ^ Q, B(Gj,Aj) the c-algebra con­
sisting of all Cry-invariant sets belonging to Aj, j = 1,2, and B(G\ x G2, A\ ® A2) 
the er-algebra consisting of all (G\ x Cr2)-mvariant sets belonging to ,4i <8>A2- Then 
B(G\ x G2, A\ ® A2) = B(G\,A\) <g>#(G2,-42) is valid and under the assumption 
that Aj separates all points u)j, g(uij), uij £ Qj, g £ Gj, u>j / g(wj), j = 1,2, the 
following assertion holds true: A probability measure P on A\ <S) A2 is monogenic 
with respect to B(G\ x G2, A\ ®A2) if and only if the corresponding marginal prob­
ability measures Pj of P on Aj are monogenic with respect to B(Gj,Aj), j = 1, 2. 

P r o o f . Lemma 1 implies B(G\ x G2, A\ ® A2) = B(G\,A\) ® B(G2,A2) 
and monogenicity of the marginal probability measures Pj on Aj with respect to 
B(Gj,Aj), j = 1,2, of some probability measure P on .4i ® A2, leads, accord­
ing to Theorem 2, to Pj(F(G-)) = I, j = 1,2, from which P(F(G\) x F(G2)) = 
P(F(G\) x Q2) n (Q\ x F(G2)) = 1 follows, i.e. P(F(G\ x G2)) = 1 holds true 
because of F(G\ x G2) = F(G\) x F(G2), i.e. P is monogenic with respect to 
B(G\ x G2, A\ ®A2). Conversely, P(F(G\ x G2)) = 1, which follows by means of 
Theorem 2 from monogenicity of P with respect to B(G\ x G2, A\ ® -42), implies 
Pj(F(Gj)) = 1, j = 1,2, i .e. Pj is monogenic with respect to B(Gj,Aj), j = 1,2.D 

R e m a r k s . 

(i) Theorem 2 remains valid for countable groups, since Lemma 2 holds true for 
countable groups, too. However, Theorem 2 (and also Theorem 1) is not longer 
true for uncountable groups even in the case where Q is an uncountable Polish 
space and A is the cr-algebra of Borel subsets of Q, which might be seen as 
follows: For any analytic subset A0 (£ A of Q the equation Vl.Be.4o B = AQ is 
valid, where .4o stands for all Borel subsets B £ A containing A0 and A denotes 
the Borel cr-algebra of Q (cf. [3], Theorem 8.3.1, and [3], Corollary 8.2.17 
together with [8], p. 422 in connection with the existence of A0). Furthermore, 
let G denote the group of (,4, .4)-measurable mappings g : £1 —• Q such that 
there exists a set B £ .4o with the property g(x) = x, x £ B, g(x) / 
x, x £ Q \ B, where g is a one-to-one transformation of Q which maps 0, 
onto Q,. In particular, g~l is (.4,.4)-measurable (cf. [3], Theorem 8.3.2 and 
Proposition 8.3.5), F(G) = A0 £ A is valid, and B(G,A) = {B £-A : B C A0 

or Bc C A0} holds true, since for c i , c 2 £ Q \ A0, c\ / c2, there exists a 
mapping g £ G satisfying g(c\) = c2, i.e. AQ n B ^ 0 for a set B £ B(G,A) 
implies AQ OB = AQ. In particular, B(G,A) is not countably generated, since 
otherwise for any u> £ AC

Q there would exist an a tom C of # ( C T , . 4 ) containing 
u>. Now Cf\Ac

0 ^ 0 implies Cc C ^ o , i-e. Ac
0 C C. Therefore, there exists 

an element u>' £ C with the property u>' £ A0 because of AQ ^ C. Finally 
{u>'} £ B(G,A) results in the fact tha t C \ {u:1} is a proper subset of C, i .e. 
C would not be an a tom of B(G, A). 

(ii) The model described by (i) admits the following characterization in connec­
tion with the question whether a probability measure P defined on A has the 
property to be an extremal point of the set V consisting of all probability 
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measures Q defined on A and satisfying Q\B(G,A) = P\B(G,A) : P G V 
is an extremal point of V if and only if P(AC

0 (1 B) = P(AC
0)6W(B), B £ A, 

is valid for some u G A0, where P stands for the completion of P restrict­
ed to the cr-algebra consisting of the universally measurable subsets of Q, (cf. 
[3], Corollary 8.4.3) and where 6W denotes the one-point mass at u, to G fi. 
This observation follows from the fact tha t for any B G A there exists a 
set B' G B(G,A) such that IB, = IB P-a.e . holds true (cf. [7]), from 
which either P(AC

0 n 73) = 0 in the case 73' C A0 or P(AC
0 n 73c) = 0 in 

the case B'c C A0 follows, i.e. the probability measure Q defined on A by 
Q(73) = P(AC

0 n B)/P(AC
0), 73 G .4, in the case P(AC

0) > 0 is equal to 6W 

for some u) G A0, since A is countably generated and contains all singletons 
{u>}, u G V. Hence, P(B n Ac

0) = P(AC
0)6W(B), 73 G .4, is valid. Further­

more, P(73 n A0) = P(B n 730), 73 G A, where 730 G A satisfies 730 C A0 

and P(A0 \ B0) = 0, shows tha t the probability measure defined on A by 
B —> p(73 nA0)/P(A0), 73 G A, is monogenic with respect to 73(67, A), from 
which the assertion about the characterization of extremal points of V follows. 
In particular, P is monogenic with respect to B(G,A) if and only if P(A0) = 1, 
i. e. P*(A0) = 1 holds true, since monogenicity of P relative to B(G, A) implies 
tha t 6W, u> G A0, has the same property in the case P(A0) > 0. 

E x a m p l e 2. Let A denote a countably generated cr-algebra of subsets of a set f2 
containing all singletons {UJ}, to G £1, and let G stand for the countable group of 
( .4K , .4M)-measurable mappings g : Q® —> Q® acting as a permutat ion for a finite 
number of coordinates and keeping the remaining coordinates fixed, where fiH resp. 
A® is introduced as the N-fold Cartesian product of Q, resp. N-fold direct product 
of A. Then 7f(C7) is equal to the diagonal A of Q® and a probability measure on 
A^ of the type (>£)nGK Pn, where Pn, n G N, are probability measures defined on A, 
is monogenic with respect to B(G,A^) if and only if Pn = P\, n G N, is valid and 
pi coincides with a one-point mass at a certain element ui £ Q,. This follows from 
Theorem 2 together with Fubini's theorem. 

E x a m p l e 3 . Let .4 stand for a countably generated cr-algebra of subsets of a set 0_ 
containing all singletons {to}, u> G fi, and let Gj, j = 1,2, stand for finite groups of 
(,4, .4)-measurable mappings Qj : Q —» Q, gj G Gj, j = 1, 2. Then the corresponding 
group C7i2 of ( .4,.4)-measurable transformations generated by G\ and G2 consists 
of all elements of the type h\ o . . . o hn, hj G G\ U G2, j = 1, • • •, n, n G N, which 
implies F(G\2) = F(G\)f\F(G2). Now Theorem 2 shows tha t a probability measure 
P on .4 is monogenic with respect to # (Gi2 , .4) if and only if P is monogenic with 
respect to B(G\,A) and B(G2,A). 

(Received March 29, 1995.) 
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