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Let A denote a er-algebra of subsets of a set Q, G a finite group of (.4,.4)-measurable 
transformations g : fi —> Ci, F(G) the set consisting of all u> £ ft such that g(u>) = u>, g £ G, 
is fulfilled, and let B(G,A) stand for the u-algebra consisting of all sets A £ A satisfying 
g(A) = A, g £ G. Under the assumption / ( B ) £ .4'G', B £ B(G,A), for / : Q - fi'G' 
defined by /(a;) = (^i(w),...,<7|G|(<~'))J w € fi, {#i, • • •, # |G |} = O, where |O | stands for 
the number of elements of G, fi'G' for the |O|-fold Cartesian product of Q, and .4'G' for 
the |O|-fold direct product of A, it is shown that a probability measure P on A is uniquely 
determined among all probability measures on .4 by its restriction to B(G, A) if and only if 
P*(F(G)) = 1 holds true and that F(G) £ A is equivalent to the property of A to separate 
all points CJ\,U2 £ F(G), u;i ^ w2, and u> £ F(G), u/ ^ F(G), by a countable system of 
sets contained in A. The assumption / ( B ) £ -4'G ' , B £ B(G,A), is satisfied, if Q is a 
Polish space and A the corresponding Borel <r-algebra. 

1. INTRODUCTION 

The main result of this article concerns characterizations of the property of a prob
ability measure P defined on a cr-algebra A of subsets of a set Q to be uniquely 
determined among all other probability measures defined on A by its restriction to 
some sub-cr-algebra B, which consists in this article of all sets A £ A satisfying 
A = g(A), g £ G, where G denotes a finite group of («4,.4)-measurable transform
ations g . Q —* ti. For example the results of the second part of this article might 
be applied to the special group of permutations acting on M.n or the finite group 
consisting of 2 n elements acting on M" by changing the sign of the coordinates. In 
the first case a probability measure P on #(IRn), where B(M.n) is introduced as the 
Borel-cr-algebra of IRn, is uniquely determined by its restriction to the sub-cr-algebra 
of B(Mn) consisting of all permutation-invariant Borel subsets of M.n, if and only 
if -P(A) = 1 is valid, where A stands for the diagonal of Mn. In the second case, 
a probability measure P on B(M.n) is uniquely determined by its restriction to the 
sub-cr-algebra of Z?(IRn) consisting of all sign-invariant Borel subsets of Mn, if and 
only if P is already the one-point mass at the origin of E n . 
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In the sequel the underlying model for the investigation of problems of the pre
ceding type will be introduced and studied in detail. 

The start ing point is the following generalization of a result concerning groups of 
permutat ions (cf. [4]) to arbitrary finite groups of transformations. 

L e m m a 1 . Let A denote a cr-algebra of subsets of some set Q, G a finite group of 
(.4, .4)-measurable transformations g : Q —> Q, B(G,A) the cr-algebra consisting of 
all A E A satisfying A = g(A), g E G, and C an algebra of subsets of Q generating 
A. Then B(G,A) is generated by {{JgEG g(C) :C EC}. 

P r o o f . Let V denote the cr-algebra generated by {U5eG fl'(C) : C E C}. Then 
V C B(G, A) holds true, whereas the inclusion B(G, A) C V will follow from the ob
servation tha t M introduced as the set consisting of all A E A such that UogG 9(A) E 
V is fulfilled, is a monotone class, since M already contains the algebra C generating 
A. Clearly U n An E M is valid for any increasing sequence An E M, n E N, because 
o f UniUgeG 9(An)) = UgeG&Jn9(An))- Furthermore, for any decreasing sequence 
An E M, n E N, u> 6 Hn(U s eG 0~ 1 (A . ) ) implies that for any n E N there exists 
some gn E G satisfying gn(u) E An, i.e. there exists a g E G such that g(u>) E An 

for infinite many n E N is fulfilled, since G is finite. Hence, g(u) E f]n An holds true, 
i.e. the inclusion ~)n({JgeG 9~l(An)) C U r g G ^ H f l n A*)) n a s b e e n shown, where
as the inclusion U ^ G ^ ^ f l n e N A")) c Hn(U 5 eG 9~l(An)) is obvious. Therefore, 
f]n(\JgEG 9~1(An)) E V has been proved for any decreasing sequence An E M, i .e. 
M is a monotone .class. • 

R e m a r k s . 

(i) The assertion of Lemma 1 does not hold longer true, in general, for countable 
groups of transformations, as the following special case shows: 
Let Q, s tand for the set 1R of real numbers and A for the Borel cr-algebra of 
M, which might be generated by the algebra C consisting of all finite unions 
of pairwise disjoint intervals of the type (a,b], where a,b, a < b, are rational 
numbers including —oo and oo. Furthermore, G is introduced by the countable 
group consisting of all transformations gp : M —• E defined by gp(x) = x + 
p, x E M, where p is some rational number. Then [jpgP(Yl,i=i(ai> M)> n ~ 
N U {0}, is equal to M. in the case n E N and empty in the case n = 0, 
i .e. the cr-algebra generated by Upfi 'pdCiL^^') &»'])> a» < *̂> a i ' ^ i rational, 
i = l,...,n, n E N U {0} is equal to {0,M}, whereas B(G,A) / {0,M} holds 
true, since the set consisting of all rational numbers belongs to B(G,A). 

(ii) The special case of Lemma 1, where G is the group acting as permutat ions on 
Mn together with A as the Borel cr-algebra of E n leads to a short proof of the 
well-known fact that B(G,A) is induced by the order statistics T : E n —* M.n 

sending (x\,..., xn) E M.n to the corresponding n-tuple, which is increasingly 
ordered, i .e. T - 1 ( . 4 ) = B(G,A) is valid in this case. 

(iii) Let Gj denote finite groups of transformations with underlying cr-algebras 
Aj, j = 1,2, then Lemma 1 implies B(Gi x G2, A\ 0 A2) = B(G\,A\) <8) 
B(G2,A2). 
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Further applications of Lemma 1 concern a characterization of the atoms of 
B(G,A) and the property of B(G,A) to be countably generated. 

Coro l lary 1 . Let A denote a cr-algebra of subsets of a set £1, G a finite group of 
( .4, .4)-measurable transformations g : Cl —* Q, and B(G,A) the cr-algebra consisting 
of all the sets A £ A satisfying A = g(A), g £ G. 

Then the following assertions hold true: 

(i) B £ B(G,A) is an a tom of B(G,A) if and only if B = \Jg£G g(A) is valid for 
an a tom A of A, 

(ii) B(G, A) is countably generated if and only if there exists a countably generated 
cr-algebra A' C A such tha t g : Q —> Q is ( . / I ' ^^ -measurab le , g £ G, and 
B(G,A') = B(G,A) is valid. 

P r o o f . For the proof of part (i) let A £ A denote an a tom of A. Then B £ 
B(G,A) defined by \JgeG g(A) is an atom of B(G,A), since g(A), g £ G, are atoms 
of A, too. Therefore, Cf)g(A) is equal to g(A) or empty, g £ G, where C £ B(G,A) 
is some subset of B, i .e. C = \Jg€H g(A), H C G. Now g(C) = C, g £ G, implies 
C = UagG i?C^)> ^ -^ is n ° t e m p t y , which shows that C = B is valid or C is empty, 
i.e. B given by UagG fir(^)> where A s tands for some atom of A, is indeed an a tom 
oiB(G,A). 

For the proof of the converse implication let B £ B(G, A) stand for an atom 
of B(G,A). According to Lemma 1 there exists a countable subset C of A such 
that B already belongs to the cr-algebra B generated by {\Jg£G 9(C) : C £ C}. 
Let Bi, i £ I, s tand for the atoms of B and Aj, j £ J , for the atoms of the 
<7-algebra A' generated by {g(C) : C £ C, g £ G}. Then g : Q —> Q, g £ G, 
is ( .4 ' ,A / ) -measurable according to Lemma 1, since one might replace C by the 
countable algebra generated by {g(C) : C £ C, g £ G}. Therefore, B = B(G,A') 
holds true and \JjejAj = JieI B{ = Q. According to the above considerations 
UgeG 9(Aj), j £ J, is an atom of B = B(G,A'). Now \Jj£j \Jg£G g(Aj) = ft and 
\JieI B{ = fi shows that any Bi, i £ I , is of the type U5eG KA?) f°T some j E J. 
In particular, the atom H £ /3(G,.4) is of the type U ^ G G 9(A) for a certain set 
A £ {Aj : j £ / } . Now ,4 £ A must be an atom of A, since, otherwise, H £ B(G,A) 
would not be an a tom of # ( G , . 4 ) , because \J G g(A') and \J G g(A \ A') are 
disjoint and their union coincides with U^eG 9(A) for any A' £ A satisfying A' C A, 
i.e. \JgeG g(A') = 0 or U 5 6 G 9(A \A') = Q is valid, from which A' = 0 or A' = ,4 
follows. 

For the proof of part (ii) let A' be some countably generated cr-algebra contained 
in A sucht tha t g : Q —> fi is ( . 4 ' , ^ - m e a s u r a b l e , fir £ C, and ^ ( C . 4 ' ) = t3(G,.4) 
holds true. Then B(G, A')(= B(G, A)) is countably generated according to Lemma 1. 

For the proof of the converse implication one might choose B(G,A) for A!. • 

R e m a r k s . 

(i) Let A be a countably generated cr-algebra of subsets of a given set Q. Then 
there exists a countably generated sub-cr-algebra .4i of A and a sub-cr-algebra 
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,4 2 of A containing .4i such that it is not countably generated and that g : 
Q —> Q, g e G, is both ( .41,.4immeasurable and (^2, .42)-measurable; further 
B(G,A\) = B(G,A2) = B(G,A) holds true if and only if the set £ consisting 
of all a toms of A not belonging to B(G,A) is uncountable, which might be 
proved as follows: 

Start ing from the assumption B(G,A2) = B(G,A), where A is countably 
generated and where A2 is a sub-cr-algebra of A such that g : Q —> Q is 
(-42 , .42)-measurable, g e G, it is sufficient to show that A2 is already count
ably generated, if £ is countable. For this purpose one observes tha t AC\£l0 C 
B(G,A) n fig = B(G,A2) n fig C A2 n fig holds true for fi0 introduced as 
UEe£ E' Therefore, A C\ fi0 = .42 n fi0 is valid, from which it follows that A2 
is countably generated. 

For the proof of the other implication let .4 2 s tand for the c-algebra generated 
by A\ and the atoms of A, where A\ coincides with B(G,A). It will be shown 
that A2 is not countably generated, if £ is uncountable. The assumption 
on A2 to be countably generated results in an existence of a countable set 
{Cn : n e N} of atoms of A such that , for any A £ A2, there exists a set B £ ,4i 
satisfying AAB C \Jn = \ <?»• Therefore, any C0 £ £ \ {g(Cn) : n £ E,g £ G} 
satisfies C0A730 C Un°=i @n f ° r some B0 £ A\, which leads to C0 C B0 because 
of C0 n Cn = 0, n e N. Finally, C 0 7̂  <7o(C0) is valid for some g0 £ G, which 
results in g0(C0) C\ C 0 = 0, i.e. flr0(Co) C 5 0 n C0

C C Un°=i C " holds true 
because of g0(C0) C go(B0) = B0. Hence, there exists a set C n o satisfying 
g0(C0) = C n o , i.e. one arrives at the contradiction C0 = g0 (Cno). 

(ii) Let A s tand for a <T-algebra of subsets of a set fi, G for a group not necessarily 
finite, of (.4,.4)-measurable transformations g : fi —> Q, and let V stand 
for the set consisting of all G-invariant probability measures P on A, i.e. 
P = pa, g e G, is valid. Then it is well-known (cf. [1], p. 3 8 - 3 9 ) that the 
extremal points of V might be characterized by the property of G-ergodicity, 
i.e. P £ V is G-ergodic if and only if P restricted to the cr-algebra Ap 
consisting of all sets A £ A satisfying P(AAg(A)) = 0, g £ G, is already 
{0, l}-valued. In case G is finite, the property of P £ V to be G-ergodic is 
equivalent to the property of P £ V tha t its restriction to B(G,A) is {0, 1}-
valued. Under the additional assumption that A is countably generated, any 
P e V is G-ergodic, according to Corollary 1, if and only if there exist an 
a tom A £ A and gy. £ G, k = 1 , . . . , n, such that gk(A), k = 1, . . . , n, are 
pairwise disjoint and P(gk(A)) = - , k = 1 , . . . , n, holds true. This result is 
not longer valid for infinite groups of transformations, as a special case shows 
in which the underlying set Q is a compact, metrizable group G with A as the 
corresponding Borel c-algebra. In this case V only contains the normalized 
Haar measure, if G is chosen for the corresponding group of (A, .4)-measurable 
transformations g : Q —•> Q. 

(iii) The conclusion that the property of A to be countably generated implies tha t 
B(G,A) is also countably generated might also be drawn from the observation 
that rprr ^ £Q Ig(A)i where \G\ stands for numbers of elements of G, is for any 
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A £ A & regular, proper version of the conditional distribution P(A\B(G,A)), 
where H is an arbitrary G-invariant probability measure on A (cf. [2]). 

(iv) Let Aj denote cr-algebras of subsets of some set Qj, j = 1 , . . . , n (n > 2). Then 
the atoms of the n-fold direct product Ai<g>.. .<g>An might be characterized by 
the property to be of the type A\ X . . . X An, where each Aj £ Aj is an a tom 
of Aj, j — 1 , . . . , n. Clearly, sets of this type are atoms of Ai <g> • •. <S> An. The 
converse direction might be proved with the aid of the observation that any 
countably generated cr-algebra has atoms such that their union coincides with 
the underlying set. In particular, let G denote the symmetric group of order n 
acting as ( ,4 n , .4 n ) -measurable permutations g : Qn —*• fin, where Qn stands for 
the n-fold Cartesian product of the set Q and . 4 n for the n-fold direct product 
of the cr-algebra A of subsets of Q. In this case, the atoms of B(G, An) are of 
the type {jw&ln ^ir(i) X . . . X An(n), where Aj £ A, j = 1 , . . . , n , are atoms 
of A and j n is the symmetric group of order n consisting of all permutat ions 
7T : { l , . . . , n } -> { l , . . . , n } . 

The conclusion of part (iii) of the preceding remark, namely that B(G,A) is 
countably generated for finite groups of (A, .4)-measurable transformations g : Q --> 
Q, if A is countably generated, is not in general valid for countable groups as the 
following example shows: 

E x a m p l e 1. Let Q s tand for the unit circle {exp ix : x £ E } with the corresponding 
cr-algebra A and let P stand for the Haar measure of this compact group Q with 
P(Sl) = 1. Furthermore, let G be introduced as the countable group of ( .4,.4)-
measurable transformations gp : Q —> Q defined by gP(elx) = e

l(x+p\ x £ E, p £ Q, 
where Q stands for the set of rational numbers. It will be shown that P restricted to 
B(G,A) is {0, l}-valued under the assumption that B(G,A) is countably generated, 
which results in the contradiction that P ({exp i (x + Q)}) = 1 must be valid for some 
atom exp i(x + Q), x £ E , of B(G, A). It remains to prove that one arrives, from the 
assumption on B(G,A) to be countably generated, at a {0, l}-valued restriction of 
P to B(G, A), which might be seen as follows: For any set exp(iH) £ B(G, A), where 
H is a Borel subset of E , the equation exp(iH) n exp i(B + p) = exp(iB), p £ Q, 
yields P(exp(iB) n exp i(B + p)) = H(exp(fH)), p £ Q, from which P(exp(iB) n 
exp i(B + x)) = P(exp(iB)), x £ E , follows, since the function defined by x —> 
P(exp(iB) C\expi(B + x)), x £ R, is continuous (cf. [6], p. 191). Therefore, for 
any x £ E and all sets elB £ ^ (G,^4) , where H is a Borel subset of E , there exists 
a H-zero set Nx such tha t jexP(iJB)(exp iy) • Iexpi(B+x)(exp iy) = Iexp(iB)(^P iy) for 
expiy (fc Nx and y £ E holds true, if # ( G , . 4 ) is countably generated, since one 
might s tar t from a countable algebra generating t5(G,.4) and apply a monotone 
class argument . Now elB £ B(G,A), where H is a Borel subset of E, implies that 

ei(B-x) e B(G,A), x £ E, which implies 4xP(iB)(exp iy) • Iexpi(B+x)(^piy) = 
I~exp(;.B)(exp iy) for all exp iy ^ N0 with y £ E and all x £ E , from which one derives 
the equation Texp(iB)(exp *'y)H(exp i(y - B)) = Iexp(iB)(^Pw), expiy £ N0 with 
y £ E . Finally P(exp(iB)) > 0 yields the existence of a value exp iy £ exp iB 
satisfying exp iy g N0 with y £ E, i.e. P(expi(y - B)) = P (exp( -zH ) ) = 1 and, 



380 J- HILLE AND D. PLACHKY 

therefore, P ( e x p ( i P ) ) = 1 is valid, since P(exp(iB)) > 0 implies P(exp(-iB)) > 0, 
i.e. B might be replaced by —B. 

2. MAIN RESULTS 

In the sequel the property of a probability measure P on the cr-algebra A to be 
monogenic with respect to the cr-algebra B(G, A) consisting of all G-invariant sets 
belonging to A, i .e. A E B(G,A) if and only if A = g(A), g £ G, holds true, will 
be characterized by properties of approximation, where P is called monogenic with 
respect to B(G,A) if and only if P is uniquely determined among all probability 
measures on A by its restriction P\B(G,A) to B(G,A). 

L e m m a 2. Let A denote a cr-algebra of subsets of a set Q, G a finite group of 
( .4, .4)-measurable transformations g : 0 —•• 0 , and B(G,A) the cr-algebra of all 
G-invariant sets belonging to A. Then a probability measure P on A is monogenic 
with respect to B(G, A) if and only if P((Jg£G 9(A)) \ (f]geG g(A))) = 0 holds true 
for any A £ A. 

P r o o f . Clearly, if P has this property of approximation, then P is monogenic 
with respect to B(G,A), since f]geG g(A) CAC \JgeG g(A) and f]geG g(A), 
\JgeGg(A) E B(G,A), A £ A, is valid. 

For the proof of the converse implication one might start from the observation 
tha t P defined by 4 5 ] £ G P 3 (\G\ number of elements of G) is a probability 

measure on A, whose restriction P\B(G,A) to B(G,A) coincides with P\B(G,A). 
Therefore, the property of P to be monogenic with respect to B(G,A) implies tha t 
P is already G-invariant, i .e. P9 = P , g £ G, holds true. Furthermore, P is an 
extremal point of the convex set consisting of all probability measures on A whose 
restriction to B(G,A) coincides with P\B(G,A). Hence, for any A £ A, there exists 
a B £ B(G,A) satisfying P(AAB) = 0, where A stands for the symmetric difference 
(cf. [7]). This property of approximation fulfilled by P together with the property of 
P to be G-invariant results in P(AA(Jg£G g(A))) = 0 and P(AA(f]geG g(A))) = 0 
from which P((\JgeG g(A)) \ (f]geG g(A))) = 0 follows. • 

The remaining part of this article is devoted to the problem of simplifying the 
monogenicity criterion of Lemma 2. In this connection the set F(G) consisting of 
all u £ Q which are kept fixed under all g £ G, i.e. to = g(to), g £ G, holds true, 
plays an essential role. 

L e m m a 3 . Let An denote the n-fold direct product of the cr-algebra A of subsets of 
some set Q and let G denote the finite group of (.4", .4n)-measurable transformations 
g : Qn —• fin, Cln being the n-fold Cartesian product of Q, associated with some 
subgroups of the symmetric group yn of all permutations of { 1 , . . . , n } . Then a 
probability measure P on An is monogenic with respect to B(G,An) if and only if 
P*(F(G)) = 1 holds true, where P* stands for the outer probability measure of P . 
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P r o o f . Clearly, P*(F(G)) = 1 is according to Lemma 2 sufficient for the proper
ty of P to be monogenic with respect to B(G, An), since ({JgeG g(A))\(f] eG g(A)) C 
(F(G))C is valid for all A E An. 

For the proof of the converse implication one might introduce the following equiv
alence relation on { 1 , . . . , ft} defined by i ~ j for i,j £ {1,... ,n] if and only if there 
exists some 7 £ V such that i = y(j) is valid, where T stands for the subgroup of 
the symmetric group j n associated with G. Let [«i], . . . ,[«*], i\ < ... < ik, ij £ 
{ 1 , . . . , n}, j = 1 , . . . , k, denote the corresponding equivalence classes. It will now 
be shown tha t F(G) C Um=i(-4m.i x •• . x A m . „ ) for Amj £ A, j = l,...,n, m £ N, 
implies J2m=i P(Am,i x . . . x y4m,n) > 1, from which the assertion P*(F(G,A)) = 1 
follows. For this purpose one should take into consideration that Lemma 2 leads to 
the following equations up to some p-zero set: 

IAml x . . . x IAmn 

= Zn-€o^».-x-xA~.-) 
= 7 n g e G ^ x - x n > A e [ H i A m ' j x n x - ' x ^ 

where [i{] U . . . U [ik] = { 1 , . . . , ft} is valid. Finally, let ir denote the projection of Qn 

onto fi{u.-»»fe} introduced as the Ar-fold Cartesian product of Q. Then P(Amti x .. .x 

Am,n) = PT(C\je[ii] Am,j x . . . x nj6[ifc] l^mj) is implied by the preceding equations. 
Now F(G) C U m - . i ( - V i x ••• x Am,n), together with F(G) = { (wi , . . . , w n ) £ 
fi" : w,- = cjy, i , j £ [«"„], ^ £ [ 1 | - • • ! * } } , yields the inclusion n<»-»-t<fc} c 

Um = l(nj6[.-i] A™>J X • • • X h/epfc] ^ m , ; ) , from which Ylm=l P(Am,l X . . . X A m > n ) = 

E m = i P*(rii6Pil A^i x • • • x r W > ] -4mj) > P*(n< ' - - - ' *>) = 1 follows, i. e. mono
genicity of P with respect to B(G,An) implies P*(F(G)) = 1. • 

R e m a r k s . 

(i) If C7 is associated with the symmetric groups 7 n , then E(C7) is equal to the 
diagonal A of Qn. It is known that A £ An is equivalent to the property of 
A to separate points to £ Q by a countable system of sets belonging to A. A 
short proof of this characterization of A £ An might be based on the fact tha t 
the a toms of An are of the type A\X .. .x An, where Aj £ A, j = 1 , . . . ,ft, are 
atoms of A (cf. part (iv) of the remark following Corollary 1). The assumption 
A £ An implies A £ An, where AQ is a countably generated sub-<r-algebra of 
A. Therefore, A is equal to the union of atoms of An of the type A\X .. .x An, 
where Aj € AQ, j = 1 , . . . , ft, are atoms of AQ, i. e. Aj, j = 1 , . . . , n, must be 
singletons. Hence, any countable generator C of AQ separates points u> £ Q. 
The converse implication follows easily from the fact tha t A c is the union of 
sets of the type Qx...xQxAxQx...xQ,xAcxQx...xQ, where A runs 
through some countable subsets of A, which might be assumed to be closed 
with respect to complements. The property of .4 to separate points u> £ Q 
by a countable system of sets belonging to A implies tha t the cardinality of 
the underlying set Q exceeds the cardinality of the set M of real numbers. In 
particular, xi — 7r2 is not (A 0 . 4 , . /^-measurable, where Wj : f i x f i , ; = l , 2 , 
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are the projections associated with the Banach space Q, if the cardinality of 
Q exceeds the cardinality of M. and A is the corresponding Borel cr-algebra (cf. 
[5])-

(ii) The case P*(A) = 1 together with P*(A) = 0 is possible, where P* stands for 
the inner probability measure of P as the following special case shows: Let Q 
be an uncountable set, let A be the cr-algebra of subsets of Q generated by all 
singletons {ui}, u> ~Q, i.e. A = {A C Q : A or Ac is a countable subset of Q}, 
and let P stand for the probability measure on A defined by P(A) = 0, if A 
is a countable subset of Q, resp. P(A) = 1, if Ac is a countable subset of Q. 
Then it is not difficult to see tha t ( P ® P)*(A) = 1 and ( P ® P )* (A) = 0 is 
valid. 

In the sequel Lemma 3 will be extended to arbitrary finite groups of transform
ations. The special case of a finite group G of transformations g : Q —> Q with 
F(G) (fc {0, Q} together with the cr-algebra A consisting of the sets 0, Q, F(G), and 
(F(G))c, i .e. B(G,A) = A is valid, shows that some additional assumption must be 
introduced, which is given in the following 

T h e o r e m 1. Let A denote a cr-algebra of subsets of a set Q, G a finite group 
of («4,.4)-measurable transformations g : Q —> Q, B(G,A) the cr-algebra consist
ing of all C7-invariant sets belonging to A, F(G) the set consisting of all u> ~\ Q 
satisfying g(u>) = ui, g ~ G, f : Q —* fi'G', where \G\ stands for the number of 
elements of G, the mapping defined by f(u>) = (gi(u),... ,g\G\(u>)), u> ~ Q, G = 
{9i, • • -,9\G\}, ^ ' G ' the G-fold Cartesian product of Q, and yt 'G ' the |C7|-fold direct 
product of A. Under the assumption f(B) ' ^4 'G ' , B ~ B(G,A), the following 
assertions hold true: 

(i) A probability measure P on A is monogenic with respect to B(G, A) if and only 
if P*(F(G)) = 1 is valid, where P* stands for the outer probability measure 

of P . 

(ii) F(G) £ A holds true if and only if there exists a countable system contained 
in A which separates all points u>i,U)2 ~ F(G), U)\ ^ u>2, and u> £ F(G), ui' £ 
F(G). 

P r o o f . The finite group C7 = {gi,..., g\G\} induces a subgroup SG of the sym
metric group f\G\ of permutat ions of { 1 , . . . , |C7|} according to ng(l,. .., |C7|) = 
(9K(I)) • • • )9ir(\G\))> where TX stands for the permutat ion of {1 , . . . , |C7 |} associated 
with g ~ G by (gig,... ,g\G\g) = (sr--(i), • • • ,9wQG\))- In particular, f~l(Ax x 
. . . x A\G\) = C\geG9(A) G B(G,A) is valid for Ax = . . . = A\G\ = A e A 
according to Lemma 1, from which B(G,A) = f~l(C) follows, where C stands 
for the cr-algebra of subsets of OjG ' generated by all sets of the type A\ x . . . x 
A\G\, A\ = ... = A\G\ = A ~ A. This observation shows that monogenici-
ty of the probability measure PI" on .4'G' with respect to B(SG,A^), where P? 
stands for the probability measure on yt 'G ' induced by the probability measure 
P on A and the (^4,^4'G ')-measurable mapping / , implies that P is monogenic 
with respect to B(G,A). This follows, according to Lemma 2, from the equation 



Monogenicity of Probability Measures Based on Measurable Sets Invariant . . . 383 

pf(A\ x . . . x A\G\ \ f)nesa ATr(i) x . . . x A<lG\)) = 0, Aj £ A, j = I,..., \G\, 
since the special case Aj = Q, j = 2 , . . . , |G| and yli = (71(A), A £ A, results in 
P(A\ / _ 1 ( H i x . . . x B\G\)) = 0, Bj = A, j = 1,..., \G\, if one takes into consider
ation tha t the subgroup of 7 |G | associated with SG acts transitively on { 1 , . . . , |G |} . 

For the converse implication, namely that monogenicity of P with respect to 

B(G,A) implies that P-l" is monogenic with respect to B(SG,A^) one might start 

from the equation P(A \ B) = 0, A £ A, B = f]geG g(A), according to Lemma 2. 

Now, f(B) £ , 4 ' G ' is valid by assumption, from which Pf(Ai x . . . x A\G\ \ f(B)) = 

0 follows for Aj £ A, j = 1 , . . . , |G | , where B stands for f]g£G 9(C) an<^ @ f ° r 

PifJ19j1(Aj) = f~1(A1 x . . . x A\G\) £ A. Finally, f(B) £ B(SG,AW), which is 

implied by B £ B(G,A), shows that P-!" is monogenic with respect to B(SG , A'G') if 

and only if P is monogenic with respect to B(G,A). 

Now everything is prepared for the proof of part (i) of Theorem 1. For this 
purpose let P stand for a probability measure on A being monogenic with respect to 
B(G,A). T h e n P ' is monogenic with respect to B(SG,A^), i.e. (P*)*(F(SG)) = 1 
holds true according to Lemma 3. Now f~1(F(SG)) = F(G) together with the 
assumption f(B) £ , 4 ' G | , B £ B(G,A), leads to P*(F(G)) = 1, since the coverings 
of F(G) entering into the definition of P*(F(G)) might have been chosen to belong 
to B(G,A). Clearly, the property of P to fulfill the last equation P*(F(G)) = 1 
implies, with regard to Lemma 2, that P is monogenic with respect to B(G,A) 
because of \JgeGg(A) \ f]geG d(A) C (F(G))C, A £ A, i.e. part (i) of Theorem 1 
has been proved. 

The proof of part (ii) of Theorem 1 might be based on the observation that the 
subgroup of 7 |G | associated with SG acts transitively on { 1 , . . . , |G |} , from which 
F(SG) = { (c^ i , . . . , ^ | G | ) : Wi = . . . = co\G\ = to, to £ £1} follows. Now the assump
tion / (H ) £ - 4 | G ' , H G B(G,A) together with the condition F(G) £ A results in 
f(Q) C\F(SG) = f(F(G)) £ . 4 ' G ' . Therefore, f(F(G)) £ . 4 ' G ' for a certain count-
ably generated sub-cr-algebra A of A holds true. Now the atoms of .4'G' are of 
the type A\ X . . . x A\G\, where Aj £ A, j = I,..., \G\, are atoms of A (cf. part 
(iv) of the remark following Corollary 1), and the union of all atoms of .4'G' coin
cides with Oj G ' . Hence, the atoms of .4'G', whose union coincides with f(F(G)), 
are of the type A\ X ... X A\G\, where Aj £ A, j = 1 , . . . , |G|, are singletons of 
the type {a;}, to £ F(G), i .e. any countable system of sets generating A separates 
all points U\,LQ2 £ F(G), LOX ^ LO2 and u> £ F(G), u/ ^ F(G). Conversely, the 

existence of a countable system C C A with this property of separation results in 
f(Q) n F(SG) £ A'G| because the complement of f(Q) n F(SG) = f(F(G)) consists 
of the union of the sets of the type A\ X . . . x A\G\, Aj = C £ C, At = Cc, j , k £ 
{ 1 , . . . , |G | } , j ^ k, Ai = 0., i £ {1,..., |G|} \ {j, k}, since one might assume with
out loss of generality tha t C is already closed with respect to complements. Finally, 
f(F(G)) £ A^ together with f~1(f(F(G))) = F(G) yields F(G) £ A, i.e. part 
(ii) of Theorem 1 has been proved. • 

R e m a r k s . 

(i) The condition / (H ) £ .4'GI, B £ B(G,A), is fulfilled, if Q is a Polish space 
and A the correspondingBorel cr-algebra (cf. [3], p. 276). 
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(ii) The cr-algebra generated by all sets of the type A\ x . . . x A\Q\, A\ = ... = 
A\G\ = A E A, which occurs in the proof of Theorem 1, has been characterized 
in [4]. 

In the final part of this article a further rather simple condition will be introduced, 
which yields simultaneously F(G) £ A and the characterization of monogenicity of 
a probability measure P on A with respect to B(G,A) by P(F(G)) = 1. 

T h e o r e m 2 . Let A denote a cr-algebra of subsets of a set Q, G a finite group of 
(*4,.4)-measurable transformations g : Q —> Q, B(G,A) the cr-algebra consisting of 
all G-invariant sets belonging to A, and F(G) the set {u £ Q : g(u) = u), g £ G}. 
Under the assumption tha t A separates all points u>, g(u)), u> £ Q, g £ G, u) / g(ui), 
by a countable system of sets belonging to A, the following assertions hold true: 

(i) F(G) £ A, 

(ii) a probability measure P on A is monogenic with respect to B(G,A) if and 
only if P(F(G)) = 1 is valid. 

P r o o f . Let C C A s tand for a countable system such that for u> £ Q, c / £ G , u) ^ 
g(u)), there exists a C £ C satisfying u) £ G, g(u;) £ C or u) £ C, g(u) £ G. Then 
Uc6c((U,6Gff(C0) \ (rWff(C))) = (He))' holds true, from which P(F(G)) = 
1 follows, if P is monogenic with respect to B(G,A), since this property implies 
according to Lemma 2 the equation P((U 5 gG 9(C)) \ (C\geG 9(C))) = 0. Clearly, 
P(F(G)) = 1 yields, by Lemma 2 being applied, tha t P is monogenic with respect 
to B(G, A). , • 

R e m a r k s . 

(i) The property of A to separate points u), g(u>), u) £ Q, g £ G, w / 5 ^ ) ) 
by a countable system of sets belonging to A is shared by all countably gen
erated c-algebras A of subsets of Q satisfying {to} £ A, ui £ Q, since such 
cr-algebras separates all points u;i,u;2 £ 0,, u>\ ̂  u>2, by a countable system of 
sets belonging to the corresponding cr-algebra. 

(ii) In case G is associated with the symmetric group j n of all permutations it of 
{1,.. . ,n} acting (>4n , .4n)-measurably on f2n, the property of «4n to separate 
points ui,g(u)), to £ Qn, g £ G, ui ^ <7(u;), by a countable system of sets 
belonging to An, is equivalent to the property of A to separate all points 
u;i,u;2 6 H.. o>i ^ CJ2, by a countable system of sets belonging to A. This 
follows from the observation that any cr-algebra generated by some system C 
of sets belonging to this cr-algebra and separating a given set of points by 
some countable system of sets belonging to this cr-algebra, already separates 
this given set of points by a countable system of sets belonging to C. 

An application of Theorem 2 and Lemma 1 results in 
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Coro l lary 2 . Let Aj denote cr-algebras of subsets of some set Qj, Gj finite groups 
of (^4j,^4j)-measurable transformations g : Q, ^ Q, B(Gj,Aj) the c-algebra con
sisting of all Cry-invariant sets belonging to Aj, j = 1,2, and B(G\ x G2, A\ ® A2) 
the er-algebra consisting of all (G\ x Cr2)-mvariant sets belonging to ,4i <8>A2- Then 
B(G\ x G2, A\ ® A2) = B(G\,A\) <g>#(G2,-42) is valid and under the assumption 
that Aj separates all points u)j, g(uij), uij £ Qj, g £ Gj, u>j / g(wj), j = 1,2, the 
following assertion holds true: A probability measure P on A\ <S) A2 is monogenic 
with respect to B(G\ x G2, A\ ®A2) if and only if the corresponding marginal prob
ability measures Pj of P on Aj are monogenic with respect to B(Gj,Aj), j = 1, 2. 

P r o o f . Lemma 1 implies B(G\ x G2, A\ ® A2) = B(G\,A\) ® B(G2,A2) 
and monogenicity of the marginal probability measures Pj on Aj with respect to 
B(Gj,Aj), j = 1,2, of some probability measure P on .4i ® A2, leads, accord
ing to Theorem 2, to Pj(F(G-)) = I, j = 1,2, from which P(F(G\) x F(G2)) = 
P(F(G\) x Q2) n (Q\ x F(G2)) = 1 follows, i.e. P(F(G\ x G2)) = 1 holds true 
because of F(G\ x G2) = F(G\) x F(G2), i.e. P is monogenic with respect to 
B(G\ x G2, A\ ®A2). Conversely, P(F(G\ x G2)) = 1, which follows by means of 
Theorem 2 from monogenicity of P with respect to B(G\ x G2, A\ ® -42), implies 
Pj(F(Gj)) = 1, j = 1,2, i .e. Pj is monogenic with respect to B(Gj,Aj), j = 1,2.D 

R e m a r k s . 

(i) Theorem 2 remains valid for countable groups, since Lemma 2 holds true for 
countable groups, too. However, Theorem 2 (and also Theorem 1) is not longer 
true for uncountable groups even in the case where Q is an uncountable Polish 
space and A is the cr-algebra of Borel subsets of Q, which might be seen as 
follows: For any analytic subset A0 (£ A of Q the equation Vl.Be.4o B = AQ is 
valid, where .4o stands for all Borel subsets B £ A containing A0 and A denotes 
the Borel cr-algebra of Q (cf. [3], Theorem 8.3.1, and [3], Corollary 8.2.17 
together with [8], p. 422 in connection with the existence of A0). Furthermore, 
let G denote the group of (,4, .4)-measurable mappings g : £1 —• Q such that 
there exists a set B £ .4o with the property g(x) = x, x £ B, g(x) / 
x, x £ Q \ B, where g is a one-to-one transformation of Q which maps 0, 
onto Q,. In particular, g~l is (.4,.4)-measurable (cf. [3], Theorem 8.3.2 and 
Proposition 8.3.5), F(G) = A0 £ A is valid, and B(G,A) = {B £-A : B C A0 

or Bc C A0} holds true, since for c i , c 2 £ Q \ A0, c\ / c2, there exists a 
mapping g £ G satisfying g(c\) = c2, i.e. AQ n B ^ 0 for a set B £ B(G,A) 
implies AQ OB = AQ. In particular, B(G,A) is not countably generated, since 
otherwise for any u> £ AC

Q there would exist an a tom C of # ( C T , . 4 ) containing 
u>. Now Cf\Ac

0 ^ 0 implies Cc C ^ o , i-e. Ac
0 C C. Therefore, there exists 

an element u>' £ C with the property u>' £ A0 because of AQ ^ C. Finally 
{u>'} £ B(G,A) results in the fact tha t C \ {u:1} is a proper subset of C, i .e. 
C would not be an a tom of B(G, A). 

(ii) The model described by (i) admits the following characterization in connec
tion with the question whether a probability measure P defined on A has the 
property to be an extremal point of the set V consisting of all probability 
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measures Q defined on A and satisfying Q\B(G,A) = P\B(G,A) : P G V 
is an extremal point of V if and only if P(AC

0 (1 B) = P(AC
0)6W(B), B £ A, 

is valid for some u G A0, where P stands for the completion of P restrict
ed to the cr-algebra consisting of the universally measurable subsets of Q, (cf. 
[3], Corollary 8.4.3) and where 6W denotes the one-point mass at u, to G fi. 
This observation follows from the fact tha t for any B G A there exists a 
set B' G B(G,A) such that IB, = IB P-a.e . holds true (cf. [7]), from 
which either P(AC

0 n 73) = 0 in the case 73' C A0 or P(AC
0 n 73c) = 0 in 

the case B'c C A0 follows, i.e. the probability measure Q defined on A by 
Q(73) = P(AC

0 n B)/P(AC
0), 73 G .4, in the case P(AC

0) > 0 is equal to 6W 

for some u) G A0, since A is countably generated and contains all singletons 
{u>}, u G V. Hence, P(B n Ac

0) = P(AC
0)6W(B), 73 G .4, is valid. Further

more, P(73 n A0) = P(B n 730), 73 G A, where 730 G A satisfies 730 C A0 

and P(A0 \ B0) = 0, shows tha t the probability measure defined on A by 
B —> p(73 nA0)/P(A0), 73 G A, is monogenic with respect to 73(67, A), from 
which the assertion about the characterization of extremal points of V follows. 
In particular, P is monogenic with respect to B(G,A) if and only if P(A0) = 1, 
i. e. P*(A0) = 1 holds true, since monogenicity of P relative to B(G, A) implies 
tha t 6W, u> G A0, has the same property in the case P(A0) > 0. 

E x a m p l e 2. Let A denote a countably generated cr-algebra of subsets of a set f2 
containing all singletons {UJ}, to G £1, and let G stand for the countable group of 
( .4K , .4M)-measurable mappings g : Q® —> Q® acting as a permutat ion for a finite 
number of coordinates and keeping the remaining coordinates fixed, where fiH resp. 
A® is introduced as the N-fold Cartesian product of Q, resp. N-fold direct product 
of A. Then 7f(C7) is equal to the diagonal A of Q® and a probability measure on 
A^ of the type (>£)nGK Pn, where Pn, n G N, are probability measures defined on A, 
is monogenic with respect to B(G,A^) if and only if Pn = P\, n G N, is valid and 
pi coincides with a one-point mass at a certain element ui £ Q,. This follows from 
Theorem 2 together with Fubini's theorem. 

E x a m p l e 3 . Let .4 stand for a countably generated cr-algebra of subsets of a set 0_ 
containing all singletons {to}, u> G fi, and let Gj, j = 1,2, stand for finite groups of 
(,4, .4)-measurable mappings Qj : Q —» Q, gj G Gj, j = 1, 2. Then the corresponding 
group C7i2 of ( .4,.4)-measurable transformations generated by G\ and G2 consists 
of all elements of the type h\ o . . . o hn, hj G G\ U G2, j = 1, • • •, n, n G N, which 
implies F(G\2) = F(G\)f\F(G2). Now Theorem 2 shows tha t a probability measure 
P on .4 is monogenic with respect to # (Gi2 , .4) if and only if P is monogenic with 
respect to B(G\,A) and B(G2,A). 

(Received March 29, 1995.) 
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