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NUMERICAL ALGORITHM FOR NONSMOOTH 
STABILIZATION OF TRIANGULAR FORM SYSTEMS1 

S E R G E J C E L I K O V S K Y 2 

The aim of this contribution is to present a simple method for finding nonsmooth stabil
izers in cases when the smooth ones are not available. More precisely, we adress the sta
bilization of a certain class of single-input nonlinear systems; namely, the class of systems 
that are state equivalent to the so-called singular triangular form. It is based on the for
mal application of the exact linearization scheme to the systems with linear part having 
noncontrollable unstable mode. Such a formal approach leads to the stabilizer possesing 
singularities and a regularization process is suggested to remove them. This approach is 
realized and tested by computer simulations for various nonlinear systems. 

1. I N T R O D U C T I O N : NONSMOOTH STABILIZATION 

We are interested in the static s tate feedback stabilization of the smooth nonlinear 
controlled dynamical system without outputs: 

m 

i = f(x) + Y^3k(x)uk, w = ( « i , . . . , « m y 6Mm, xeMn. (1) 
&=i 

Namely, let ar0 6 MP be an equilibrium of (1), i .e. J(XQ) = 0, then this system is 
called globally (locally) asymptotically stabilizable at xo if there exists feedback law 
(asymptotic stabilizer of (1)) 

a(x) = ( a i ( x ) . . . . , am(x))', a : Mn - Mm, (2) 

such tha t the corresponding closed loop system (i .e. system (1) with u = a(x), a 
given by (2)) has xo as its globally (locally) asymptotically stable equilibrium point. 
System is called stabilizable if there exists feedback that makes the corresponding 
closed loop system stable. System is called nonasymptotically stabilizable if it is 
stabilizable, but it is not asymptotically stabilizable. Stabilizability will be called 

1 Extended and revised version of the contribution presented at the 3rd IFIP WG-7.6 Work
ing Conference on Optimization-Based Computer—Aided Modelling and Design, Prague, Czech 
Bepublic, May 2 4 - 2 6 , 1994. 

2 Supported by the Grant Agency of the Czech Bepublic through the Grant No. 102/94/0053. 
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Table 1. Stabilization of the nonlinear system (NLS) and modification 
of eigenvalues of its aproximate linearization by linear feedback u = Ax. 

N o . Best гeal paгts of eгg{F + GK) Relation Stabihzability type of NLS (1) 

1. negativc => local smooth asymptotic 
2. nonpositive «= local smooth 
3. nonpositive ? => ? local smooth oг nonsmooth 
4. exist(s) positive ?=> ? local nonsmooth 

linear (smooth, nonsmooth, continuous, etc.) dependingly on the best available 

character of the stabilizer a. For the survey of the stabilization topic see e.g. [19]. 

T h e usual and most straightforward way to study local asymptotic stabilization 

is to consider the approximate linearization of (1) at XQ, namely, the linear system: 

y=Fy + Gu, (3) 

related with the original nonlinear system as follows: 

df 
V=X-XQ, F=—(XQ), G =[gi(xo)\...\gm(xo)]. 

ox 

Relations between the best available real parts of eigenvalues of F + GK, where K 

is arbitrary m x n matr ix defining a linear feedback u = Kx, and various types of 

the local stabilizability of (1) at XQ are collected in Table 1. 

Question marks in Table 1 mean that the problem is open and should be solved 

by higher-order, intristically nonlinear, methods. Problem 3 of this table is usually 

referred as the so-called critical case of the stabilization and may be tackled e.g. by 

means of Lyapunov function method or center manifold approach (see e.g. [2, 17]). 

Problem 4 is exactly the area to which we aim contribute here: how to find 

stabilizer t h a t is nonsmooth when no smooth is available? Due to the infinetesimal 

character of the relation between nonlinear system and its approximate linearization 

(i.e. system (3) is completely determined by (1) considered in an arbitrarily small 

neighbourhood of XQ) the only thing that is sure regarding Problem 4 is that the 

stabilizer (if any) should be nonsmooth just at XQ. Actually, if a smooth feedback (2) 

stabilizes system (1), then obviously F + Gax(xo) has eigenvalues with nonpositive 

real parts . It is therefore reasonable to search a stabilizer that is everywhere except 

XQ smooth (and hopefully continuous at XQ). Such a stabilizer particularly guarantees 

that all solutions of the corresponding closed loop system are well defined with the 

only possible nonuniqueness at XQ. 

T h e above task is a challenging truely nonlinear problem, important both theor

etically and practically (e. g. to justify robustness of stabilizers in critical cases: 

small perturbat ion of the Problem 3 leads either to the Problem 1 or to the Prob

lem 4). Nevertheless, it is also very dificult and as the consequence only rare results 

on this topic with a rather limited applicability are available (see [16, 11]). For the 

discrete t ime version of this problem see also [18]. For a recent state of the art in 

the area of the nonsmooth stabilization see [4] and references in there. 
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2. STABILIZATION VIA EXACT LINEARIZATION 

Exact linearization is probably the main breakthrough made by the differential-
geometric approach in the nonlinear control theory. Contrary to the approximate 
linearization (3) it aims to find reasonable exact transformations, (e.g. nonlinear 
change of coordinates in the state space, feedback of various levels of complexity, 
etc.) taking the original nonlinear system (1) to a controllable linear system (CLS). 

Let us recall that GL(m, M) stands for the group of all m x m regular matrices. 

Definition 1. System (1) is called smoothly locally feedback linearizable at x$ if 
there exist a neighbourhood UXo of XQ and a neighbourhood Vo of 0 £ Mn, feedback3 

of the form 

u = a(x) + (3(x)v, a(x) e C°°(UXo, Mm), 0(x) <E C°°(UXo,GL(m, M)), 

and a diffeomorphism 
V:V0->UXo, x = V(y), 

transforming the system (1) into a controllable linear system 

y=Fy + Gv, yeMn,veMm, (4) 

where F, G are (n x n) and (n x m) matrices, respectively. 
The system is called smoothly state linearizable if it is feedback linearizable with 

/3(x) = Im and a(x) = 0. Where no confusion arises, various adjectives may be 
ommited to shorten the exposition. 

Remark 1. Linearization is a particular case of the system equivalence: two non
linear systems are called mutually feedback (state) equivalent, if they can be trans
formed into one another using appropriate transformations. Linearizability then 
means equivalence to a linear controllable system and both terminology will be used 
in the sequel. Where appropriatte, we often call this linearization as the exact one 
to stress the difference with respect to the aproximate linearization (3). The whole 
remark applies also to various kinds of global linearization and equivalence that will 
be later introduced. 

Definition 2. System (1) is called globally feedback (state) linearizable at XQ to 
a linear system on Mn if it is at this point locally linearizable and VQ = Mn. It is 
called globally linearizable on Mn if UXo = M. System that is linearizable globally 
on M to a linear system on Mn is called globally linearizable. 

For further details see surveys [6, 20, 10] or books [13, 17]. 

Positive solution of the smooth exact linearization task gives immediately the 
solution to the stabilization problem, nevertheless this concerns only Problem No. 1 

3 To avoid confusion, let us remind that the term 'feedback' is used in the control theory in 
different senses: first, as the closing of the open loop system or, secondly, as the transformation 
leading to the new open loop system with a new input variable. 
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and 2 of Table 1. Actually, the only additional contribution of the smooth exact 
linearization in comparision with the approximate one is that the former one en
ables also to find (or at least to estimate) basin of attraction of the asymptotically 
stabilized equilibrium. Particularly, in case of the global smooth exact linearization 
this approach leads to the global stabilization. The reason is that the exact smooth 
linearization and approximate one are always mutually linearly equivalent (i.e. via 
linear change of coordinates and a linear feedback). As a consequence, a feedback 
linearizable system has a controllable approximate linearization (3) and therefore 
may be stabilized using the linear feedback. 

In this paper we aim to adapt the described exact linearization approach to be 
applicable to the nonsmooth stabilization. First, let us describe the smooth case in 
some detail. 

During the rest of the paper we concentrate ourselves on the single-input case, 
i.e. m=\ (the multi-input case is analogous, though more technical). 

General, coordinate free conditions for the feedback linearization can be given 
using a quite abstract differential geometric language — see previously mentioned 
references. To simplify the exposition, let us consider the so-called systems in tri
angular form (TF). Actually, as we illustrate in the sequel, this is an intermediate 
step to linearize the system using transformation of the state and feedback pro
vided certain regularity condition is satisfied. Abstract geometrical conditions for 
transforming the system into TF may be found in [9]. 

To put it more explicitely, let us consider locally around x0 E Mn the following 
single-input system 

x = f(x) + g(x) u, x = (z i , . . . , xn)' £ Mn, f(x0) = 0, 

g = (gi(x),0,...,0)', f = (fi(x), f2(x), f3(x2,... ,xn),..., fn(xn_i,xn))', (5) 

such a system is said to be in TF (or TF-system). The TF (5) is called as a regular 
one (RTF) if 

g(x0)?0, - ^ - ( z 0 ) / 0 , i = 2,...,n. (6) 
OX{—\ 

otherwise it is called as a singular one (STF). The TF (5) is called as a locally 
bijective one (BTF) if the following mapping from Mn+1 to Mn+1 

(zi, z 2 , . . . ,ZB, u)' -> (f2(x),..., fn(x), xn,gx(x) u)' (7) 

is bijective locally around the origin. Obviously, a RTF is always a BTF, the converse 
is not true, see e.g. xi = u, x2 = x\. 

Let us remind (see e.g. [12]) that a single-input system (1) is smoothly locally 
at x0 feedback exact linearizable if and only if it takes in some smooth coordinates 
RTF. 

Moreover, the following straightforward algorithm for the local (for the global 
aspects consult ([6])) smooth exact feedback linearization is applicable: 
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Algorithm 1 . 

1. Consider smooth system (5-6) such that for some p > 1 it holds fk(x) = 
xk-i, k > p. We denote this type of system as Ep . Notice, that En is the 
general triangular form (5). Then, applying the smooth local change of the 
coordinates (thanks to (6)) of the form x = (_ i , . . . ,xp_2, / p ( . r p _ i , . . . 
. . . , xn), xp,..., xn)' we obtain after straightforward computations system of 
type £ p _ i . 

2. Starting with En and repeating the Step 1 n — 1 times we will finally obtain 
system of the type Ej : 

xi = f(x)-\-g(x)u, xk = xk-i, k = 2,...,n, 

where / , g are scalar functions with g ^ 0. Now, introducing a new input 
variable v via the following feedback 

v = f(x) + ~g(x)u, (8) 

we have CLS in the Brunovsky canonical form (see [3]). 

So, using the above algorithm one can compute (at least locally at XQ E Rn — 
see [6] for global aspects) for any system of type (5 - 6) in a straightforward way 
the smooth change of coordinates y = V(x), det(Dj;(xo)) ^ 0 and the feedback 
v = 0i(x) -f- f32(x)u, (32(xo) ^ 0 taking (5) to the linear system in Brunovsky 
canonical form: 

yi = v, y2 = y i , - . . , yn - i = y«-2, yn = yn-i, (9) 

where y = (yi,... ,yn)'. System (9) can be easily stabilized using linear feedback 

n 

v = linst(y) = ^-/ .-c,-, c = (ci,... ,cn)' E Mn, 
i=i 

(see [15, 22] for details) and therefore the system of type (5,6) is stabilized (at least 
locally) by the smooth feedback 

u = a(x) = (linst(V(x)) - 0i(x)) /(32(x). (10) 

Previous approach has been adopted by the control community for a long time, 
see e. g. [14] for the toolbox trying explore it. Nevertheless, in spite of the generality 
of the system form (5), this approach often fails since conditions (6) need not be 
valid. Namely, it is easy to observe that j32(xo) ^ 0 if and only if (6) is valid, 
i.e. (6) is the crucial regularity condition. Moreover, it is intuitively understable 
to the people dealing with numerical computations that practically the approach 
should fail even when the derivatives in (6) are nonzero, but too close to zero. In 
other words, one cannot get rid of the violation of (6) by claiming it 'nongeneric'. 
Adaptation of the described algorithm to be able to work with cases when (6) is 
violated (or 'nearly' violated) is therefore of a great interest. 
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The cases, when some of equalities (6) are violated, are just the cases when the 
approximate linearization of (5) is not controllable. Actually, simple computations 
show that the approximate linearization (3) of (5) has the form 

F = 

* * * * * * 
Э/2 
дxi 

* * * * * 

0 a/з 
дx-2 

* * * * 

0 0 Ь. 
дx3 

* * * 

0 0 0 ð/„_ , 
Әг„_2 

* * 

0 0 0 0 ә/„ * 

Ы , G = 

ø i Ы 
o 

If some of the corresponding uncontrollable modes are unstable, then (5) is not 
stabilizable using smooth feedback. In other words, successful regularization of 
singularities of (10) may give nonsmooth stabilization of smoothly nonstabilizable 
system. 

3. REGULARIZED ALGORITHM AND NONSMOOTH STABILIZATION 

We present and develop here a simple heuristic idea to regularize the stabilization 
Algorithm 1. This idea is based on the rather straightforward observation that the 
violation of (6) do not prevent from the formal applying of the described Algor
ithm 1 and the only trouble is that for the resulting stabilizer given by (10) one has 
a(x) —• oo when x approaches some singular subset of Mn. This singular subset 
contains at least the stabilized equilibrium Xo and is 'negligible' (more exactly, it is a 
submanifold of the dimension < n). Moreover, it can be easily seen (using geometric 
approach in the spirit of e. g. [13]) that for any nonzero input trajectories starting 
near this singular subset cross it transversaly (i.e. with a nonzero angle) in isolated 
points. All these observation immediately suggest the following heuristic adaptation 
of Algorithm 1: 

Algor i thm 2. 

1. Apply Algorithm 1 and compute feedback a(x) according to (10). 

2. Find singular subset S C Mn on which (10) is not defined. 

3. Construct sequence of functions a* : Mn —• M, k = 1,2,... in such a way 
that each a* is everywhere continuous, it is everywhere except xo smooth and 
a* —• a, it —• oo (we skip mathematical technical details regarding the proper 
definition of this convergence4). 

4. Select a particular, sufficiently large integer k and consider a* as the every
where continuous and everywhere except xo smooth stabilizer. 

4 The idea is the following: consider a sequence of open sets Si, _»2,... with S\ 0S2 • • • = S \ {xo } • 
Then, use the partition unity technique to construct for each k = 1,2,... smooth on JRn \ {xo} 
and continuous on JRn function or* that equals to a on 5* . 
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Basic heuristic idea of the above algorithm was independently introduced and 
tested in [5] and [14], nevertheless, both these papers used a very primitive sequence 
{«*} (particularly a* were discontinuous) and they considered only one single-input 
two-dimensional system. 

We concentrate ourselves here both on the selection of the sequence {a*} fulfilling 
all requirements of Algorithm 2 as well as on the three-dimensional simulations in 
order to test experimentally viability of this approach. 

4. NUMERICAL SIMULATIONS 

We describe here shortly the application of Algorithm 2 on the two typical examples. 

Examp le 1 . Consider two dimensional system (cf. [2, 5, 7, 11, 14, 16]) 
x' 

x\ = xi + x2, x2 = u. 

New coordinates y\ = x\, y2 = xi + x\, and feedback v = y2 + Zx\u leads to 

•Vi = -V2, 2/2 = v. 

Observe, that coordinate transformation has the nonsmooth inverse and the feed
back mapping cannot be inverted for x2 = 0. This is exactly due to the fact that 
(6) is violated here. Applying (10) we therefore obtain discontinuous, unbounded, 
'stabilizer' 

u = aunb = ( -«* ! - (* + 1) (*i + xl))/(^xl) 

where a, b € M are such that the matrix 

0 1 
- a —b 

has eigenvalues in the open left complex halfplane. Now, let us proceed along the 
lines suggested by Algorithm 2. We introduce a regularizing parameter bound > 0 
and define for each its value a regularized feedback abound in such a way that a-oo = 
aunb (then the sequence of Algorithm 2.3 may be taken as aboundk, k = 1, 2 , . . . , 
where boundi, bound2,... is arbitrary positive monotounous unbounded sequence 
of reals). The most trivial idea how to regularize the above singular stabilizer aunb 

gives discontinuous at the origin, but bounded stabilizer (first introduced in [5]) 

" = abound(x) ( n ) 
= rnin{|aUIlb(x)|,bound}sign(a l IJ lb(x)), bound > 0, ocbound(0) =? 

We suggest here more sophisticated idea giving continuous and a. e. smooth stabilizer 

" = <*cont(x) (12) 
= min{|aUJlb(x)|, bound\xx|

1/3}sign(or|1Jlb(x)), bound > 0, aCont(0) = 0. 
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Notice, that infinitesimaly for x —• 0 we have that the inequality |xi| < A'|x2 |1/3, 
K = K(bound,a,b) > 0, defines the set where otunD(x) = acont(

x) • For K suffi
ciently large it contains (near the origin) the curved sectors xi(xi + x2) < 0 (the 
maximal set where |xi(r)| strictly decreases along the trajectories). Together with 
the topological linearization arguments of [5, 7] this fact gives even an oportunity 
to prove theoretically the stability of this closed loop system. We skip the de
tailed proof, nevertheless, let us underline that for the case of real eigenvalues of 
the linearized system this proof is straightforward since any trajectory crosses the 
singularity x2 = 0 only one time. 

After numerous simulations made for both types of regularizations, the continu
ous one appears as more suitable also from the numerical point of view. The reason is 
that for nonreal eigenvalues of the linearized system the origin approaching trajecto
ry intersects the singularity in its arbitrarily small neighbourhood. For the stabilizer 
(11) this means that x2(<) = Abound very close to the origin and causes failure of 
the numerical integration procedure. As expected, continuous regularization (12) 
completely avoids these problems. 

Example 2. This example tests the previous approach for the increased dimen
sionality. Namely, we consider the previous example with added integrator: 

3 
Xl = Xi + X2, X2 = X3, X3 = U. 

Transformations y\ = xj , y2 = x2 + xi, y$ = 3x2X3 + x2 + xi, v = 3x2u + 6x2x§ + 
3x2X3 + x2 + xi, takes it into the linear form 

y\ = 1/2, V2 = Jfe, 1J3 = v. 

Stabilizing linear feedback is v = —ayi — by2 — ct/3, where matrix 

0 1 0 
0 0 1 

—a —b —c 

has eigenvalues Ai, A2, A3 belonging to the open left complex halplane (particularly, 
a = — AiA2A3, 6 = AiA2 + A1A3 + A2A3, c = —(Ai +A2 + A3)) and after appropriatte 
computations we obtain unbounded stabilizer 

u = aunb(x) = ~(1 + c)x3 - (1 + b + c)x2/3 - (6x2x| + (a + b + c + l)xi)/(3x§). 

The analogous idea as in Example 1 will be exploited here, the difference is that we 
use two regularizing parameters bound\t2 > 0. Having in mind observations made 
during simulations of Example 1, we consider here only the continuous regularization 
acontj defined for each pair bound\2 > 0 as follows (observe, that contrary to 
Example 1 we have acont = otunD for boundi^ = 0 — this is a matter of notation 
only) 

u = acont 

= _ ( 1 + c ) l 3 _ ( l + 6 + c)*2/3 (fa.-j + Q. + i + c+l)-.) t(j 

maxjSx^Sboundix/ + 3bound2x§} 
for x —> 0-
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A similar justification of the above regularization as in the case n = 2 is possible: 
the set of x £ HI3 where aunD(x) = acont(x) is given by bound\xx + bound2x\ < 
a?2, x ^ 0, its closure contains the origin, projection of its boundary to zi^-plane is 
given by bound\' a?/ = ±^2 and for boundii2 —> 0 this set tends to I?3 \ {x2 = 0}. 

The following observations are based on numerous computer simulations of the 
above regularized stabilizer: 

• after selecting Ai)2,3 in the open left complex halfplane one can easily adjust 
parameters bound\t2 > 0 within a wide intervals of values such that trajec
tories starting from numerous initial conditions converge to the origin with the 
selected precision — see Figs. 1-4 for the illustration 

• for boundi>2 > 0 too large aunD and acont mutually differs too much and as 
the result closed loop system may be unstable, 

• for boundi<2 > 0 too small interuption of the numerical integration procedure 
occurs (remind that if boundit2 = 0 then auno = acont everywhere) since 
numerical values of acont may be too large. 

• effect of bound\2 is illustrated in Figs. 1-3 

• algorithm is robust with respect to all parameters and initial states 

• good numerical properties of the above continuous regularization are illustrated 
on Fig. 4: even fast oscillations in the linearized system did not prevent from 
approaching the origin with extremely high precision 

• x\(t) is converging to zero faster than x2^(t) — this fact complies with the 
discrete-time case (see [18]). 

5. CONNECTION WITH TOPOLOGICAL LINEARIZATION 

Finally, we shortly discuss the possibility of a more rigorous justification of the 
Algorithm 2. The good basis for this seems to be recently developed notion of the 
topological (nonsmooth) linearization (see [5, 7] and compare them with a recent [18] 
dealing with the discrete-time case). Without going into the details, that are out of 
scope for this contribution (being focused on numerical simulations), the relation of 
Algorithm 2 with the topological linearization may be characterized as follows. 

Topological linearization concept introduces generalizations of state transform
ation and feedback that are only continuous and moreover they are understood in 
the functional spaces sense. Particularly, let Q be a suitable normed functional 
space of all admissible input signals, then the 'generalized' feedback is understood 
as a continuous map from Q, x Mln into Q satisfying certain compatibility conditions 
(see [7] for details). It was also showed there that Example 1 is topologically lin-
earizable. This particularly means that for the sequence a^ constructed according 
to Algorithm 2 we have that along each trajectory ak(x(t)) —> a(x(t)) in the sense of 
£}-norm and this fact justifies the expectation that for a sufficiently great k feedback 
ak(x) stabilizes the system. 
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AEYELS SYSTEM WITH ADDED INTEGRATOR 

-30 -20 - 1 0 0 10 

APPLICATION OF THE STABILIZING FEEDBACK 

20 

F i g . 1. Ai,2,3 = —10, bound\t2 — 0.1. 

AEYELS SYSTEM WITH ADDED INTEGRATOR 

- 3 0 - 2 5 - 2 0 - 1 5 -10 - 5 0 5 10 15 20 

APPLICATION OF THE STABILIZING FEEDBACK 

F i g . 2 . Ai,2,3 = -1U, boundi-2 = U.U1. 
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AEYELS SYSTEM WITH ADDED INTEGRATOR 
120 

100 

-20 
-20 - 1 0 0 10 20 30 

APPLICATION OF THE STABILIZING FEEDBACK 

F i g . 3 . Ai>2,3 = - 1 0 , boundi.2 = 0.001. 

AEYELS SYSTEM WITH ADDED INTEGRATOR 

- 3 0 - 2 0 - 1 0 0 10 20 

APPLICATION OF THE STABILIZING FEEDBACK 

30 

F i g . 4 . Ai = —2, A2,3 = —2 ± 5 i , faouíídi,2 = ú.Úo. 
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In other words, singular unbounded stabilizing feedback is well defined in a certain 
generalized sense and may be arbitrarily approximated by more regular feedbacks 
in the sense of a reasonable functional space norm. In this respect, topological 
linearization serves as the theoretical explanation of the practically observed 'negli
gibility' of the previously investigated singularities. 

The shortcommings of the topological linearization consist in their complicated 
definition, difficulties in proof techniques, especially for higher dimensions. As a 
consequence, the only proved result is planar, namely, it was proved in [7] that 
a planar single-input system is topologically linearizable if and only if it is state 
equivalent to B T F ( 7 - 5 ) . The necessary and sufficient conditions for arbitrary 
single-input system (1) to be state equivalent to BTF were obtained in [9]). In the 
same paper, the following characterization of BTF-systems was obtained. 

P r o p o s i t i o n 1 . Consider the smooth nonlinear system (1) that is state equivalent 
to the B T F in a neighbourhood of the origin MQ. Then, there exist 

1. an open set jV, j\T = Alo, 

2. an open s^iV,V = Vo,Vo being a neighbourhood of the origin in Mn, 

3. an open set 1Z, H = 1ZQ with IZQ, SO — neighbourhoods of the origin in M, 

4. V £ C°°(Afo,Vo) n DIFF(M,Vf, a £ C°°(1lo x Af0,S0), Vx £ jV 
a(x,-)eDIFF(1Zo,S0), 

such that for any piecewise continuous input u(t) £ Ho V< £ [^o,^i] C M and the 
corresponding trajectory of x(t) £ jVo Vf £ [<o,^i] C M it holds 

m = v, m=yi, yn-i = yn-2, ••• yn = yn-i, (13) 

where y = (y\,..., yn)
T £ Mn, v £ M and 

y = V(x), v = a(x,u), x £ jV0, u £ 1Z0. 

Moreover, let x be the corresponding triangular the coordinates, then the set 

jV0 \ jV = U?=2jV,- and the sets A/} = {x £ jV0 | -^r^(x) = 0}, j = 2 , . . . n, are not 

invariant with respect to the original nonlinear system. 

This proposition immediatelly supports the idea of applicability of Algorithm 2 
for general single-input BTF-systems: apart from singularities stabilizers are-well 
defined and singularities are not invariant with respect to system trajectories. The 
last property ensures tha t the trajectory of the closed-loop system corresponding 
to the regularized stabilizer always leaves the proximity of a singularity and stays 
within the set where regularized stabilizer equals to the singular one (10). If linst(y) 
is chosen in such a way that (9) with v = linst(y) has reai negative eigenvalues, 
one may easily prove using Proposition 1 tha t regularized stabilizer (10) stabilizes 
nonlinear system in question. 

5 the set of all diffeomorphisms between N and H. 
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6. CONCLUDING REMARKS 

Simple idea for the adaptat ion of the stabilization method via exact linearization 
to the nonsmooth stabilization was developed and studied. It was justified both by 
numerical simulations and partially theoreticaly using rather abstract and recently 
introduced concept of the topological linearization of nonlinear systems. 

It is appropriate to note tha t nonsmooth stabilization and feedback linearization 
approach was also studied (much more succesfully) for the discrete time systems 
— see [18]. Relation between nonsmooth stabilization of discrete time systems and 
topological linearization of continuous time systems is studied in [8]. 

Presented algorithm is realizable in a rather straightforward way. Moreover, other 
quoted results on nonsmooth stabilization are not constructive, they usually have 
the character of pure existence results. Exception is [11], nevertheless its approach 
is questionable for higher-dimensional cases. 

(Received February 8, 1995.) 
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