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A COMPUTATIONAL M E T H O D 
FOR R E D U C E D - O R D E R OBSERVERS 
IN LINEAR SYSTEMS 1 

VASSILIS L. S Y R M O S AND P E T R Z A G A L A K 2 

A computationally stable method for reduced-order observers of linear systems is pro
posed. This method is based on orthogonal transformations and adopts Diophantine matrix 
polynomial equations. 

1. INTRODUCTION 

Reduced-order observer design has a long history spanning decades and involving 
various researchers in the control systems society. The first results on this problem 
were presented by Luenberger [1]. Thereafter, several papers have been presented 
examining the problems from different perspectives. One of these approaches is the 
Sylvester equation approach. This technique aeals mainly with the computational 
aspects of the problem. In particular, it was Van Dooren who presented some fun
damental concepts in this direction using block Hessenberg forms [8]. Later Tsui in 
[5] presented a parametrization using the aforementioned Sylvester equation. 

In this paper an alternative algorithm is presented for designing reduced-order 
observers, which is based on a Diophantine equation. Specifically, the problem of 
reduced-order observer is studied as a full-order observer problem on a reduced-
order subspace using a Diophantine equation. The algorithm uses the Hessenberg 
form of the pair (C, A). The computation of an output injection is achieved in a 
computationally efficient way. 

2. PRELIMINARIES 

Be given a linear time-invariant system (C, A, B) governed by 

x = Ax + Bu 

y = Cx 

1 The original version of this paper was presented at the 2nd IFAC Workshop on System Structure 
and Control, Prague, 3 - 5 September, 1992. 

2 P. Zagalak is supported by the Grant Agency of the Czech Republic through Grant 
No. 102/94/0294. 
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where A G IRn x n , B G lRn x m and C G H p x n . In addition rankC = p and the 
observability of the pair (C, A) is further assumed. 

Let F(s), G(s) be p x p, p x n polynomial matrices over IR[s]. Then F(s), G(s) 
are said to form a (left) normal external description of (C, A) if [3] 

• [G(s), F(s)] is a minimal polynomial basis of the left kernel of 

si-A 
C 

• F(s) is noincreasingly row-degree ordered and row reduced; 

• G(s) is a minimal polynomial basis of the left kernel of (si — A) U where n is 
a matrix representation of the maximal annihilator of C, i.e. Cn = 0. 

Let P(s) be a p x (ki + k2 + 
row degrees k± — 1, k2 

+ kp) polynomial and row-reduced matrix with 
1 , . . . , kp — 1 such that 

P(s)= block diag{[l,s,...,sk'-1]}l< 

where K G Mkxk is nonsingular, k = ]TP
=1 fc,\ Then P(s) is said to be a polynomial 

basis of a k-dimensional and R-linear vector space [4]. 
Given an n x m polynomial matrix P(s), rankp(s) = k := min (n,m), we shall 

say that P(s) is irreducible if rank P(z) = k for every complex z. For instance, the 
\ si — A observability of the pair (C, A) is equivalent to the irreducibility of n

n 

The concept of a (right) normal external description of the controllable pair (A, B) 
was established in [3] and used in [9] for compututing a state feedback F assigning 
a given pole structure to the system 

x = (A-\-BF)x. 

Here, we shall use the dual version of this algorithm. That is why we have 
introduced the concept of a (left) normal external description of the pair (C, A). 

In [1] it was shown that the problem of designing a reduced-order observer is 
equivalent to the problem of designing a full-order observer on a reduced-order sys
tem of order n — p. To get a description of the reduced-order system in a compu-
tationaly stable way, we shall exploit the properties of the block-upper Hessenberg 
form of the matrix A [7, 8]. 

To this end, let x = Ux' be a state-space similarity transformation, where U is 
orthogonal, such that [7,8] 

A' = UTAU 
Ã A 
C Ã 

' Aц Aí2 • • J-i.jь-i Aik 

A2i A22 • • -4i,ł_i A2k 

(0) • ^jfc-i.jt-i Ak-i,k 

. (0) Ak^k-i Akk 
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and 
C' = CU = [ 0 • • • 0 Cp ], B' = UTB, 

i.e. the matrix A is brought into the block-upper Hessenberg form [7] a n d Cp £ 1RP p 

is nonsingular. 
w 

Let further x' = T where 

Ln-p u 
0 C" 1 

be another similarity transformation that brings the system (C',A',B') into the 
form 

A\ A2 

Ci A3 

y = [0 IP] 

' w ' Bi ' 
V + . 5 2 . 

w 
= V 

V 

and denote 

A 
\ Ai A2 

[ Ci A3 
B Bi 

в2 

Õ := 0 /„ 

Luenberger's theory of observers [1] now impLes that an observer for the system 

w = A\w + A2y + B\u 

yw : = Cxw = y - A3y - B2u 

can be constructed using the reduced-order subsystem (C\,A\) and is of the form 

k = (Ax-LC\)i + (A2 - LA3) y + (B\-LB2)u + Ly. (I) 

The relationship (1) reveals that the most crucial point in designing the observer 
is to find an output injection L such that the observation process £ will converge to 
the state w, i.e. the eigenstructure of the matrix A\ — LC\ must be set up properly. 

3. THE STRUCTURE OF THE OBSERVER 

In this section we exploit the structure of the system in order to build a reduced-
order observer using a reduced-order and square Diophantine equation. 

Let G\(s), G2(s) and F(s) form a left normal external description of the system 
(C,A), i .e. ' 

[ d l У ) G2(s) F(s) } 
sín-p — A\ -Å2 

- C i slp - A3 

0 ~h . 
= o, (2) 
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and let k\ > k2 >•••> kp be the row indices of [G\(s) G2(s) F(s)]. Clearly, 
ki, i = 1,2,... ,p are the observability indices of the pair (C, A) and hence those of 
(C>A\-

It is natural to explore the relationship between the observability indices of the 
pairs (C,A) and (C\,A\). The following lemma provides this relationship. 

Lemma 1. Let((7, A) be an observable pair with observability indices and k\, k2,... 
. . ., kp. Then the pair (C\, A\) defined above is also observable and its observability 
indices are k\ — 1, k2 — 1 , . . . , kp — 1. 

P r o o f . As (C,A) is observable, (C,A) is also observable and has the same ob
servability indices. This implies that 

sln-p ~~ A\ -A2 

-C\ slp - A3 

0 -IP _ 

is an irreducible matrix. In view of the fact that the second column of the above 
matrix forms an ireducible submatrix, we have that 

sln-p — A\ 
-C\ 

is also irreducible and hence, (C\,A\) is observable. 
Let K(s) := [G\(s) C?2(s) F(s)] form a left normal external description of (C, A) 

and let k\,k2,... ,kp be the row degrees of K(s). Since C(sln — A)~- is a strictly 
proper rational function, F~1(s) [G\(s) G2(s)] is strictly proper, too. Then, F(s) 
is row reduced with the row degrees k\,k2,... ,kp and [Gi(s) G2(s)] is also row 
reduced with the row degrees k\ — l,k2 — 1,... ,kp — 1. 

As [G\(s), G2(s)] forms a left normal external description of (Ci,.Ai), we can 
repeat the above considerations and the claim follows. • 

The effect of an output injection L on the system (C, A, B) can be described by 

[ G\(s) G2(s) F(s) ]MM - ì 
sln-p — A\ —A2 

where 

M = 
ln—p 

0 
0 

-C7i 
0 -L 

It follows from the above equation that 

[ G\(s) G2(s) + G\(s)L ] 
sln-p — A\-\- LC\ 

-C\ 
= 0 (3) 
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and hence, the output injection gain L can be obtained from a constant solution 
pair X, Y ( i .e. X nad Y have entries in IR) with X nonsingular [2] of the equation 

G2(s)X +G\(s)Y = D(s) (4) 

where D(s) is an (n — p) x (n — p) polynomial and row-reduced matr ix having the 
same row indices as G2(s) and reflecting the desired pole structure of the observer 
(1). Indeed, it follows from (3) that D(s) reflects the pole structure of the observer. 
Thus, if we find a constant solution pair X, Y with X nonsingular to equation (4), 
we get the desired output injection L on putt ing L = YX~l. 

It should be noted that there exists an efficient and numerically stable way to 
compute the matrices G\(s), G2(s) and D(s); see [9] for more details. In [2] it has 
been shown tha t there exists a constant solution to (4), where X is nonsingular, if 
and only if D(s) is a row reduced matrix with the same row indices as G2(s). 

In order to calculate a constant solution X, Y of the equation (4), we can proceed 
as follows. 

Let a = k{ — 1, i = 1, 2 , . . . ,p and let 

S(s) := block diag {[1, s,..., s^'1]} . 

Then the equation (4) can be written in the form 

diag [ s c >, . . . , sc»-»] G2lrX + S(s) G2\Y = 

= diag [ s C l , . . . , sc»-'] D\r + S(s) D\ 

where G2\r and D\r are the leading coefficient matrices of G2(s) and D(s), respec
tively, and G2\ and D\ are constant matrices (i.e. having elements in IR). In fact, 
we are to solve the following two systems of linear equations 

G2\rX = D\r 

G2lY = D\, 

which can be done for instance using some of the well-known methods exploiting 
orthogonal transformations to achieve high numerical stability. The output injection 
L is then given by 

L = YX~l. 

To sum up, the proposed algorithm for finding L can be described as follows: 

into the block-
A 
C 

1. Using orthogonal transformations, bring the matrix 

upper Hessenberg form and put C\ = CPC, A\ = A. 

2. Find a left normal external description of (C\, A\). 

3. Construct a row-reduced matr ix D(s) having the desired invariant factors and 

the same row degrees as G2(s). 
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4. Find a constant solution pair X, Y with X nonsingular of the equation (4). 

5. Put L = Y x - 1 . 

It is to be noted tha t the solution given by the above algorithm is by no means 
unique [2]. The particular form of L depends mainly on the particular form of D(s). 

4. CONCLUSIONS 

In this paper we presented a computationally efficient method for reduced-order 
observers in linear systems. The proposed technique is based on the Hessenberg 
form of the pair (C, A) and a square reduced-order Diophantine equation (4), which 
enables us to modify the dynamics of observer, i.e. the zero structure of s / n _ p — 
A\ + LC\, in the limits given by the Rosenbrock theorem; see [4] for details. The 
method was tested using MATLAB. 

(Received February 23, 1993.) 
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