
K Y B E R N E T I K A — VOLUME 32 (1996) , NUMBER 1, PAGES 1 7 - 4 2 

DYNAMIC DISTURBANCE DECOUPLING 
FOR NONLINEAR D I S C R E T E - T I M E SYSTEMS 

T H O M A S F L I E G N E R AND H E N K N I J M E I J E R 

In this paper we study the dynamic disturbance decoupling problem for nonlinear 
discrete-time systems that are considered in a neighbourhood of a given reference trajec
tory. Furthermore the connection between the solvability of this problem and the solvability 
of the corresponding problem for the time-varying linear discrete-time system obtained by 
linearizing the original system along the given reference trajectory is investigated. For this 
purpose, a geometric disturbance decoupling theory for time-varying linear discrete-time 
systems is developed. 

1 INTRODUCTION 

The problem of decoupling disturbances from th° outputs of a given dynamical 
control system by means of static (DDP) or dynamic state feedback (DDDP) has 
received a lot of attention. 

Complete solutions have been obtained for time-invariant linear systems, both 
in continuous an i discrete time (see [1], [16], [26], [27]). Remarkably, the seemingly 
more restrictive problem of disturbance decoupling by static state feedback is, for 
this class of systems, solvable if and only if the disturbance decoupling problem 
can be solved by means of a dynamic state feedback (cf. [2]). In the nonlinear 
continuous-time setting, the derivation of solvability conditions proved to be harder. 
Nevertheless, local results have been obtained for special classes of nonlinear systems, 
provided certain regularity conditions are met (cf. [7], [8], [15]). In contrast with 
linear systems, however, the application of dynamic state feedback enlarged the 
class of disturbance decouplable nonlinear systems ([8], [10], [12], [18], [23]). 

It is worth mentioning that the methods which are used to solve the problem 
fundamentally differ according to whether static or dynamic feedback is to be ap
plied. Disturbance decoupling by static state feedback relies on the concepts of 
controlled invariant (or [A,B]-invariant) subspaces and controlled invariant distribu
tions, respectively, depending on whether linear or nonlinear systems are considered. 
Controlled invariant subspaces have been introduced in [1] and [26] and their non
linear counterparts in [15] and [7]. The resulting solvability conditions are basically 
of geometric nature. In dynamic disturbance decoupling, a crucial role is played by 
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the so-called Singh algorithm and the resulting Singh compensator. The algorithm 
was introduced by Singh in connection with calculating left inverses for nonlinear 
systems (see e.g. [25]) and is a generalization of the algorithms in [24] and [6]. It 
turned out that this algorithm together with a linear algebraic framework developed 
in [3] gave a lot of insight into the system's structure and helped to solve DDDP for 
a class of nonlinear systems. The derived solvability conditions in terms of Singh's 
algorithm have then been translated into geometric language (cf. [8], [23]). 

A similar but time-delayed development took place for discrete-time systems. It 
is known tha t in the linear setting there is no essential difference in solving DDP for 
time-invariant continuous- and discrete-time systems (cf. the corresponding chap
ters in [27] and [16]). Further steps in the development of a discrete-time theory 
are along the lines described above; generalization of the concepts of invariance and 
controlled invariance to the nonlinear discrete-time setting (see [4], [20]), deducing 
local solvability conditions for disturbance decoupling by means of static state feed
back in terms of controlled invariant distributions (cf. [4], [22]), extension of Singh's 
algorithm to discrete-time systems in e. g. [18] and solving the dynamic disturbance 
decoupling problem locally about an equilibrium point of the system (see [18] and 
[17]). The last step turned out to be necessary since, similar to the continuous-time 
nonlinear case, the class of disturbance decouplable discrete-time nonlinear systems 
can be enlarged by allowing for dynamic state feedback. 

Until now little is known about disturbance decoupling for time-varying systems. 
A geometric theory for a class of time-varying linear continuous-time systems can 
be found in [13], [14], but no discrete-time counterpart was derived. 

The present paper aims to investigate the relation between the solvability of the 
dynamic disturbance decoupling problem for a nonlinear discrete-time system that 
is given in the neighbourhood of a reference trajectory and the solvability of the 
same problem for the linear time-varying system obtained by linearizing the original 
nonlinear system along a given reference trajectory. This approach is motivated 
by the understandable wish to study the solvability of nonlinear control problems 
by means of the linearization about a working point or trajectory as to simplify 
considerations. An example of this in discrete time may be found in [19]. 

Connected with the main objective of the paper, we first develop a geometric 
disturbance decoupling theory for time-varying linear discrete-time systems that 
essentially parallels the more familiar time-invariant case. In a second step we extend 
results obtained in [17], [18] concerning dynamic disturbance decoupling for nonlinear 
discrete-time systems tha t are given in the neighbourhood of an equilibrium point 
of the system to the case of systems that are given in a neighbourhood of a reference 
trajectory of the system. With this as preparation we are eventually able to discuss 
the mutual relation between the solvability of the dynamic disturbance decoupling 
problem for the nonlinear system and its linearization. 

The organization of the paper closely follows these three steps. In Section 2 we 
develop a geometric disturbance decoupling theory for time-varying linear discrete-
time systems. Section 3 is dedicated to the solution of the dynamic disturbance 
decoupling problem for nonlinear discrete-time systems that are given in the neigh
bourhood of a reference trajectory of the system. Solvability conditions are for-
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mulated in terms of Singh's algorithm. Finally, in Section 4 a connection is made 
between the proceeding sections by alternatively characterizing the solvability of the 
nonlinear dynamic disturbance decoupling problem by means of the solvability of 
the same problem for the linear time-varying system arising from linearizing the 
original nonlinear system along the given reference trajectory. 

2. DISTURBANCE DECOUPLING FOR LINEAR TIME-VARYING SYSTEMS 

2.1 . Definitions and Formulation of the Problem 

In this section we develop a geometric disturbance decoupling theory for time-varying 
linear discrete-time systems similar to the time-invariant case. As usual N denotes 
the set of natural numbers (including 0) and N + = N \ {0}. In the sequel we use 
bold face letters to denote sequences of objects defined for all N. Thus for instance 
q = {q(k)}k>o denotes the sequence of disturbances, V = {V(k)}k>o refers to a 
sequence of subspaces of the state space X and so on. Subsequences beginning with 
a &o > 0 are indexed correspondingly (qk>k0i Vk>k0,- • •)• 

Consider the following time-varying linear discrete-time system: 

J x(k+l) = A(k)x(k) + E(k)q(k) 

S ° ' \ y(k) = C(k)x(k) 

where {q(k)}, k G N represents a sequence of unknown disturbances. Furthermore, 
for all k, x(k) G X = l n , q(k) G W and y(k) G W. A(k), E(k) and C(k) are 
matrices of appropriate sizes. For a given initial condition XQ = x(ko) G X, ko G N, 
and disturbances qk>k0> ^nr o u t P u t of the system is given by: 

k-l 

y(k) = C(k) x(k) = C(k) * M o x o + C(k) J2 *k,i+iE(l) q(l), k>k0 (1) 
l=k0 

where the summation term on the right hand side is understood to be 0 for (k — 1) < 
fc0 and 3>k,i denotes the transition matrix which, for 0 < / < k, is defined as follows: 

$k,i = A(k -l)A(k~2)... A(l), »,,! = / . (2) 

Definition 2 .1. The system E0 is said to be disturbance decoupled if for every 
ko G N and arbitrary sequence of disturbances qk>k0y

 t n e o u t P u t Vk>k0
 ls o n ^ 

depending on the initial state xo = x(ko)-

Comparing with (1), this is obviously equivalent to 

C(k)J2^k,i+iE(l)q(l) = 0, k>kQ (3) 
/=fco 
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for arbitrary qk>k • Condition (3) can be given in a more geometric way as follows: 

[mE(k-l) + <f>klk-iirnE(k-2) + ... + <f>kiko+1imE(ko)CkerC(k), k > k0 . (4) 

Unfortunately, a system of the form So usually does not enjoy this property. One can 
then try to make it disturbance decoupled by either applying static or dynamic state 
feedback (also referred to as dynamic compensation). This requires the possibility 
of changing the dynamics of the system, usually modelled by adding a linear control 
term. Consider, therefore, the linear control system 

J x(k+l) = A(k)x(k) + B(k)u(k) + E(k)q(k) 

{ y(k) = C(k)x(k) 

with the notation as above and additionally u(k) Ell = W71 and compatible matrices 
B(k). We are now in the position to formulate the two disturbance decoupling 
problems which we are concerned with in the sequel. 

Definition 2.2. The Static Disturbance Decoupling Problem (DDP) consists in 
finding a static feedback law u(k) = F(k) x(k) such that in the closed loop system 

•'BF 
x(k+l) = [A(k) + B(k)F(k)]x(k) + E(k)q(k) 

y(k) = C(k)x(k) 

the outputs are not influenced by the disturbances. 

R e m a r k 2.3. In linear static feedback control, one usually applies feedbacks of 
the form u(k) = F(k) x(k) + G(k) v(k) considering v(k) as new inputs that can be 
used for further control design. We omit this term because it is not relevant to our 
purposes. 

Definition 2.4. The Dynamic Disturbance Decoupling Problem (DDDP) consists 
in finding a dynamic compensator 

C : 
z(k + l) = P(k)z(k) + Q(k)x(k) 

u(k) = S(k)z(k)+T(k)x(k) 

with z(k) G M.u and the matrices P(k),Q(k),S(k), and T(k) of appropriate sizes 
such that the compensated system 

Ľ o C x(k+ 1) 
z(k + l) 

A(k) + B(k)T(k) B(к)S(к) 
Q(к) P(к) 

x(к) 
z(k) + 

E(k) 
0 

q(k) 

y(k) = [C(к) 0] x(к) 
z(k) 

is disturbance decoupled. 
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2 .2 . The Static Disturbance Decoupling Problem (DDP ) 

In this subsection, we define the concepts A-invariant and controlled-invariant se
quences V, respectively, and solve the disturbance decoupling problem by static 
state feedback. Furthermore the connection between the solvability of DDP and 
DDDP is investigated. 

Consider the system 
x(k + l) = A(k)x(k). 

Definition 2.5. A sequence V of subspaces of the state space X is called A-
invariant if 

A(k)V(k) C V(k + 1) for all k E N . 

Now consider the system 

x(k + l) = A(k) x(k) + B(k) u(k). 

We define controlled (or [A, H]-)invariance in the following way. 

Definition 2.6. A sequence V of subspaces of the state space X is said to be 
controlled-invariant if for every k0 E N and arbitrary x0 E V(ko), there exists an 
hvut Mo E U such that xUo(k0 + 1) £ V(k0 + 1) where xUo(ko + 1) .= A(k0)xo + 
B(k0)u0. 

Remark 2.7. We note that Definition 2.6 could be equivalently given by saying 
that for arbitrary k0 E N and xo E V(ko), there exists a sequence of inputs Uk>k0 

such that the resulting states x(k) satisfy x(k) E V(k), k > k0. 

Besides this open loop definition we have similar to the linear time-invariant case 

Lemma 2.8. The following statements are equivalent: 

(i) V is controlled-invariant. 

(ii) A(k)V(k)CV(k + l)+im B(k) for aU k G N. 

(iii) There exists a family F of linear maps F(k) : X —» U such that for all k E N 
[A(k) + B(k) F(k)] V(k)CV (k + 1). 

Proof , (i) —• (ii): Let for an arbitrary k E N an x0 E V(k) be given. By defi
nition of controlled invariance there exists a u0 £U such that xUo(k + 1) E V(k + 1). 
(ii) then follows immediately from A(k) x0 = xUo(k + 1) - B(k) U0. 
(ii) -> (iii): Let {6i(Ar),..., bh(k)} be a basis of V(k). Extend it to a basis {hi(k),... 
...,bn(k)} of X. By (ii) there exist bx(k + 1) E V(k + 1), 1 < t < h, and 
{«!(»%),..., uIk(k)} such that A(k) bt(k) = 6,(ib + 1) + B(k) Ui(k), l<i< k- Now 



22 T. FLIEGNER AND H. NIJMEIJER 

define F(k) : X -> U by F(_)6,(_) = - _ , ( _ ) , 1 < * < /it, and F(k)b{(k) arbitrary 
vectors in u for i > /fc. 

(iii) —» (i): Let x0 G V(k0) be arbitrary. Define tt0 = F(ko)xo- Then 

_Uo(_o + 1) = A(_0) _o + B(_o) wo = [A(_0) + B(_0)F(_o)] _o _ V(_0 + 1) 

which shows the controlled invariance of V and concludes the proof. • 

With the help of the concept of A-invariance, we can characterize a disturbance 
decoupled system in the following way. 

Lemma 2.9. The system _(_ + 1) = A(k) x(k) + E(k)q(k),y(k) = C(k) _(_) is 
disturbance decoupled if and only if there exists an A-invariant sequence V such 
that 

imE(k - 1) C V(_) C ker C(k) for all k G N + . 

P r o o f . (only if) Let the system be disturbance decoupled. Then, using (4) 
with _o — 0, it holds for all _ G N + 

im E(k - 1) + <-fc.fc-iim E(k-2) + ... + $kilimE(0) C ker C(k). 

Now define 

V(_) = imE(k - 1) + ^ktk^imE(k - 2) + ... + $k)1imE(0). 

Obviously 

imE(k - 1) C V(k) C kevC(k). 

It remains to show that V is A-invariant. To show this, consider 

A(k)V(k) = A(_ ) im_ ; (_ - l ) + A(_)$fc i fc_i im-;(_-2)+. . . + A(_)<_fcilim_?(0) 

= <_fc+lifcim£(_ - 1) + ^k+hk-1imE(k -2) + ... + $fc+1|1im£(0) 

C imE(k) + <_fc+1,fcim£(_ - 1) + . . . + $fc+lilim_;(0) 

= V(k + I). 

(if) By induction we show that for an arbitrary _o G N 

fc-i 

] T - f c ,!+ i imE(0 C V(k) C ker C(k), k > k0 . 
l=k0 

For _ = _o + 1 we have 

<_fc0+lifc0+1im/i;(_o) = imE(ko) C V(k0 + 1) C ker C(k0 + 1). 
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ifc-1 
Let now £ $ktl+1im E(l) C V(k) C kerC(fc) for k > k0 + 1. Then 

l=k0 

k 

I 
/=J fc 

i f c - 1 

£ $fc+i,/+iim.E,(/) = im£(fc) + J ^ **+1,,+1rai.E(J) 
/=fco 

I f c - 1 

= im.0(ifc) + A(k) J2 $k,i+iimE(l). 
l=k0 

j f c - l 

Since im E(k) C V(k + 1) by assumption and ^ $jfci/+iimE(/) C V(k), we get 
/=fco 

Jfc 

J2 ^+i , /+i imE(l) C V(* + 1) C ker C(* + 1) • 
/=Jfeo 

It follows by (4) that the system is disturbance decoupled. • 

The question whether or not a system is disturbance decouplable by a static state 
feedback is completely answered by the following lemma. 

Le.nma 2.10. There exists a sequence F of maps F(k) : X —* U such that sys
tem TIBF is disturbance decoupled if and only if there exists a controlled-invariant 
sequence V of subspaces of X such that 

im E(k - 1) C V(Jfe) C ker C(k), i £ N + . 

P r o o f . The proof is similar to that of the previous lemma. • 

Remark 2 .11 . In [13], [14] disturbance decoupling for time-varying linear conti
nuous-time systems with piecewise analytic system matrices is considered. Although 
the results obtained there are basically similar to those of this article, things appear 
to be much more involved. 

For time-invariant linear systems it is known that the class of systems for which 
DDP is solvable coincides with the class of systems for which DDDP is solvable (cf. 
[2]). The same holds true if one considers the discrete-time case. In the next lemma 
we show that the situation is the same for time-varying linear discrete-time systems 
as well. 

Lemma 2.12. For time-varying linear discrete-time systems E. DDP is solvable if 
and only if DDDP is solvable. 

P roo f , (only if) Trivial. 
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(if) Let there exist a compensator C such that the compensated system £ o C is 
disturbance decoupled. Define 

Ae(k) 
A(k) + B(k)T(k) B(к)S(к) 

Q(к) P(k) 
Ee(к) = 

E(k) 
0 

, Ce(к) = [C(к) 0]. 

By Lemma 2.9 there exists an Ae-invariant sequence Ve of subspaces of the extended 
state space X x Z such that 

imEe(k- 1) C Ve(k) CkevCe(k), k = 1,2,... . 

Consider the projection V(k) of Ve(fc) along Z, that is 

V(k) = 7Ti Ve(k) = {x EX :3zx eZ such that (x, z) G Ve(k)} . 

First observe that by definition of V(k), we obviously have 

im E(k-I) CV(k) Cker C(k). 

Since 
Ae(k)Ve(k)CVe(k + l), 

we have 

[A(k) + B(k)T(k)]x + B(k)S(k)zxeV(k + l) for all xGV(k). 

This implies 
(A + BT)(k)V(k) C V(Ar-r-l) + imB(fc), 

The latter means that V is [A + B T , J3]-invariant. By Lemma 2.8 there exist maps 
F(k) such that 

(A + BTF) (k) V(k) C V(k + 1) for all £ = 0 , 1 , 2 , . . . . 

Lemma 2.9 now says that the system ^BTp is disturbance decoupled. The required 
static feedback which decouples E is given by u(k) = T(k) F(k) x(k) . • 

2.3. The Existence of a Maximal Controlled Invariant Sequence 

For time-invariant systems influenced by disturbances, the effectiveness of the ap
proach relies on the existence of an algorithm (the so-called Invariant Subspace 
Algorithm) which enables one to compute the (always existing) maximal controlled-
invariant subspace V* contained in kerC. The decision whether or not a given 
system is disturbance decouplable then comes down to check imE C V*. 

In this section we are going to show that there exists a maximal controlled-
invariant sequence V* of subspaces of the state space X contained in ker C as well 
where inclusion is to be understood pointwise. Before we do this we give some 
definitions. 
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Def in i t ion 2 .13 . Let M be a non-empty set. A partial order on M is a binary 
relation, denoted by < , with the following properties: 

1. For all x £ M, x < x . (reflexivity) 

2. For all x, y £ M, x < y and y < x implies x = y . (antisymmetry) 

3. For all x, y, z £ M, x < y and y < z implies x < z . (transitivity) 

A nonempty set M on which there exists a partial order is called partially ordered. 

Def in i t ion 2 .14 . If M is a partially ordered set and if m £ M has the property 
that m < x implies m = x, then m is called maximal element in M. 

The definition of a partially ordered set does not require that all elements of 
this set are comparable. A partially ordered set in which every pair of elements 
is comparable is called totally or linearly ordered. Any totally ordered subset of a 
partially ordered set is called a chain. 

Finally, an element u of a partially ordered set M is called an upper bound for a 
subset V of M if v < u for all v £ V. 

With the help of these concepts we can state Zorn's lemma. 

T h r o r e m 2 .15 . Let M be a partially ordered set in which every chain has an 
upper bound. Then M has a maximal element. 

Let ker C denote the sequence {ker C(0), ker C(l),.. .} . Introduce a partial order 
on the set of all sequences of subspaces of X by V1 < V2 <5 Vx(k) C V2(k) for all 
k = 0 ,1 ,2 , Finally, define Q := {V : V < ker C, V controlled-invariant}. 

T h e o r e m 2 .16. ker C contains a maximal controlled-invariant sequence V* of 
subspaces of X. 

P r o o f . Let V , V , V3,... be a chain in Q,. Let furthermore without loss of 
generality 

V1 < V2 < V3 < • • • . 

It follows Vl(k) C V3 (k) for all k > 0 and i < j . For all k > 0, the finite dimension 
of X assures the existence of a minimal number Ik such that 

V1(k)cV2(k)c • • • C Vlk(k) = Vlk+1(k) = --- . 

Define V := {V'°(0), V / x ( l ) , V 2 (2 ) , . . . } . Obviously we have V < k e r C . Moreover 
from 

A(k)Vlk(k) C Vlk(k+l) + imB(k) 

follows 
A(k)Vlk(k) C Vlk+1(k + l) + imB(k) 
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because for Ik > h+i we have 

Vl"(k+1) = V*>+*(k+l) 

and for lk < /jt+i, 

V ' f c ( H l ) c V , k + 1 ( H l ) . 

So the controlled invariance of V follows. Since by construction V1 < V, V is 
maximal in the considered chain. Zorn's Lemma then guarantees the existence of a 
maximal element V* in il, that is, for every V E Q which is comparable with V* 
follows V < V*. Suppose now there is a V E & which is not comparable with V*. 
Define W := V + V*. W is again an element of Q and V* < W which contradicts 
the maximal element property of V*. Consequently, V* is maximum of Q . • 

2.4. A modified invariant subspace algorithm 

In the foregoing subsection we have proved the existence of a maximal controlled-
invariant sequence V* of subspaces of the state space X contained in k e r C The 
same proof applies of course if ker C is replaced by any sequence K of subspaces. 

The question arises how one can actually obtain the maximal controlled-invariant 
sequence V*(K) contained in K. It will turn out that an algorithm similar to the 
Invariant Subspace Algorithm for time-invariant systems can be employed in order 
to compute V*(K). 

Recall that, given a linear time invariant system 

x(k + 1) = Ax(k) + Bu(k) 

and a subspace K C X, the largest controlled-invariant subspace V*(K) in K can be 
calculated via the following algorithm: 

V° := K Vi+1 :=KD A~l(V + imj3). 

This algorithm terminates after at most / = dim K steps and V' = V*(K). 
For linear time-varying systems, this algorithm is slightly modified. Let K be 

given and denote by <r the forward time-shift operator. Perform the following algor
ithm: 

V°:=K Vi+1 :=KnA-1(aVi + imB) 

where as usual all operations are to be understood pointwise. It is clear that this 
algorithm produces a family of subspaces contained in K satisfying 

v° > v1 > • • • > vl = v'+1 

Moreover we have 
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T h e o r e m 2 .17 . The sequence of subspaces V obtained in the final step of the 
algorithm is controlled-invariant. Any other sequence W of controlled-invariant 
subspaces of K satisfies W < V or, put another way, V = V*(K). 

P r o o f . To prove the controlled invariance we have to show, for arbitrary 
XQ G V (k), the existence of a u0 G U such that A(k) x0 + B(k) uo G V (Jfe + 1). Let 
therefore an arbitrary XQ G VJ(k) be given. According to the algorithm we have 
x0 G K(k) and x0 G -4~*(Jfc) ( V / _ 1 ( * + 1) + imB(Jfc)) . 

=> A(k)x0 + B(k)u0 G V'-^Jb + l ) ? V'(Jb + l ) 

for some «o G U. Suppose now that for all such Mo 

A(k)x0 + B(k)u0eV,-1(k + l)\V,(k+l). 

=> A(k) x0 G" Vl(k + 1) + imB(k) =>xo£ Vl+1(k) 

which contradicts Vl+1(k) = V\k) and, hence, proves the controlled invariance of 
V1. 

Let now be given another controlled-invariant sequence W in K and consider an 
arbitrary x0 G W(Jfc) C K(k). We have to show that x0 G V (k) as well. Since W is 
supposed to be controlled-invariant, we can find a u0 G U such that 

Ayk)x0 + B(k)u0 G W(k+\) C K(k + 1) resp. x0 G A'^k) (K(k + 1) + imH(Jfc)). 

It follows tha t x0 is also an element of V*(A;) or equivalently W(k) C Vx(k) for all 
k = 0 , 1 , 2 , . . . because the arbitrary choice of k. This especially means that the 
element A(k) x0 + B(k) u0 G W(k + 1) also belongs to V1(k + 1) and consequently 
XQ G V2(k). Repeating this argument finally yields XQ G V*(fc). 

=> W(k) C V\k) for all k > 0 => W < V1 = V*(K) 

which proves the statement. • 

R e m a r k 2 .18 . It is evident that this method of computing the maximal controlled-
invariant sequence of subspaces relies very much on the discrete-time assumption 
such tha t it is not clear how to generalize it to the continuous-time setting. In 
this case the maximal controlled-invariant family of subspaces can be computed 
algorithmically utilizing the duality between the concepts controlled invariance and 
conditioned invariance (cf. [13], [14]). 

We conclude this section with an example. 

E x a m p l e 2 .19 . Consider the following mathematical system: 

x(k + l) = A(k)x(k) + B(k)u(k) + E(k)q(k), y(k) = C(k)x(k) where 



28 T. FLIEGNER AND H. NIJMEIJER 

A(k) = 

(k + 2ý 
k + 1 

0 

0 

0 0 0 
-k2 -к2 , B(к) = (к + l) 

-(к + 2) ( J b + 1 ) . 0 

E(к) = 
(к + 2)2 

0 
- 1 

and C(Jfe) = [ 1 0 (k+ì)2 ] . 

Pointwise, ker C(k) is given by 

kerC(Jfe) = spanffi{ (0 1 0)T , ((k + l)2 0 - 1)T } . 

Performing the algorithm introduced above we define first 

V°(k) = kerC(k) 

and compute 

V\k) = ker C(k) fl A~l(k) (V°(k + 1) + imB(k)). 

This may be done by investigating which images under A(k) of elements of ker C(k) 
lie in (V°(A; + 1) +imB(k)). Since the general form of an element x £ kerC(^) is 

x = (ai(k + l)2,a2, -ai)T 

cti, Gt2 6 M, and obviously 

(V°(& + l ) + imB(Jfe)) = V°(jfe + l) 

this leads to the equations 

ai(fc + 2)Ҷ* + l) 
(ai - a2)k2 

-ax(k+ 1) -a2(k + 2) 

Ьi(k + 2)'' 
b2 

-h 

which imply b\ = a\(k + l) and — b\ = —a2(k + 2) — a\(k + 1). The two last equations 
yield a2 = 0 which on its turn implies 

V 1 (^=span 1 {((A ; + l ) 2 0 - 1 ) } . 

We start the next step by computing 

(Vl(k+l) + imB(k)) = spanffi{((£ + 2)2 0 - 1)T,(0 (k + 1 ) 0)T} 

= spanffi{((^ + 2)2 0 - 1 ) T , ( 0 1 0)T} 

from which we may immediately conclude 

V2(k) = V\k) 
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and so V*(kerC) = V 1 . One immediately verifies imE(k — 1) C V*(k) and so 
the DDP is solvable. The computation of a decoupling feedback can now be done 
following the procedure in the proof of Lemma 2.8. A basis of V*(Ar) is given by 

qi(k) = ((k+1)2 0 —1)T. This can be extended by the two vectors q2(k) = (0 1 1)T 

and <l3(k) = (0 0 1)T to a basis of X = M.3. Next we have to find u(k) such that 

A(к)qi(k) + B(к)u(к) 

C spanffi 

(к + 2)2(k + Ґ 
к2 

-(к + 1) 

" (k + 2)2 

0 
- 1 

+ 
0 

(k+ l)u(к) 
0 

which certainly holds for u(k) = -^j. F(k) = [a(k) b(k) c(k)] can be defined by 

setting F(k)qi(k) = ^-^ which imposes the restriction 

a(k) (k + l)2 - c(k) = 
k + 1 

2

 n . a(k)(k+l)3 + k2 

or c{к) = — fe + 1 

Choosing a(k) = b(k) = 0, we get F(k) = [0 0 -Aj] . The resulting matrices 
[A(k) + B(k) F(k)] differ from A(k) in element (2,3) which turns 0 in the closed loop 
matrix. One immediately verifies that 

[A(k) + B(k) F(k)] qi(k) eV^k+l). 

3. THE (REGULAR) DYNAMIC DISTURBANCE DECOUPLING PROBLEM 
FOR NONLINEAR DISCRETE-TIME SYSTEMS 

3.1. Definitions and Problem Formulation 

In this section we are concerned with the solution of the (regular) dynamic distur
bance decoupling problem (DDDP) for nonlinear discrete-time systems which are 
given in a neighbourhood of a reference trajectory. Consider, therefore, the follow
ing system: 

f(x(k),u(k),q(k)), xo = x(0) 

h(x(k)) 

where the states x(k) belong to an open part X of Mn, the inputs u(k) are in some 
open part U of Mm, the unmeasurable disturbances <j(k) take their values in some 
open W C W, and the outputs y(k) belong to some open part y of IRP. / and h 
are supposed to be real analytic mappings. Let us assume furthermore that their 
exists a reference trajectory for E, that is, a set of time functions (x, u, q, y) £ 
X® x U^ x WN x y^ that satisfies the system equations (for the meaning of bold 
face letters see Section 2.1). The restriction of the system to a neighbourhood of 



30 T. FLIEGNER AND H. NIJMEIJER 

a reference trajectory (including equilibrium points) is the usual way to deal with 
the inherent nonlocal character of discrete-time systems. By a proper choice of the 
initial state xo and input sequence u one can so keep the system's states and outputs 
(at least up to a finite time instant kj?) in the neighbourhood of known points in 
X X y given by the sequences x and y, provided the disturbances q stay close to 
q. This way, the application of local methods become possible. We now define the 
problem which will concern us in the sequel. 

Def in i t ion 3 . 1 . The Regular dynamic disturbance decoupling problem (DDDP) 
consists in finding a regular dynamic compensator 

( x(k + l) = tfj(z(k),x(k),v(k)), z0 = z(Q) 

R ' { u(k) = <(>k(x(k),x(k),v(k)) 

with iv-dimensional states z(k) and new inputs v(k) of dimension m, defined locally 
around a set of time functions (z, x, v, u) that satisfy the compensator equations 
such that in the compensated system S o R the disturbances do not influence the 
outputs for 0 < k < kp. 

Here the term 'regular' refers to the invertibility of the relation between the inputs 
v(k) and outputs u(k) of the control system given by R (cf. [18]). 

We remark tha t the restriction to 'finite-time decoupling' is not imposed by 
properties of the considered system but by the mathematical apparatus used; we 
will comment on this issue later on in the construction of the Singh compensator. 

Instrumental in the solution of the formulated problem is the so-called Singh com
pensator. This compensator is constructed via Singh's algorithm which has been 
introduced in [25]. A modified version of this algorithm introduced in [3] is used 
nowadays in the t reatment of numerous synthesis problems for continuous-time sys
tems (cf. [8], [10], [11], [12]). 

Essentially there are two versions of Singh's algorithm for discrete-time systems. 
One has been introduced in [5] and parallels conceptually very much the continuous-
time algorithm. The advantage here is that by transition to the differentials of all 
involved signals, computations are linearized. Furthermore, results obtained via 
this algorithm are easier to interpret. On the other side, a globally defined system is 
required and termination of the algorithm may take 2n steps. We, therefore, decided 
to choose the version introduced in [18] which is recapitulated in the next section. 

3 .2 . S ingh's a l g o r i t h m 

In the sequel i £ Xj\ for j < I is a short hand notation for j < i < I. Moreover, 
we consider the system E ^ obtained from S by keeping the disturbances fixed to 
q. Perform Singh's algorithm about every point (x(k), u(k), q(k)), k = 0, 1 , . . . , kp. 
Observe that we apply the algorithm only in the neighbourhood of the finite time 
path (x(k),u(k),q(k))\o<k<kF in connection with the problems already mentioned. 
'For all fc' is to be understood accordingly. 
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STEP 1 

Calculate y(k + 1) = h[f(x(k), u(k),q(k))] and define 

px(k) := rank Du(h o f) (x, u,q(k)) . 

Let us assume that there exist neighbourhoods 01(k) of(x(k),u(k)) in which p1(k) =: 
p1 is constant for every k . Moreover, assume that the independent rows of Du(h o 
f) (x,u,q(k)) are the same for every k. Permute, if necessary, the components of the 
output in such a way that the first p1 rows of the matrix Du(h o f) (x,u,q(k)) are 
linearly independent and decompose h[f(x(k), u(k),q(k))] and y(k + 1) accordingly. 

У(к + 1) ўҶk + i) 
ўҶk + i) 

h[f(x(к),u(к),q(k))] = 
á1(x(k),u(k),q(k)) 
o 1 ^ * ) , «(*),?(*)) 

where yx(k + 1) and a1(x(k), u(k), q(k)) consist of the first p1 (independent) com
ponents of y(k + 1) and h[f(x(k), u(k),q(k))], respectively. Since the last p - p1 

rows of the matrix Du(h o f) (x, u, q(k)) are linearly dependent on the first p1 rows, 
the corresponding components of h and y, respectively, viewed as functions of u and 
with parameters x (and q), are functionally dependent on the first p1 components. 
Hence, we can write 

yl(k + l) = al(x(k),u(k)tq{k)) 

yl(k+l) = a1(x(k),u(k),q(k)) = ^(x(k),q(k),y1(k+l)). 

Denote a1(x(k),u(k),q(k)) by A1(x(k), u(k), q(k)). 

End of STEP 1 

STEP 1+1 

Suppose that in Steps 1 through to /, f(k+ l),y2(k + 2),... ,yl(k + I), yl(k + l) 
have been defined in such a way that 

y'(k + l) = a\x(k),u(k),q(k)) 
y2(k + 2) = ~a2(x(k),u(k),q(k),q(k+l),yl(k + 2)) 

yl(k + l) = ~al(x(k),u(k),{q(k + i) : i £loi-i}, {y{(k + j) : i £ IU-i,j Gli+il}) 

yl(k + I) = tl>f(x(k), {q(k + i) : i e Ioi-i}> {yl(k + j) • i 6 Iu,j G In}). 

Suppose also that the matrix DuA
l = Dufi1 , • • •, a}T]T has full row rank pl in some 

neighbourhood Ol(k) of (x(k),u(k), {^(k+j) : i G Xu-uj G li+u}) • Compute 

yl(k + l+l) = t/>'(x(k + l),{q(k+i+l) -ieIoi-i},{yl(k+j + l) : i£llh jElu}) 

= ^l(f(x(k),u(k),q(k)),.--) 

= : al+1(x(k),u(k),{q(k + i) '• i^Ioi}, W(k+j) : ielu, jeli+ll+l}) 
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and define 

p1+1(k) : = r a n k Du 

AҚ.) 

( • ) 
, '+i 

Let us assume that there exist neighbourhoods G1+1(k) of(x(k), u(k), {y{(k + j) : i G 

lu,j E li+u+i}) in which p1+1(k) = : p1+1 is constant for every k. Moreover assume 

that the independent rows of DU[A] ,a1+1 ]T are the same for all k. Permute, 

if necessary, the components of y](k + 1+1) such that the first p1+1 rows of the 

matr ix Du[AlT,a1+lT]T are linearly independent. Decompose yl(k + 1 + 1) and a1+1 

according to 

y1+1(k + l+l) 

y1+1(k + l+l) 
ў'(k + l + l) = , '+i ã1+1 

A ' + I 

Then we have 

y^k + l) = a1(x(k),u(k),q(k)) 

y2(k + 2) = a2(x(k),u(k),q(k)Mk + l),y1(k + 2)) 

y1+1(k + l + l) = a1+1(x(k),u(k),{q(k + i) :ieXQ1},{yi(k+j) : i £llh j Eli+u+i}) 

y1+1(k + l+l) = ipl+1(x(k),{q(k + i) : i €lQi},{f(k + j) : i € lu+i,j € lu+i}). 

Denote A1+1 := [A'T , a1+lT]T. 

End of S T E P 1+1 

The application of the algorithm is certainly not unique because one has in general 
a multiple choice in selecting functionally independent components. Moreover, it is 
not sure at all if the imposed assumptions are satisfied in each step of the algorithm. 
In order to proceed we have to define a notion of regularity associated with the given 
trajectory (x,u,q,y). 

Def in i t ion 3 .2 . The reference trajectory (x,u,q,y) is said to be regular if there 
is an application of Singh's algorithm such that all assumptions made in performing 
the algorithm are satisfied. It is said to be strongly regular if this holds true for an 
arbitrary application of the algorithm. 

In [17] it has been shown that around a regular reference trajectory (x, u, q, y) the 
algorithm terminates in at most n steps, tha t is, if one were to continue the algorithm 
then pn+i = pn for all integers j > 0. In the sequel let p* := max jp ' , / > 1} and 
define a as the smallest / E N such that p1 = p*. Moreover we assume that we are 
working around a strongly regular reference trajectory. 

It can be shown that around a strongly regular reference trajectory the integers 
p1,.'.., p*, the so-called invertibility indices, do not depend on the particular per
mutat ion of the components of jjr(k + I + 1). Thus, using this algorithm around 
a strongly regular trajectory, we obtain a uniquely defined sequence of integers 
0 < p1 < • • • < / > * < min(m,p) . 
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3 .3 . C o n s t r u c t i o n of t h e S ingh c o m p e n s a t o r 

Applying the algorithm around (x,u,q,y) yields at the a t h step: 

Ya(k + a) = Aa(x(k),u(k),{q(k + l):teloa-i}Ayi(k+j):lelia-ujell+ia})(&) 

ya(k + a) = ya(x(k), {q(k + i) : i G Toa-i}, {yl(k + j) : i G Xlatj G Iia}) (7) 

where Ya = [ylT(k + 1), y**(k + 2 ) , . . ., ffT(k + a)]T and the matrix DuA
a has 

full row rank p* in neighbourhoods Oa(k) of (x(k),u(k), {yl(k + j) : i _ 2 i a - i , j 6 
Ti+ia})- For i = 1,2,. . . , p*, let £ + 7; be the lowest time instant and k + 6% the 
highest t ime instant at which y; appears in (6). Then we can write (6) for I = 1,. . . , a 
as: 

yP«-i+i(^ + 0 

ypi (k + l) 

= al(x(k),u(k),{q(k + i): i GT0/-1}, {f}i(k + j) : j ' E l ^ - i j ' G l ^ + i ^ n ^ , ) } ) . (8) 

After a possible permutat ion of the inputs we may assume that the Jacobian matrix 
of (8) with respect to u1 := (« i , .. ., up*)q has full row rank p* about the points 

p(k) := (x(k),u(k), {q(k + i) : i G LoQ}, {Vi(k + j) : i G l i p - , j G L^ + i^}) . 

Therefore, (8) can be uniquely solved for ux(k) about p(k) by applying the Implicit 
Function Theorem. Defining u2 := (up* + i, . . . , urn), we obtain from (8) 

ul(h) = <f>k(x(k),{q(k + i) : i G Loa-i}, {w(k + j) : i ellpa-i,j G l l l + nl},u2(k)) 

which is such that (8) is satisfied identically when ux(k) = (pk() is re-substituted 
into (8). Notice that , no matter how the initial state xo and inputs «(•) are chosen, 
the resulting trajectories will in general drift away from the reference trajectory. 
Therefore the solvability of (8) for u1 can only be guaranteed up to a finite time kp. 

A Singh compensator is constructed in the following way. Let 

Zi = (i?t.i, • • •, ~?i',5i-7i) , i G lip* 

be (6% — y;)-dimensional vectors, v2 a vector of dimension (m — p*) and consider the 
system S with inputs v1 = (v\,. .., vp* ) 7 , v2 and outputs (u1, u2) 

ziti(k + \) = zi>2(k) 

• , i = l,...,p* (9) 
ZiiSi_yi-i(k + 1) = Zt,5i-7.(fc) 

arj.- i_-.(jt-+l) = u,-(*fe) 

where the output equations are given by 

u\k) = <f>k(x(k), {q(k + i) : lElia-i}, {zi,j(k) : 3 e . I w 4 - 7 i l ««(*) : i€llp*}, v2(k))(10) 

u2(k) = v2(k). 



34 T. FLIEGNER AND H. NIJMEIJER 

Notice that by construction of the compensator, a reference trajectory is given by 
(J(k),x(k),v(k),u(k)) for 0 < k < kp where 

^ = (^ i , i , - - . ,^ i , . 1 -7i>--->V,V-7 P 0 T > I»"j(*) = f»(fc+7*+i-l) , 3f(*) = _».(*+$.) 

v2(k) = u2(k), i=l,...,p*, j =l,...,6i-ji . 

It may be shown that the so defined compensator is regular in a neighbourhood 
of the trajectory defined above (see [17]). Applying the compensator (9,10) with 
arbitrary initial state to Eg results locally about 

(x(k),u(k),{q(k + i) : i eIia-i},{Vi(k + j) : * S ^ V , j S ^ , } ) 

in the following modification of the output equations: 

Vi(k + Ji + j - 1) = zitj(k), j = l,...,Si -yi . „ 
y,(fc+_,) = Vi(k), 0<k<kF i-h...tf> • U- ; 

Moreover, inspection of Singh's algorithm reveals that for the compensated system 
the outputs y . (0) , . . . , y»(7« — 1), i = 1,..., p*, only depend on the initial conditions 
£0, -o, and q. 

Having studied Singh's algorithm and compensator in some detail, deriving con
ditions for the solvability of the announced disturbance decoupling problem turns 
out to be rather straightforward. 

3.4. Solution of the regular dynamic disturbance decoupling problem 

Performing Singh's algorithm gives in each step / a function ipl representing the 
functionally dependent part of y(k + I). Considering the effects of applying the 
constructed compensator to the output components y; (see Section 3.3), it comes 
as no surprise that the t/>''s play a crucial role in solving the dynamic disturbance 
decoupling problem. Before stating the main result of this section, let us define 
^Q(x) :=h(x). 

Theorem 3.3. Consider system E in a neighbourhood of a strongly regular refer
ence trajectory (x, u, q, y). Apply Singh's algorithm to E with q = q . Then the 
regular dynamic disturbance decoupling problem is finite time solvable for E around 
the given reference trajectory if and only if 

D2^(z,{q(k + i+l),yi+1(k + j+l):ieloi-i,je2i,})l=Jixuq)Dqf(x,u,q) = 0 

'_' _ (12) 
for 0 < / < (n — 1) and for all (x, u, q) in a neighbourhood of (x(k), u(k), q(k)), 0 < 
k < kp . Moreover, DDDP can then be solved by means of the Singh compensator 
constructed in Section 3.3. 

P roo f , (if) Inspection of Singh's algorithm easily reveals that under assump
tion (12) the application of the algorithm to E (q not considered fixed) gives the 
same result as applying it to Eg. Hence, applying compensator (9,10) decouples 
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yi(k), i = l , . . . , p* , from the disturbances for a (possibly) finite time span (cf. 
(11)). Let a < n be given. In case a < (n — 2), continuing Singh's algorithm 
through to (n — 1) does not further increase the number of functionally indepen
dent output components. For a < I < (n — 1) it follows, recalling the equality 
^l(f(x(k), u(k), q(k)), ...) = yl(k + l + 1), that 

^l(f(x(k),u(k),q(k)),...) = ya(k + l+l). 

Moreover, if (12) holds for 0 < / < (n - 1), it will also hold for I > (n- 1). But that 
means 

y\k + 1), y2(k + 2 ) , . . . , ya(k + <*), ya(k + <* + -), ya(k + a + 2),... 

are independent of the disturbances. Therefore (9,10) solves the DDDP. 

(only if) Let there exist an arbitrary regular compensator (5) which solves DDDP. 
Without giving details we remark that in case (12) is not satisfied, a contradiction 
with the assumed regularity of the compensator (5) occurs. • 

4. NONLINEAR DDDP AND LINEARIZATION 

In this section, we want to go into the question what can be said about the solvability 
of the nonlinear DDDP by means of addressing the same problem for the lineariza
tion of the original nonlinear system along a given reference trajectory. Basically, we 
show that under suitable 'regularity' conditions on the nonlinear system/reference 
trajectory the nonlinear DDDP is solvable locally around the reference trajectory if 
and only if the linear DDP is solvable for the corresponding linearized system. In 
other words, the solvability of the nonlinear problem can be decided by verifying 
the solvability of the associated linear problem which we have analyzed in Section 2. 
The analysis of Mie connection between the solvability of the nonlinear DDDP and 
the corresponding DDP of its linearization is done in terms of a careful study of the 
relation between Singh's algorithm for a nonlinear system and that for its lineariza
tion. 

We again consider a nonlinear system £ as defined in Section 3.1 around a strongly 
regular reference trajectory (x, u, q, y) and furthermore its linearization £/,• along 
this trajectory 

J xH(k + l) = F(k)xu(k) + G(k)uu(k) + E(k)qu(k) 

H \ yu(k) = H(k)xu(k) 

where 

F(k) = L\/(z,u,g)|x(Jk),u(fc),g(fc), 

G(k) = Duf(x,U,q)\x(k)tu(k)tq(k), 

E(k) = L>9/(x,w,9)|?(jfc)iir(jfc))^fc), and 

H(k) = Dxh(x)\x{k). 
xu, uu, qu, and yu denote the first variations of x, u, q, and y, respectively. 
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4 . 1 . S ingh ' s a l g o r i t h m and l inearizat ion 

In this subsection, we prove some results concerning the connection between Singh 
algorithms for E and E/;. They can be seen as the discrete-time counterparts of 
results obtained m [9] for continuous-time systems. 

The next lemma is very instrumental in the sequel for the analysis between the 
Singh algorithm for a nonlinear system and the same algorithm for its linearization. 
Its proof is given in the appendix. 

L e m m a 4 . 1 . Consider the equations 

y = a(x,u,q) (14) 

y = d(x,u,q) (15) 

~ r -T 
and let (x,u,q,y) be such that they satisfy (14,15) where y = (y ,y )J . Suppose 
that 

G = Dua(x,u,q) 

has full row rank p m a neighbourhood of (x, u, q) and that the rows of 

G = Dua(x,u,q) 

are linearly dependent on the rows of G. Linearize (14,15) about (x,u,q) to obtain 

yn = FXH + Gun + Equ 

ilii = Fxn + Guu + EqH . 

Write, using the Implicit Function Theorem about (x,u,q,y) 

y = v(z,'i,y) (16) 

and let G'+ be a right inverse of G. Then 

yii = FxH + GG+[jjn - FxH - Equ] + Equ (17) 

and (17) can be obtained by linearizing (16). 

With the help of this lemma one can show that there exists a close connection 
between the Singh algorithms for E and £/,-. 

L e m m a 4 .2 . Consider a given system E in a neighbourhood of a strongly regu
lar trajectory (x,u,q,y). Apply Singh's algorithm to E yielding a permutation 
y1, . .., ya of the outputs such that for 1 < / < a 

y'(k + I) = a'(x(k), u(k), {q(k + i) : i € Z 0 . - l h W(k + j) : i G T1/-1, J G Ii+u}) 

yl(k + I) = yl(x(k), {q(k + i) : i G I0 / -1} , W(k + j) : i G Iu,J G In}). 

Then there exists an application of Singh's algorithm to E/j resulting in the same per
mutat ion of outputs and where the results in each step of Singh's algorithm applied 
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to E/i can alternatively be obtained by linearizing the results in the corresponding 
step of Singh's algorithm applied to E around 

(x(k),u(k), {q(k + i) : i 6 Toa-i}, {y (k + j) : i £lia-i,j € Zi+ia}) • 

P r o o f . Considering the first step of Singh's algorithm for E yields 

y\k+l) = a1(x(k),u(k),q(k)) (18) 

y\k+l) = a1(x(k),u(k),q(k)) = ^1(x(k),q(k),y1(k+l)). (19) 

For the linearization E;2- one obtains 

yH(k +1) = H(k + l)F(k) xH(k) + H(k + l)G(k) uH(k) + H(k + l)E(k) qH(k). 

Permuting the outputs of E/; in the same way as for E yields 

yii(k + l) = H(k + l)F(k)xH(k) + H(k + l)G(k)uH(k) + H(k + l)E(k)qH(k) (20) 

yji(k + l) = H(k + l)F(k)xH(k) + H(k + l)G(k)uli(k) + H(k + l)E(k)qH(k) (21) 

where, by the strong regularity assumption on (x, u, q, y), H(k + l)G(k) has full 
row rank p1. 
Let [H(k + l)G(k)]+ be a right inverse. Then (20,21) gives 

y}i(k+l) = H(k + l)F(k)xH(k) + H(k + l)E(k)qH(k) 

+ H(k + l)G(k)[H(k + l)G(k)]+ (22) 

x {y}t(k + 1)- H(k + l)F(k) xH(k) - H(k + l)E(k) qH(k)} . 

Observe tha t for the pairs (18,19) and (20,21) we are exactly in the situation of 
Lemma 4.1 . Therefore (22) can be obtained by linearizing t/)1 around 

(x(k),u(k),q(k),f(k+l)). 

In the second step of Singh's algorithm we have 

y'(k + 2) = ^1(f(x(k),u(k),q(k)),q(k + l),y1(k + 2)) (23) 

and yji(k + 2) is obtained from (22) by replacing k by (k + 1). One easily computes 
that yH(k + 2) can be obtained by linearizing (23) around (x(k),u(k), q(k), q(k + 

l),y (k + 2)). Utilizing again Lemma 4.1 one proves the statement for / = 2. 
Proceeding in the same way as above, it can be shown that the claim also holds for 
/ = 3 , . . . , a . • 

From Lemma 4.2, we can derive the following result. 

T h e o r e m 4 , 3 . Consider a system E defined in a neighbourhood of a strongly 
regular reference trajectory (x, u, q, y) and let E/i be its linearization along this 
trajectory. Then 

1. The linearization of a Singh compensator for E is a Singh compensator for E/;. 

2. Conversely, each Singh compensator for E/; is a first order approximation of a 
Singh compensator for E. 
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4 .2 . N o n l i n e a r D D D P a n d l i n e a r i z a t i o n 

In this subsection we finally give the connection between the solvability of DDDP 
for a system E and the solvability of the corresponding problem for its linearization 
E/j . 

Suppose DDDP is solvable for E. By Theorem 3.3 it follows that for all applications 
of Singh's algorithm to E, we have for 0 < / < (n — 1) 

Dz^(z,{q(k + i+l),tji+l(k+j + l):ieXo,-1,jeXil})\^fiXiUq)Dqf(x,u,q) = 0. 

We know by Lemma 4.2 that to each application of Singh's algorithm to E, there 
corresponds an application of Singh's algorithm to E/; which can be obtained by 
linearization. It is immediately clear that the conditions necessary for the solvability 
of DDDP with respect to E/j will also be satisfied. 

Unfortunately, one cannot decide on the solvability of DDDP for E by means 
of the solvability of DDDP for E/j without additional assumptions. The difficulties 
that one faces are of the following nature. Let E/j be given and assume that DDDP 
is solvable for E ^ . Again by Theorem 3.3 one has then 

Dqilyu(k, + 1) = H(k + 1) E(k) = Dq(h o / ) (x, u, q)\w(k),u{k),q(k) = 0 . 

Hence, without further assumptions, 

D^°(Z)\z=f(x,u,q) - V ( * . w> ?) = Dq(ho f) (x, u,q) = 0 

as one of the necessary assumptions for the solvability of DDDP for E can only 
be assured using E.» for the points of the reference trajectory for E. The same 
problem occurs step by step. We therefore have to impose additional conditions 
to overcome this problem. It is clear that these conditions can only be given in 
terms of the original system E. On the other hand, they should be such that their 
verification does not require performing Singh's algorithm for E. In order to obtain 
such conditions, we have to reconsider Singh's algorithm. 

Applying Singh's algorithm to E.; results in a reordering of the output components 
(yu)i- By Lemma 4.2 we know tha t there is an application of Singh's algorithm to 
E which results in the same reordering of the output components y; of E and which 
is such tha t the results obtained with respect to E/; can be alternatively obtained 
by its linearization. This includes that for all / = 0 , . . . , (n — I), y\i(k + / + 1) can 
be obtained by linearizing xpl(f(x, u,q),...). 

We proceed with associating a number //; to each output component yi of E in the 
following way. Let (x, u,q) £ XxUxW. Then compute for i = 1 , . . . , p t h e derivative 
Dq(hi of) (x, u, q). From the analyticity of the mappings / and h it follows that this 
expression is either non-zero in an open and dense subset Oi of X xU x W or vanishes 
at all points (x,u,q). Define m = 1 in the first case whereas in the latter case we 
continue by observing that hi(f(x,u,q)) does not depend on q. We can, therefore, 
write hi(f(x,u,q)) = h°(x,u). Now compute Dzh?(z,u2)\g=KXiUuq)Dqf(x,u1,q). 
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If this expression is non-zero on an open and dense subset d of X x U2 x W, we set 
Hi = 2, otherwise we continue with the function hj(x,u\,U2) = h^(f(x,u\,q),U2). 
If none of the iterated functions h{

 +1(x, u\,..., Uk+2) = h\(f(x, u\, q), w 2 , . . . , Uk+2) 
depends on q, define Hi = 00. 

This procedure, performed with respect to the inputs u, leads to the concept of 
'relative degree'. Analogously with the situation there (cf. [21]), one proves Hi < n 
or m — 00, i = 1 , . . . , p. 

Consider the permutat ion of the outputs yi of £ which is induced by performing 
Singh's algorithm for £/; . Investigating Singh's algorithm, it becomes immediately 
clear tha t 

Dq(TP°of)(x,u,q) = Dq(hof)(x,u,q) = 0 

holds if in > 1 for all i = 1 , . . . , p . Furthermore, 

DA\z,.. . ) L / ( r , u , ? ) Dqf(x, u,q) = 0, 1 < / < a - 1, 

is satisfied in case \ii > / + 1 for /i;'s corresponding to the components of y\ and 
finally Dqip

l(f(x, u, q),...) = 0, a < I < (n — 1) , if /i,- = oo for the components of 
y\ (= y?). This we are going to summarize in the following assumption. 

A - s u m p t i o n ( A ) . The numbers fii, i = 1 , . . . ,p, satisfy 

1. M>1. 

2. m > t + 1 for Hi's belonging to output components y\, 1 < / < ( a — 1 ) . 

3. Hi = ° ° f°r ^i 's corresponding to output components y\, a < I < (n — 1) . 

With the help of these preparations, the following result can be concluded. 

T h e o r e m 4 .4 . Consider system £ together with its linearization Ej,- along 
(x, u, q, y). Perform Singh's algorithm to £/; and let Assumption (A) be satisfied. 
Then DDDP is solvable for E if and only if DDDP is solvable for £/; . 

R e m a r k 4.5 . The strong regularity assumption for the reference trajectory can 
be relaxed to the weaker condition of regularity if one takes care of choosing an 
admissible application of Singh's algorithm. 

By virtue of Lemma 2.12 we finally get 

T h e o r e m 4 .6 . Under the assumptions of Theorem 4.4, DDDP is solvable for E if 
and only if DD P is solvable for E?z-. 
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5. APPENDIX 

P r o o f of Lemma 4.1. First observe that the representations (16) and (17) 
are unique. By the full row rank assumption on G, p components of u (with
out loss of generality u\,...,up =: u1) are uniquely determined as functions of 
y,x,q and (wp+i,... , um) =: u2 by the equation 

y -a(x,u,q) = 0 

in a neighbourhood of (x,u,q,y), that is, 

u1 = (j)(x,u2,q,y). 

Equation (16) can then be obtained by setting 

y - a(x, <j)(x, u2, q, y), u2, q) =: xp(x, u2, q, y) (24) 

where by the rank assumptions on G and G, ip does not depend on u2. Write 

G=[Dui~a : Du2~a]=:[Gl : G 2 ] . 

Since we have assumed that G\ is invertible, we can choose G+ of the form 

0 
G+ 

Decompose G = [G\ '. G2] accordingly. Linearizing (16) yields (cf. (24)) 

m = [Dxa + DuiaDx(f)]xii + [Dqa + DuiaDq(j)]qii + [DuiaDy4>]yii 

= [F + GiDx<f>] xa + [E+ GiDq<j>]qu + [&iDj<f>] yu . 

From the identity 
y - a(x, <j)(x, u2, q, y), u2, q) = 0 

we obtain Dx$ = — G7" F and thus 

[F + GiDx<f>] = [F- GiG^F] = [F - GG+F]. 

Analogously one shows 

[E + GiDq<i>] = [E- GG+E] and [GiD$<f>] = GG+ . 

From this the statement follows. C 

(Received December 21, 1994.) 
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