
K Y B E R N E T I K A — VOLUME 31 (1995) , NUMBER 6, P A G E S 5 5 9 - 5 8 0 

CONTROLLABILITY INDICES OF LINEAR SYSTEMS 
W I T H DELAYS1 

O L I V I E R S E N A M E , jEAN-FRANgois LAFAY AND R A B A H R A B A H 

The purpose of this paper is to exhibit new lists of controllability indices relative to 
JRn-controllability and controllability over the field -lR(V) , for linear systems with delays. 
In fact, as for linear systems without delays, we define two lists of indices for each notion 
of controllability. Moreover we define the bijection which links both lists for each type of 
controllability. Finally, using controllability indices over IR( V) , we give some further infor
mations about coefficient assignment by state feedback, particulary about the polynomial 
forms the coefficients can take. 

1. INTRODUCTION 

Controllability and controllability indices [11] are completely characterized for linear 
continuous systems without delay. It is natural to say that such system is (state) 
controllable if, by suitable choice of its inputs, the state can be made to behave in 
some desirable way, and this in a time as short as possible. "Moreover two dual lists 
of controllability indices have been defined ([11]). In the case of linear systems with 
delays, controllability takes lots of different forms according to the system represen
tation and the practical properties we search ([6,7,10,12]). This paper is focused 
on two classical kinds of controllability according to the modelization we adopt for 
linear continuous systems with delays: l?n-controllability and controllability over 
the field M(V) of rational functions with real coefficients. 

For each case we define two new lists of controllability indices, taking account the 
characterization of a system with delays, say that the time plays a key role when 
controllability is concerned. 

Wi th this in view, we first define, for each type of controllability respectively, two 
new specific notions for linear continuous systems with delays: the classes and the 
orders of these systems, which are characteristic of the way the delays contribute to 
the definition of controllability. Next the original point of the determination of the 
new controllability indices is that they are exhibited, according to these classes or 
orders. 

This work is supported by the CNRS and the "Region Pays de la Loire", and the ESPRIT 
Basic Research Program 8924 (SESDIP). 
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These new controllability indices can be used in order to analyze control problems. 
As illustration, we show that the possible transformations by state feedback of the 
coefficients of the characteristic polynomial depend on the controllability indices over 
M(V). 

2. PROBLEM STATEMENT AND STATE OF THE ART 

State controllability of linear systems with delays is characterized through a lot 
of definitions, according to the system representation, i.e. the way the delay is 
modelled. 
(For instance the system may have commensurate, non commensurate, distributed 
delays ,...). Furthermore, each kind of controllability appearing in the litterature 
corresponds to different practical properties of states trajectories. 

Consider a square, linear, time-invariant system having commensurate delays in 
state, inputs and outputs (all delays are multiple of a unit one h): 

I x(t) = A0 x(t) + A1 x(t - h) + \- Aa x(t - ah) 

+B0 u(t) + B1u(t-h) + --- + Bb u(t - bh) (2.1) 

y(t) = Co x(t) + Cix(t-h)+--- + Cc x(t - ch) 
with x(t) e Mn, u(t) 6 Mm, y(t) G MP, a, b, and c <E IV, he M. 

Usually this system is rewritten using the operator V defined by V x(t) = x(t — h) 
([6]). We then consider the following representation for V\ 

f x(t) = A(V)x(t) + B(V)u(t) 

^ \ y(t) = C(V)x(t), 

where A(V) = A0 + V A1 + • • • + Va Aa, B(V) = B0 + Bx + • • • + Vb Bb and 
C(V) = Co + V C\ + • • • + Vc Cc, are matrices over the ring M[V] of polynomials in 
V with real coefficients. 

The controllabilty submodule (A(V)/ImH(V)) of the pair (A(V), B(V)) of (2.2) 
is given by [6]: 

(^(V)/Imj3(V)) = ImH(V) + ^(V)ImH(V) + • • • + A n _ 1 (V)ImB(V) . (2.3) 

Its matrix representation is: 

(A(V)/B(V)) = [B(V) | A(V) \---\An-1(V) A(V)] . (2.4) 

Finally we note m, the set of integers {1 ,2 , . . . , m} and {n\ } m , for all j G JN, the list 
of integers n\ E rn. M is the transpose matrix of the matrix M and C°([Ti, T2]} R) 
the set of continuous functions defined on [T\, T2] with values in M. 8 stands for 
ImE, the image of any application E and In for the identity matrix of dimension n. 

In this part we only present the three main characterizations of the concept of 
controllability. 
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2 .1 . The Rn-controllability 

The jRn-controllability has been studied since the end of the sixties ([10,12]) and is 
related to the representation (2.1). The solution of the state equations (2.1) needs 
the initial conditions x(0) = x0 and x(t) = ip(t) for — ah <t<0. 

Definition 2.1.1. ([10], [12]) The system (2.1) is Mn-controllable at t0 = 0 if, 
whatever <p £ C°[—ah,0], x0 = x(0) and x\, there exists t\ > 0 and a control 
u(t), t G [0,<i], such that x(ti) = X\. 

Remark 2.1.1. 

- if xi = 0 the controllability is called controllability to the origin. 

- this controllability expresses the only x\ (or zero)-crossing of the state. 

In order to characterize the JRn-controllability of (2.1), we need the following ma
trices of Rnxm ([10]), 

R 

Qk+i(j) = J2AiQk(j-i) (2.5) 
,=o 

W i t h f Qo(i)=Bi, i = 0,l,...,R 

1 Qk(j)=0 if & < 0 o r j < 0 , 

where R = max{a, 6}, A% = 0 for i > a and Bi = 0 for i > b. 
These matrices have the following properties ([9,10]): 

i) Qk(j) = 0forj>(k + l)R, 

ii) MjeN, Qn(j) = ^2n~Q Yjp=o aip> Qi(p)> w h e r e °V E R-

Remark 2.1.2. It is proved ([6,9]) that the matrices Qk(j) associated with (2.1) 
and the moments A(X7)% H(V), of the controllability submodule, associated with 
(2.2), are linked by: 

(i+l)R 

VieN, A\V)B(V)= Y, Qiti)vj- (2-6) 
j=0 

We then have ([10]): 

Theorem 2.1.2. The system (2.1) is iRn-controllable if and only if: 

rank [Q0(0), Q0(l),..., Q0(R), Qi(0), Q i ( l ) , . . . , Qi(2H) , . . . 

. . . ,Q n _i (0 ) , . . . ,Q„_ i (nR ) ] = n. 

Remark 2.1.3. This condition is only sufficient for the ./Hn-controllability to the 
origin ([10]). 
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2.2. Contro l lab i l i ty over M[V] 

This controllability, defined over M[V], the ring of polynomials in V with real coef
ficients ([6, 8]) is the extension of the usual notion of controllability established for 
linear systems without delays. 

Def in i t ion 2 .2 . ([4,6]) The system (2.2) is controllable over the ring M[V] if and 
only if its controllability submodule satisfies the following equivalent characteriz
ations: 

(i) span ( j4(V) / ImH (V)) = Mn[V]. 

(ii) the Smith form of (A(V)/B(n)) is [7n |0]. 

(iii) (A(V)/B(V)) has a right inverse Q(V) over M[V]. 

An interpretation of this controllability is that , like for linear systems without delays, 
a system (2.2) which is controllable over the ring M[V] can reach, from x(0), any 
state x\ at a given t ime T, with T as small as possible (and "ad hoc" control 
u(t), te[o,T]). 

This similarity between linear systems with delays and linear systems without 
delays uniquely concerns controllability properties and is not always true for control 
problems (decoupling, coefficient ass ignment , . . . ) . 

2 .3. Contro l lab i l i ty over t h e field M(V) 

Let us first note tha t two submodules of Mn[V], Si and £2, such that £2 C S\ and 
dim S\ = dim £2, may be different. 

This type of controllability includes the previous one but its interpretation is 
completely different. In this case we cannot reach from x(0) any state xi at a given 
time T, with T as small as possible; in fact a minimal t ime will be neccessary to 
reach x\. A trivial example of these systems is a system with pure delays in controls. 

Def in i t ion 2 .3 . ([4, 6]) The system (2.2) is controllable over the field M(V) if its 
controllability submodule satisfies the following equivalent characterizations: 

(i) rank (_A(V)/B(V)) = n. 

(ii) the Smith form of (A(V)/B(V)) has non zero elements on its diagonal. 

(iii) (A(V)/B(V)) has a right inverse Q(V) over M(V). 

R e m a r k 2 .3 . This definition is less restrictive than Definition 2.2. Its practical 
interpretation will be deduced from the controllability indices we define later. 

Finally, as a controllable system over the ring M[V] is a particular case of con
trollable systems over the field M(V), we will then only lean on both other types of 
controllability, say Mn-controllability and controllability over the field M(V). 
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3. CONTROLLABILITY INDICES OF SYSTEMS WITH DELAYS 

We first define here two new notions, the class and the order of respectively (2.1) 
and (2.2). These notions are specific to the presence of delays and characterize the 
fact that the time may arise when controllability is concerned. These classes and 
orders are next used to define two new lists of controllability indices for each kind 
of controllability defined in the previous part. 

3.1. Controllability indices relative to Mn-controllability 

In the following we note, by (2.5): 

Qi(k) = ImQi(k), for i = 0,l,...,n- 1, for all k £ N. 

We then first define the nxnm real matrix Mk and the subspace M.k, for all k £ N, 
by: 

Mk = [Q0(k),Q1(k),...,Qn_1(k)} 

Mk = [Qo(k) + Qx(k) + • • • + Qn-i(k)} = lm(Mk). 

We then define the notion of class as follows: 

Definition 3.1.1. We say that the real matrix Mk represents the class k of (2.1), 
\ k e N. 

By (2.6) (Remark 2.1.2), these previous matrices can be used to develop the 
matrix (A(V)/B(V)), defined by (2.4), as: 

(A(V)/B(V)) = M0 + Mi V + • • • + Mk V* + . . . , (3.2) 

where Mk is d fined by (3.1). 

A natural interpretation of these classes is the following: 

- the class 0 represents the states x(ti) that we can reach at tx = 0 + £, from 
x(0) = 0, e being as small as possible, 

- more generally, the set of classes { 0 , 1 , . . . , i] represents all the states x(<i) 
that we can reach from x(0) = 0 at ii = i • h + e. 

Remark 3.1.1. This notion of class may be generalized to any polynomial matrix 
H(V) = H0 + Hi V + h Hi V1' + . . . , where Hi, i £ N, is a real matrix. 

3.1.1. "First type" controllability indices 

In the case of linear system described by x(t) = Ax(t) + Bu(t), where A £ Mnxm 

and B £ MnXm, some invariants, called "of the first type", are defined by [11]: 

Aim A (B + AB+-- • + +A'-1B\ . . . 
Pl = d(B); p, = dl B + A B + . , . A < - . f l )• . = 1 ,2 , - - ,n . (3.3) 
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We will use now the classes of (2.1) in order to define, in a similar way to (3.3), new 
controllability indices by the following procedure. 

First, we define the indices of class 0 as follows: for i __, each index, p° (of class 0), 
corresponds to the increasing of the column rank between {Q;_i(0), Q;_2(0), Q;_3(0), 
. . . , Qo(0)} and {Q._2(0), Q._3(0) . . . . , Qo(0)}. 

More generally we define the indices of class k: for i E n, each index, p\ (of class 
k), corresponds to the increasing of the column rank between {Qi-i(k), Qi-2(k), 
...,Qo(k), Mfc_i, Mk-2,...,Mo} and {Qi-2(k), Qi-s(k),..., Qo(k), Mk-i, Mk-2, 
...,M0}. 

Note 
a = rank[Qo(0), Q 0 ( l ) , . . . , Qo(R), Qi(0) , . . . 

. . . ,Qi (2_e) , . . . ,Q„_i (0) , . . . ,Qn- i (nR ) ] . 

Definition 3.1.2. The n "first type" controllability indices of class k are defined, 
for all k € -V, by: 

k JMo + Mi + --- + Mk-i + Qo(k) 
Pi = a 

P. 

jVř0 + Mi -j hjví/k_i 
jb _ J Mi + -Mi + • • -jv4fc~i + Qo{k) + Qi(k) + • • • + Qi-i(k) 

Mi + Mi + • • • + jvífc_i + Qo(&) + Qi(k) + • • • + Qi-2(k) 
i = 2, 3 , . . . , n. 

Remark 3.1.2. 
- We note {pf }n the list of these indices of class k, for all k £ _V. 

- For systems without delays, the "first type" indices are completely character
ized by the class 0. 

- For all k _ _V these indices are such that 

k n 

<Tk := X ^ _ C ^ = rf(^° + -Ml + --- + - M f c ) : : = r a n k f ( 5 0 ( 0 ) ' < 5 1 ( 0 ) ' - - -
e=0 i= l 

...Qn-l(0),Qo(l),...,Qn-l(l),...,Qo(k),...,Qn-l(k)]. 

In order to determine the complete list of "first type" controllability indices, we 
consider the dimension ak: if ak = a, the list is complete; if not we must continue 
this procedure and study the class k + 1 of the system and so on. This procedure is 
convergent, because {ak}keiN is a non-decreasing series bounded by a. Hence there 
always exists an integer K < nR ((2.5)) such that: 

K n 

__.Ê  = r a n k ^ ( 0 ) ! Q i ( 0 ) , . . . , Q n _ i ( 0 ) , Q o ( l ) , . . . , Q n - i ( l ) , . - . 
c=0 f = l 

. . .Qo(K) } . . . ,Q„_i(K) ] = <r. 

These integers p\ allow us to characterize the JRn-controllability of (2.1) as follows: 
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Proposition 3.1.3. The system (2.1) is JRn-controllable if and only if there exists 
an integer K < nR such that: 

K n 

EErf = 
c=0 »_1 

The p r o o f is straightforward by the Remark 3.1.2 and by Theorem 2.1.2. D 

3.1.2. "Second type" controllability indices 

In the case of linear system described by x(t) = A x(t) + B u(t), some invariants "of 
the second type", are defined by [11]: 

n; = min {p _ N such that Ap 6j belongs to the subspace generated 

by the columns Ap 6,_i,. . . , Ap 6i, Ap~l bm,.. . , , 4 p _ 1 6 i , . . . , 6 m , . . . , 61} . 

In a same spirit, we can define a "second list" of controllability indices for systems 
with delays. 

In this list, each index nf, for i _ m and j ~ N, is associated with the iih 
column of Qo(k) and corresponds (for a class k) to the number of independent 
columns generated by this ith. input in the subspace Mk, Mk-i, Mk-2, • • •, Mo-

Q)(k) representing the iih column of Qj(k), we denote X]Z.\(k) the subspace 
generated by: 

[Q)_\(k),..., Q]_,(k), Qf_2(k),... Q)_2(k), ...,Q™(k),... 

• • •. Ql(k), Q^(k - I),..., Ql(k - 1),..., Q^_i(0) , . . . , Qj(0)] 

Then, we can define the "second type" controllability indices of class k, k _ N. 
(Some developments relative to this definition, which are only technical, can be 
found in [9] with illustrative examples): 

Definition 3.1.4. {nf } m is the list of "second type" controllability indices of class 
k, for all k £ N, with 

If —• — If h 
ni=qf~9i, tern, 

where ~f = max{j G N such that Q)_x(k) £ Xjl{(k)}, and q{ = cardjj _ 
(\, 2 , . . . ,q\ — 1) such that Q)_i(k) is a linear combination of the columns of the 
matrices Qn-i(k - 1 ) , . . . , Qo(^ - 1).,.. •, Qn-i(O), . . . , Qo(0)}. 

Remark 3.1.3. Some of the indices n*, i _ m, may be zero. 

By construction there exists an integer N such that 

N m 

££< = ', (3-5) 
c=0 »=i 

where <r is defined by (3.4). 

We can then characterize the ~2n-controllability of (2.1) by: 
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Proposition 3.1.5. The system (2.1) is Mn-controllable if and only if there exists 
N G -V such that: 

N m 

££»?=«• 
c=0 t' = l 

The p r o o f is straightforward by (3.5). D 

We so define two new lists of controllability indices (by classes) relative to the 
iRn-controllability. Moreover we can exhibit the bijection which links these two lists 
of integers. 

Proposition 3.1.6. The lists {pf } n and {nf } m are linked, for all k £ _V, by: 

m n 

£»? = _>?• 
»'=! »'=! 

P r o o f . This proposition is true for the class 0, because: 

m n 

J2 "»° = ^nk [0O(O), 0i(O),..., 0„-i(O)] = d(M0) = J^p? 
»' = ! »' = ! 

For „ -- 0, we have: 

Ep?=d 
i = l 

jW0 + Л^i + --- + jW^_i 

rank [0O(O), 0i(O),. . . , 0«-i(O), 0 o ( l ) , . . . , 0 „ - i ( l ) . • .., 0o(Ar),..., 0 „ , i ( * ) ] 

rank [0O(O), 0 2(O),. . -, 0»-i(O), 0o(l), • • •, 0 n - i ( l ) , • • •, 0 o ( * - l ) , • •., 0„- i (A- l ) ] 

-E"ř- D 
г' = l 

Remark 3.1.4. This bijection is always true for linear systems without delays (in 
this case, we only consider k = 0). 

The following example illustrates the previous results relative to Mn-controllability. 

Example 3.1. Let us consider the system 

A0 = 

0 1 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

-4, 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 1 0 

" 1 0 " " 0 0 " 

, -Øo — 
0 0 
0 1 

, B1 = 
1 0 
0 0 

0 0 0 0 
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With the previous notations, 

Mn = 

' 1 0 0 0 0 0 0 0 " 
0 0 0 0 
0 1 0 0 

. ° ° 0 0 o"o 0 0 . 
" 0 0 1 0 0 0 0 0 " 

1 0 0 0 
0 0 0 0 
0 0 0 1 o"o 0 0 . 

Mi = 

Mo = [Qo(0) |Qi(0) |Q 2(0) |Q 3(0)] , Mx = [Qo(l ) |Qi( l ) |Qa(l) |Qs( l ) ] . 

We so have (Theorem 2.1.2): 

rank[Qo(0), Qi(0), Q2(0), Q3(0), Q0(l), Qi(l) , Q2(l), Q3(l)] = 4. 

The system is so jRn-controllable. 

First part: We now apply the procedure of the Definition 3.1.2 to determine the 
"first type" controllability indices. 

PÎ = d(QQ(0)) = 2, p°2 = d 
Qo(0) + Qi(0) 

Qô(0) 
0, P°з=P°4 = 0. 

The indices of ciass 0 are such that Yl7=i P? = 2 < 4. 
We now determine the indices of class 1. 

PÌ 
Mo + Q0(l) 

^ - - ľ " " : ^ ) . ? ! , ri = d ( 
.Mo + Qo(l) + Qi(l) 

Mo J ' eA V Mo + Q0(l) 

The indices c f class 1 are: 1,1,0,0. We so have: 

) = 1, p j = p » = 0 . 

Erf + E ^ 4 -
1 = 1 i = l 

The list of "first type" controllability indices is so entirely complete. 

Second part: Following the Definition 3.1.4 and by the forms of M 0 and Mi we have: 
Qo(0) and Qo(0) are the only independent columns of M 0. Thus, 

rc° = 1 and n2 = 1. 

Qo(l) is the last independent column generated by the first input of Mi. Soq\ = l 
and q\ = 0, thus: 

Moreover Qi( l) is the last independent column generated by the second input of 
г̂l Mi. Hence q2 = 2. As Q 0 ( l) = 0, then it is a linear combination of any Q?-(0), i = 

1, 2, 3, 4. Hence q\ = 1, and so: 
n\ = 1. 
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So n j + n§ + n\ + n\ = 4 = n. 
The list of controllability indices of the second type of the system is: {1, 1, 1, 1}. 

Third part: The bijection of Proposition 3.1.6 is true. In fact the sums of indices 
by classes are equal to 2 for the class 0 and 2 for the class 1, whatever the list we 
consider. 

3.2 . Contro l l ab i l i ty indices re lat ive t o t h e contro l labi l i ty over t h e field 
JR(V) 

In this part we present two new lists of controllability indices relative now to con
trollability over (the field) M(\7) for systems described by equations (2.2). 

In the previous part we have defined the notion of class of the system (2.1). By 
(2.6) these classes also correspond to the expansion of (A(V)/B(V)) as a polynomial 
matr ix in V . Now, by the Definition 2.3, we have to consider the rank of the matr ix 
(A(V) /H (V) ) . Hence we are not interested by each coefficients of this matr ix but 
by the polynomial matr ix of lower degree, deduced from ( J4(V)/H (V)) , which has 
the same rank as the matr ix (A(V) /H (V) ) . 

Let us first recall that , from (3.2): 

(A(V) /H (V)) = Mx + Mi V + • • • + Mk Vfc + . . . 

We define now, for all k £ IV, the matr ix M f c(V), extracted form (A(V) /H (V) ) , 
and the submodule jVffc(V) by: 

M f c(V) = M 0 + M ! V + - - - + M fcV fc, 

jv[fc(V) = Im(M f c (V)) . 

This leads us to define the notion of order of the system (2.2). 

Def in i t ion 3 .2 .1 . For all k £ N, we say that M f c(V) represents the part of order 
k of the matr ix {A(V)/B(V)) (defined by (2.4)). 

R e m a r k 3 .2 .1 . This definition of order can be applied to any polynomial matr ix 
H(V) = H0 + Hi V + • • • + Hi V1' + • • • + Hq V ? , with q £ N and where Hi, i £ IV, 
is a real matr ix . 

If we note Hfc(V), i = 0 , 1 , . . ., n - 1, the part of order k of (A(V)Y H(V) and if 
7£fc(V) denote the submodule generated by the columns of Hf(V), the matr ix M f c(V) 
and the submodule jVffc(V), V& £ N, may be rewritten as (see Example 3.2.1): 

M f c(V) = [ H f c ( V ) , H f c ( V ) , . . . , H f c _ i ( V ) ] , 

M"W = [^(v)>w}(v),...f«J.1(y)]. 

We now present an example to illustrate the previous definitions. 
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Example 3 .2 .1 . Let us consider the same example as in part 3.1. With the 
previous notations: 

<A(V)/H(V)> = 

1 0 
V 0 
0 1 

V 
0 
0 

0 
0 
0 

0 0 0 0 " 

= M0 + V Mi. 

0 0 0 V 0 " Ò 0 0 

The part of ordeг 0 of (A(V)/B(V)> is: 

M° = M, 

" 1 0 0 0 0 0 0 0 ' 
0 0 0 0 
0 1 0 0 
0 0 0 0 0 0 0 0 . 

= [Rg(V)|i2?(VJ|^(V)|RS(V)]. 

jW°(V) is the submodule generated by the columns of M . 

The part of order 1 of (A(V)/H(V)) is: 

M 1 (V) = M 0 + M 1 V = 

= [ H ; ( V ) | E l ( V ) | H 2 ( V ) | ^ ( V ) j . 

jV(1(V) is the submodule generated by the columns of M 1(V). 

1 0 V 0 0 0 0 0 
V 0 0 0 
0 1 0 0 
0 0 0 V 0 0 0 0 

For conver. ence and by abuse of language, we will talk about the order k of any 
polynomial matrix H(V) instead of talking about the part of order k of H(V). 

3.2.1. "First type" controllability indices 

We now define the "first type" controllability indices of order k, for k £ N, by: for i 6 
n, each index pk (of order k) corresponds to increasing of the column rank between 
{H i i (V ) , H|_2(V), Ht3(V),..., / ^ (V )} and {R?_2(V), i?JL3(V),..., HJ(V)}. 

Note r = rank(A(V)/H(V)> = d(<A(V)/ImH(V)>). 

Definition 3.2.2. The n "first type" controllability indices of order k, for all 
k G JN, are defined by: 

PÌ 

Pi = d 

d(Пk(W)), 
/7г^(v) + 7гí(v) + +лř-i(v) 
7гÜҷv) + 7г*(v) + ... + тгt2(v) 

2,3, ...,n. 
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R e m a r k 3 .2 .2 . 

- We note {p^}n the list of indices of order k, for all k E IV. 

- These indices are such that : 
n 

£ p * :=rfe = rf(7eJ(V) + ̂ }(V) + ..- + ^_i(V))-
2 = 1 

In order to determine the complete list of "first type" controllability indices, we 
consider the dimension r^: if r^ = r, the list is complete; if not we must continue 
this procedure and study the order fc+ 1 of the system and so on, knowing that this 
procedure is convergent, because {rk}keiN is an non-decreasing serie bounded by r. 
Hence there always exists an integer K < a(n — 1) + 6 (see (2.2) and (2.4)) such 
that : 

J2p? = d(n«(v) + n«(v) + -.+nZ_1(v))-r. 
2 = 1 

The controllability over -lR(V) of the system (2.2) can then be characterized as 
follows: 

P r o p o s i t i o n 3 .2 .3 . The system (2.2) is controllable (at the order K) over -R(V) 
if and only if there exists K E IV such that 

n 

X>f=n. 
2 = 1 

The p r o o f is straightforward by Remark 3.2.2 and Definition 2.3. • 

3.2.2. "Second type" controllability indices 

In a same way as in the previous section, we can define a list of "second type" 
controllability indices. So let us represent, for i E m, (Ho) l(V) the i th column of 
R§(V) and more generally (HJ) ' (V) the z'th column of # * ( V ) , for all k E _V. Let 
us denote Xp~1(k) the subspace generated by the columns ( i ? p ) I - 1 ( V ) , . . . 

..., {Rk
p)\v), (Rj.xr (v),..., (-fij-oHv),..., (fl_r (v),..., (fiS)2(v). 

Def in i t ion 3 .2 .4 . The "second type" controllability indices of order k, for all 
k E IN, are given by: 

n j = min { p e W such that {Rk
p)\V) belongs ^ - 1 ( ^ ) } . 

By construction, there exists N E -lN such that X^i_i ni = r-

These indices allow us to characterize the controllability over -K(V) of (2.2) as 
follows: 
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Proposition 3.2.5. The system (2.2) is controllable (at the order N) over M(V) 
if and only if there exists N £ iV such that 

m 

£»f-». 

The p r o o f is straightforward by the previous definition. D 

These two new lists of controllability indices (by orders) relative to the control
lability over M(V) are linked by the following bijection: 

Proposition 3.2.6. Both lists of controllability indices are linked by the following 
bijection: 

for all k £ N : nf = card{p| > i, j 6 n}, i G rn. 

P r o o f . The proof has to be here order by order. However it is omitted because 
the Definitions 3.2.2 and 3.2.4 are similar to the usual definitions of first and second 
type controllability indices ([11]). D 

Remark 3.2.3. In the case of controllable systems over the ring M[V], both pre
vious lists are completely characterized by the order 0 (see Definition 2.2). 

We now present an example to illustrate the previous definitions of controllability 
indices. 

Example 3.2.2. Let us consider the Example 3.2.1. 

(A(V)/Г(V)) 

1 0 V 0 
V 0 0 0 
0 1 0 0 
0 0 0 V 

0 0 

0 0 

0 0 

0 0 

M Q + V M I . 

First part: M° = MQ = [R°Q(V) | RJ(V) | R°2(V) | R§(V)] and, 

M\V) = Mo + M- V = [RJ(V) | R}(V) | flJ(V) | Rl(V)]. 

Following the previous determination of the "first type" indices we find: 

order 0: pj = rf(7Zg(V)) = 2, p? = 0 for i = 2, 3, 4. 

'ft£(v) + ft}(v) order 1: p\ = d(Hl
Q(V)) = 2, p\ = d f-

ПW 
= 2. 

The system is so controllable at order 1. 

Second part: following the previous procedure of calculation of the "second type" 
indices we obtain: 

order 0: n°x = 1, n§ = 1. 

order 1: n\ = 2, n\ = 2. 
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Third part: It is easy to check that : 

order 0: cardfnj > 1, i = 1", 2} = 2 = p $ and card{n° > 2, i = 1, 2} = 0 = p^-

order 1: c a r d ^ 1 > 1, i = 1, 2} = 2 = »} and card{n1 > 2, i = 1, 2} = 0 = p\. 

4. INVARIANCE PROPERTIES 

We define here some transformations that keeps the controllability indices invariant, 
for JRn-controllability and controllability over M(V). 

Let us first consider the class of static state feedbacks such that : 

u(t) = FQx(t) + Flx(t-h) + --- + Fkx(t-kh) + ... for (2.1) 

a n d F ( V ) = F 0 + V Fl + • • • + V* Fk + ... for (2.2), 

where F,-, i £ IV, are real matrices of dimension m x n. 

Such feedbacks are said to be realizable (nonpredictive). 

We also consider changing of basis T : Mn —> Mn, where T is real and nonsingular. 

Let us recall tha t the controllability indices relative to iRn-controllability are 
defined using the notion of class of (2.1), and that the controllability indices relative 
to controllability over -K(V) are defined using the notion of order of (2.2). 

By (3.2) it is proved that the notion of class is defined through the polynomial 
expansion in V of ( ^ ( V ) / H ( V ) ) . 

Hence we can consider for (2.1) and (2.2) the transformations Q(T,F) where, 

F ( V ) : Mn(V) --> Mm(X?) is realizable, 

T : Mn(V) —• Mn(V) is constant and nonsingular, 

which do not change the definitions of classes or orders (linked with the definition 
of the indices). 

Note g = (T, F) any element of Q(T, F) such that , for a system (A(V). H(V)): 

g(A, B) = (T~\A + BF) T, T~lB). 

It is then straightforward ([11]) that , provided with the following law: 

92091 = (TiT2, F i + F z T f 1 ) , where 9l = (Tl} F,), g2 = (T2, F2), 

Q(T, F) is a group. 

Then, 

T h e o r e m 4 . 1 . The controllability indices relative to jRn-controllability and the 
controllability indices relative to controllability over M(V) are invariant under the 
group of transformations Q(T, F). 

The p r o o f is only technical and is given in Appendix 1. • 
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5. COEFFICIENT ASSIGNMENT 

In this last section we present, an application of the controllability indices related to 
the problem of coefficient assignment by state feedback. The controllability indices 
previously defined allow us to complete the available results for systems with delays 
([1,2]). In this way, we will be able to precise the only possible polynomial forms 
we can obtain, by a realizable (non-predictive) state feedback, for the coefficients (of 
the characteristic polynomial of the closed-loop system). 

As in [2], we first consider a single-input (m = 1) single-output (SISO) system 
(2.2). This system is only assumed to be controllable over M(V) and its list of "sec
ond type" controllability indices (Definition 3.2.4), at the order k, is noted {n\}ke]^. 

The characteristic polynomial a(A) of the open-loop system is: 

a(X) = det(Al - + ( V ) ) = An - [aT(V) + a 2 (V) A + • • • + a n ( V ) A"" 1 ] , 

where {aj(V)hGn_ are called the coefficients of CK(A). 

The characteristic polynomial of the closed-loop system is noted: 

5(A) = det(AI - A(V) - 6(V) / ( V ) ) = An - [a,^) + a£(V) A + • • • + a^(V) A"" 1 ] . 

Finally, note, for i £ ri; 

G l (V) = al0 + V an + h V* alk + ... 

aj( V) = STo + V 57i + • • + V* oTfc + . . . 

Then, for such system, we have: 

T h e o r e m 5 . 1 . A realizable state feedback / ( V ) allows us to assign, at most, 

r0 = n\ arbitrary coefficients of {a7o}?'en (the n — r0 others being non-arbitrary), 

and then, 

n = n\ arbitrary coefficients of {flTi}.€n (the n — r\ others being non-arbitrary), 

and more generally, 

rk = n\ arbitrary coefficients of {aik}i£n (the n — rk others being non-arbitrary), 

for all k E JV. 

Moreover we of course can precise which coefficients of {a7(V)};G n we can assign. 

The p r o o f is given in Appendix 2. An example which illustrates this result is 

available in [9]. C-

In a detailed way, this means that we can choose, by the following procedure, the 
coefficients of the closed-loop system and any set {jk E JN}ibgw, so that : 

Step 0: jo < r0 coefficients of {a7(V)},-€n have an arbitrary nonzero constant term. 
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Of course the n ~ j 0 other terms of {a.Ohgn are non-arbitrary. 

Step 1: ?i < r i —jo coefficients of a7(V)}ign, different from those chosen at the step 
0, have an arbitrary term of degree 1 in V (without an arbitrary one of degree 0 in 

V) . 
Moreover the jo coefficients chosen at the step 0 can also have an arbitrary term 

of degree 1 in V. 

Of course the n — jo — j \ other terms of {aii}i£n are non-arbitrary. 

Step k: jk < rk — jk-i — jk-2 • • • — jo coefficients of {a7(V)} ; 6 n , different from those 
chosen at the steps 0 , 1 , . . ., k — 1, have an arbitrary term of degree k in V, (without 
arbitrary ones of degrees 0 , 1 , . . . ,k — 1 in V) , for A; € IV, k > 2. 

Moreover the jo + j i + • • • + jk-i coefficients chosen at the steps 0, 1 , . . . , k — 1 
can also have an arbitrary term of degree A; in V. 

Of course the n — jo — j \ — • • • — jk others terms of degree k in V, {aik}i£n, are 
non-arbitrary. 

This result allows us to completely characterize the set of realizable feedbacks for 
coefficient assignment of SISO systems. 

In the multi-input case the result cannot be directly extended ([11]). 
Let us consider a system whose the pair (A(V), B(V)) is controllable over M(V). 

If there exist a vector 6(V) in H(V) such that the pair (A(V), b(V)) is controllable 
over M(V), then the result of Theorem 5.1 is true. 

If not, let us choose any vector b(V) in B(V). As the pair (A(V), b(V)) is 
not controllable over M(V), the natural way to proceed is to transform it into a 
controllable over M(V) one ([11], [6]). 

The first solution is to construct a state feedback to make the closed-loop pair 
controllable over M(V). However we are not able to guarantee the realizability of 
this feedback (except if the system (2.2) is controllable over the ring M[V], [6]). 

Another solution is tha t there always exists a unimodular matrix U(V) such tha t 

[3]: 

U(V)'LA(V)U(V) = 
Aг(V) Al2(V) 

0 A2(V) 
U(V)-Ч(V) = 

6i(V) 
0 

where the pair (A\(V), b\(V)) is controllable over M(V). By exhibiting both lists 
of controllability indices over M(V) of the pair (.Ai(V), ^i(V)) we can, of course, 
apply Theorem 5.1 to this pair. 
Nevertheless these indices do not correspond to the indices of the pair (A(V), B(V)). 

6. CONCLUSION 

This paper is focused on two types of controllability: ^"-control labi l i ty and con
trollability over the field M(V). First of all we define two new notions, the class and 
the order, suitable for linear systems with delays and compatible with each type of 
controllability respectively. Next we exhibit, by classes or by orders, two new lists 
of controllability indices relative to each type of controllability. 
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Finally we use these new controllability indices over the field M(V) to give the 
only good forms of the coefficients (of the characteristic polynomial of the closed-
loop system) we can assign by a realizable state feedback. The only assumption on 
the system is to be controllable over the field M(V). Hence this is more realistic 
than to exhibit a condition, most often restrictive ([1,2]), such that we can arbitrary 
assign the coefficients. 

APPENDIX 1 

We present here the proof of Theorem 4.1. Let T be a constant nonsingular au
tomorphism of Mn(V) and E(V) be a realizable state feedback. Note A'(V) for 
T" 1 (y l (V) + B(V) F(V))T and H'(V) for T~l B(V). In the following, we consider 
the polynomial expansions: 

(A(V)/B(V)) = M0 + VM1 + --- + VkMk + ... (A. l ) 

(A'(V)/B'(V)) = M'0 + V M[ + --- + Vk M'k + ... 

= (T~l(A(V) + B(V)F(V))T/T~l B(V)) 

= T~'(A(V)/B(V)). 

To prove the theorem, we only have to prove the following propositions. 

i) F(V) realizable implies: 

(A(V) + B(V) F(V)/lmB(V)) = (A(V)/lmB(n)). 

ii) T constant nonsingular implies: 

r a n k T - 1 ( ,4(V)/H(V)) f c = rank(yl(V)/i3(V)) f c , for all k 6 N and 

rank[M[ • • • M[ M'Q} = rank[M{ • • • Mx M0 ], for i = 0 , 1 , . . . , k, 

where the integer k is the corresponding order or class, respectively. 

Indeed if (i) and (ii) are true, the orders and classes of (A'(V)/B'(V)) will have 
the same rank than those of (^4(V)/H(V)). 

P r o o f of i): If F(V) is realizable then, whatever R(V) G Mnxm[V] we have, 

Im B(V) + (A(V) + B(V) F(V)) Im R(V) = Im H(V) + A(V) Im R(V). 

A similar proof to Wonham's one ([11]) leads to: 

(A(V) + B(V) F(V)/lmB(V)) = (A(V)/ImB(V)). 

P r o o f of ii): If T is nonsingular, then 

M[ = T~l Mi and so rankM[ = rankM,- for all i £ N. 

Hence it is immediate that : 

r a n k T - 1 (A(V)/B(V))k = r a n k ( , 4 ( V ) / H ( V ) ) \ for all k £ N and 

r ank[M/ •••M[M'Q} = rank[M,- • • • Mx M0 ], for % = 0 , 1 , . . . , k, 

where the integer k is the corresponding order or class, respectively. 
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APPENDIX 2 

We present here the proof of Theorem 5.1. We will follow a similar method to 
the one given in [11] in the case of linear systems without delays. We first use a 
changing of basis on (A(V)/Imb(V)) in order to transform the pair (A(V), b(V)) 
into a canonical form ([5]). Let us recall that the characteristic polynomial a(X) of 
the open-loop system is: 

a(X) = det(Aj - A(V)) = Xn - [a_(V) + a 2 (V) X + • • • + an(V) A"" 1 ] , 

where {a_(V)}; e„ are called the coefficients of a(X). 

Let us now consider the following polynomials: 

j cro(A) = a(A) 

[ X Qft(A) = atf_i(A) + a.-(V), for i G n. 

Let: 

e_(V) = at(A(V)) b(V), for i 6 __• 

Hence S(V) = (el (V), e 2 ( V ) , . . . , e n (V)) is a new basis of (__(V)/Im&(V). 
As in the case of linear systems without delays we immediatly obtain: 

S-ҢV)A(V)S(V) = 

0 0 0 

L__(v) o_(v) Gn(V) 

S"Ҷv)jj(v) = 

Note A(V) for S'^V) A(V) S(V) and 6(V) for S~X(V) b(V). The pair (A(V), b(V)) 
does not have the same properties (controllability,. . . ) as the pair (A(V), b(V)) but 
what is important at this step is that : 

det(Aj - A(V)) = det(Aj - A(V)). 

Then we can choose a polynomial state feedback f(V) such that : 

7(V) = [Z7(V) - Q l(V) 5_r(V) - a2(V) • • • a--(V) - an(V)] . 

This choice is suitable for the coefficients a~(V), i € __, to be the coefficients of 
d e t ( A / - _ _ ( V ) - 6 ( V ) / ( V ) ) . 

Then, in the original base, the state feedback we need to assign the coefficients 
of det(Aj - A(V) - 6(V) f(V)) is: 

/ ( V ) = 7 ( V ) 5 ~ 1 ( V ) . 

As T_1(V) is a matr ix over M(V), the problem is: 

How to choose 7 ( V ) such that f(V) = 7 ( V ) 5 _ 1 ( V ) is realizable? 
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First, the definition of T(V) leads to: 

5(V) = (y_(V)/-(V)) U(V), with U(V) unimodular 

-a 2 (V) -a 3 (V) • • • -a„(V) . 1 
-a 3 (V) . • . • 

Г7(V) 

0 

•a„(V)' 

1 0 

(A.2) 

Then the state feedback can be rewritten as: 

/(V) = 7(V)U- 1 (V)(A(V)/6(V))- 1 

and /(V) is solution of: (note that ( l7 - 1 (V)) T = U_1(V)) 

<^(V)/6(V))T/(V)T = U"1(V)(7(V))T. 

In the following, note: 

U-1(v)7(v)T = 7(vf. 
Its polynomial expansion in V is noted: 

7(v) = 70 + v7i + --- + vfc7fc + ---

As lJ_1(V) is unimodular, then / ( V ) T also has n degrees of liberty. 
In order to impose to the state feedback j(V) to be realizable, we need the 

following lemma: 

L e m m a A . l . The linear equation (A.2) is such that, for all k £ _V: 

71 
71 

rank 

TT 
jc _p 

7ľ 

7 Т 
k J 

Г f Т l 
0 

т 
= rank 

L7ľ 

P r o o f . As U X(V) is unimodular, then it can be written as: 

u-\v) = VQ + V Vi + • • • + Vk Vk + ..., 

where Vi, i £ IN, are real matrices, and VQ is nonsingular. 

By equalizing the polynomial expansions in V of / (V) and lJ_1(V)/(V), we 
obtain: 

7Ï 

L/ľ J 

VQ 

Vг 
0 

V0 
0 

0 

n 
Vк 

Vг VQ 

71 
7ľ 

/ 
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As Vo is nonsingular then we have: 

rank 

Z т 

7ľ 

7 T , 
Jk J 

= rank 

7 T 

7ľ 

L7Í 

Note now, for all k £ N, rk the rank of the order k of (A(V)/b(V)). 
By Definition 3.2.4 and as m = 1, rk — n\, for all k £ N. 
We can now exhibit a procedure of calculation of the state feedback. Now, to 

prove that there exists a realizable / (V) for a choice of / (V) , we develop the proof 
for each order, step by step. 

We present here the sketch of the proof, all steps being part of an algorithm. 
In the following, note, for all k £ N and for i £ n: 

{A{V)/B(V)) = M0 + V Mi + • • • + V* M* + . . . 

a.-(V) = ai0 + V an + • • • + V* aik + . . . 

a-(V) = a7o + V a7i + • • • + V* a7k + • • • 

7(v) = 7o + v7i + --- + v*7jfc + --., 

where fk = [a~[k - alifc ajj. - a_k • • • a£k - ank], 

7(v) = 70 + v / 1 + --- + vA:7fc + ... 
/ (V) = / 0 + V / 1 + --- + VA:/* + ---, 

where fk = [flk f2k ••• / „*] , with fa £ M. 

Step 0. At the order 0 of (A.2), there exists f0 so that the following linear equation: 

(Mo)т(/„)т = (7„)т, (A.З) 

has a solution if and only if I m ( / 0 ) T C Im(Mo)T. 

As rank(M 0 ) T = r 0, hence we can only choose r0 independent coefficients in 

( / 0 ) T , so that: __ 

I m ( 7 o ) T C l m ( M 0 ) T . 

Then, by the Lemma A.l, we can only choose r 0 independent coefficients in / 0 so 
that there exists a solution for the system (A.3) 

We so can assign j 0 < n^ coefficients of {c^ohgri the others n — j 0 constant terms 
of the coeefficients being non-arbitrary. 

Of course we can precise these coefficients by the condition of solution of (A.3). 

Step k. Let us keep the previous choice of / 0 , f1}..., fk_i, and the deduced calcu
lation of/o,/i, . . .,/*_!• At the order k of (A. 2), there exists f0, / 1 ; . . . , fk, solutions 
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of (A.2), if and only if the following linear equation 

M T 0 0 

M T M T 0 

0 

м т м т м т 

(/o)T ! 
(Л)T 

(hf 

T 
7Г 

VЋ 

(A.4) 

has a solution. 
This equation includes the equations of all the previous steps, 0,1,.. .,k — 1. 

Hence we only have to solve : 

( M 0 ) т {M{ү (мkf 

(Л)5 

( Л ) т 

L (/o)т 

= (fkÝ (A.5) 

Then (A.5) has a solution if and only if: 

I m ( 7 , ) T C l m [ ( M 0 ) T ( M i ) T •• 

As rank M'(V) = r,*, for i = 0 , 1 , . . . , k, then, 

rank[(M0)T (MX)T ••• (Mk)
T] 

" Mo 

(Mk)
т]. 

M i 

м f c 

= rank [M 0 + V M'i + • • • + V Mjk ] = r*. 

Hence we can choose, at most, rjt arbitrary coefficients in (fk)
T, so that there exists 

a solution to (A.5). Then, by the previous steps, there exists a solution to (A.4). 

Now we have already assigned r 0, r%,..., and rjt_i coefficients in fT, fT,..., fT 

and so in fT, fT,..., and /T_»iat the previous steps. Then, by Lemma A.l, we can 
assign rjfc arbitrary coefficients in (fk)

T-

We so assign: 
rjfc = n\ arbitrary coefficients of {ciik}ien (the n — rk others being non-arbitrary), 
for all keN. 

Hence the step k allows us to choose the coefficients and any set {jk E JN}k£w 
so that: 
3k < rk— jjfc_i coefficients, different from those chosen at the steps 0 , 1 , . . . , A: — 1, have 
an arbitrary term of degree A; in V, (without arbitrary ones of degrees 0 , 1 , . . . , n — 1 
in V), for k £ N, k > 2. 

Of course the j —jo—ji — --- — jk-i other terms of degree k in V of the coefficients 
are non-arbitrary. 

We so can assign rjfc = n\ coefficients of {ojk}i£n-
Of course we can precise these coefficients by the condition of solution of (A.4). 

(Received February 3, 1995.) 
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