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A CLASSIFICATION OF GENERALISED STATE 
SPACE R E D U C T I O N METHODS FOR LINEAR 
MULTIVARIABLE SYSTEMS 

N . P . KARAMPETAKIS,1 A.I . VARDULAKIS AND A.C . PUGH 

Two algorithms which reduce a general polynomial matrix model of a linear multivari-
able system E to an equivalent model in generalised state space (g.s.s.) form are proposed. 
The nature of this equivalence is established. 

1. INTRODUCTION 

Consider a linear multivariabie system E described by a polynomial matrix model: 

(E ) : A(p)/3(t) = B(p)u(t) (1.1a) 

y(t) = C(p)P(t)+D(p)u(t) (1.1b) 

where p := d/dt, A(p) <E R[p]rxr with rankMyl(p) = r, B(p) <E R[p]rXm, C(p) <5 
W[p]Pxr and D(p) £ R[pYXm, (3(t) the pseudostate of E, u(t) the input vector and 
y(t) the outpu ; vector. The normalised form E*^ of E [9] is 

(Erø ) :T(p ) í (* ) a ' ř / i * ( ť ) 

У(t) = Vţ(ł), 

whc 

j A(p) B(p) 0 \ / 0 \ 
T(P) = -c(p) D(P) ip em[pYxf, u=[ o e l 

V o -im o j \im) 

V = (0 0Ip)£WXr r = r + p+m 

E, E(iV) may equally be represented by the polynomial matrices 

'; «*) 

P(s) = 
A(s) B(s) 

l-C(s) D(s) ; V(s) = 
T(s) U 
-V 0 

(1.2a) 

(1.2b) 

«<) \ 
-u(t) 
y(t) J 

(1.3) 

(1.4) 
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The problem to be studied is, given the polynomial matr ix description (PMD) 

[A(p), B(p), C(p), D(p)] of £ determine a system 

(S j ? ) : Ex(t) = Ax(t) + Bu(t) (1.5a) 

y(t) = Cx(t) + Du(t) (1.5b) 

"equivalent" to £ in the sense that they exhibit identical system properties. 
There are essentially two different ways to solve the above problem. The first 

and the most common method is to produce an algorithm, which reduces a general 
PMD of a linear multivariable system E to E# , and to show step by step that 
all the required properties of E remain invariant [2, 8, 9]. The second and more 
direct way, [1], is to produce a reduction algorithm and to show it is achieved via a 
system equivalence transformation, which has the property of preserving the desired 
properties. The system equivalence tools available are strong system equivalence 
[1] and full system equivalence [3]. Now, strong system equivalence is composed of 
two separate system transformations whereas full system equivalence is composed of 
only one. For this reason we use full system equivalence in the sequel. 

2. PRELIMINARY RESULTS 

Consider the set P(p, m) of (r + p) x (r + m) polynomial matrices where the integer 
r > max{— p, —m). A matrix transformation important in systems theory is 

Def in i t ion 1 . [3] T\(s), T2(s) G P(p,m) are said to be fully equivalent (f.e.) in 
case there exist polynomial matrices M(s), N(s) such that : 

[M(s) T2(s)] 
Ti(s) 

-N(s) 
= 0 

where the compound matrices in (2.1) are such that 

(i) they have full normal rank, 

(ii) they have no finite nor infinite zeros, 

(iii) the following McMillan degree conditions hold 

riW 
Sм([M(s) T2(s)]) = 6м(T2(s)); 6M 

-N(s) 

(2.3) 

(2.2a) 

(2.2b) 

= 6M(Ti(s)). (2.2c) 

Let V(p, m) be the set of (r -f- p) x (r + m) Rosenbrock system matrices (1.4), 
then 

D e f i n i t i o n 2. [3] Pi(s), P2(s) E V(p,m) are said to be full system equivalent 
(f.s.e.) if 3 polynomial matrices M(s), N(s), X(s), Y(s) such that 

M(s) 0 

[X(s) I\ 

Ai(s) Bi(s) 

-Ci(s) Di(s) 

A2(s) B2(s) 

l-C2(s) D2(s) 

N(s) Y(s) 

0 I 
(2.3) 
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where (2.3) is a (f.e.) transformation. 

Some interesting results concerning (f.s.e.) are [3,5]: 

Theorem 1. (i) (f.s.e.) is an equivalence relation on P(p,m). 

(ii) Under (f.s.e.) the following are invariant 

(a) the generalized order / , the order n and the Rosenbrock degree djo, 

(b) the transfer function and thus the finite and infinite transmission poles 
and zeros, 

(c) the finite and infinite system poles and zeros, 

(d) the finite and infinite invariant zeros, 

(e) the sets of finite and infinite input (output) decoupling zeros. 

(f) the set of input (output) dynamical indices. 

(iii) Every system matrix P(s) is (f.s.e.) with its normalized form V(s). 

Theorem 2. [4] Let Pi(s), P2(s) £ V(p,m) with transfer function matrices 
Gi(s),G2(s) be strongly irreducible system matrices i.e. possessing no finite nor 
infinite decoupling zeros, then 

P1(s)<~P2(s)^G1(s) = G2(s). 

3. GENERALISED STATE SPACE REALIZATIONS FOR LINEAR MULTI-
VARIABLE SYSTEMS 

The problem of reducing a linear multivariable system to an "equivalent" (g.s.s.) 
system has been considered by many authors [1,2,8,9]. The solutions can actually 
be classified under two different theoretical algorithms which are proposed in this 
section. 

Algorithm 1 

Step 1. Given [A(s),B(s),C(s), D(s)] be the PMD of (1.1) of S form T(s) G 
R[s]rxr where f = r + p + m. 

Step 2. Compute a strongly irreducible realisation [AQ(S), BQ(S), CQ(S), DQ(S)] of 
T(s) in the sense of Verghese [9] i.e. T(s) = C0(s)A0(s)-1B0(s) + D0(s) with 

[~co(s) A,W !)• [~cfs) D°_};>) 

having no finite nor infinite zeros, and the polynomial matrices A0(s), B0(s), Co(s), 
DQ(S) are matrix pencils. 
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Step 3. The system matrix of the "equivalent" (g.s.s.) realization £7- of S is then 

/ A0(s) B0(S) I 0 \ 

Pт(s) 
-C0(s) D0(S) 

V 0 - V 

u 

"o~/ 

(з.i) 

In the case where C0(s), B0(s) are constant matrices and D0(s) — 0 then the 
algorithm is that proposed in [1,9]. Similarly the reduction algorithm of [2,5] also 
arises from Algorithm 1 by effecting a specific strongly irreducible realization of 
T(s). We now wish to determine the nature of the equivalence between £ and £7--

T h e o r e m 3 . 
(f.s.e.). 

The linear multivariable systems £ of (1.1) and £7- of (3.1) are 

P r o o f . Clearly the following holds 

' I 
\ 0 

/ A0(s) B0(S) 

-C0(S) D0(S) 

\ 0 - V 

I u \ 

I o / 

0 \ /-Aois^Bois) 

U I? 

"o / \ ~ o ~ 

l ̂  
(3.2) 

) 

where [AO(S),BQ(S),CQ(S),DQ(S)] is a strongly irreducible realisation of T(s) and 
the polynomial matrices AQ(S), BQ(S), CQ(S), DQ(S) are pencils. We need to show 
that (3.2) is a (f.s.e.) transformation or specifically that A0(s)~1 B0(s) is a poly
nomial matr ix and that the compound matrices formed from (3.2) satisfy the (f.e.) 
conditions (2.2). 

It is obvious that the Ilosenbrock system matrices 

PM 0 
T(s) 

and P-Ž(S) = 
AQ(S) 

-Co(s) 

B0(s) 
Do(s) 

(з.з) 

are strongly irreducible and have the same transfer function matr ix T(s). Thus from 
Theorem 2 P\(s), H2(s) are (f.s.e.) and therefore there exist polynomial matrices 
M(s),N(s), X(s),Y(s) such that 

M(s) 

X(s) 

0 

T(s) 

Ao(s) 

-Co(s) 

BQ(S) 

DQ(S) 

N(s) 

0 

Y(s) 

Iř 
(3.4) 

where (3.4) is a (f.e.) transformation. From the (1,2) equation of (3.4) we have that 
Y(s) = —A0(s)~1 BQ(S) and thus AQ(S)'1 B0(s) is a polynomial matrix. 

The compound matr ix formed by the left matrices of the relation (3.2) satisfies 
the McMillan degree conditions of (2.2) and further it can be easily transformed 
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under constant, nonsingular column operations to 

/ 0 1 o Ao(s) Bo(s) 0 
0 1 Һ -Co(s) D0(s) 0 

(3.5) 

V L 0 0 0 0 

which obviously satisfies (2.2b) because [AO(S),BQ(S),CO(S),DO(S)] is strongly irre
ducible. 

From the McMillan degree condition which holds for the right compound matrix 
of the (f.e.) transformation (3.4) we have that since Y(s) = — Ao(s)~1Bo(s) 

( Í 
Ш 

0 
T(s) 

\ 

-N(s) A0(s)-1Bo(s) 
0 -h I 

= 6 м 
I 0 
0 T(s) 

(3.6) 

(3.6) implies [3] that N(s) is constant which plays no role in the McMillan degree 
conditions and so we conclude that 

6 м [ Ao(sГ%o(s)ì=6м{T{s)) (3.7) 

Thus the compound matrix formed by the right matrices of the relation (3.2) satisfies 
the McMillan degree conditions of (2.2) because of (3.7), and since it can be easily 
transformed under constant and nonsingular row operations to the following form 

V 

0 
T(s) 

Ao^-^Bo^s) 

-h 

0 

\ 

(3.8) 

Im I 

it follows that it has no finite nor infinite zeros. Thus (3.2) is an (f.e.) transformation. 
It then follows from Theorem 1 (iii) and the transitivity of (f.s.e.) that the system 

matrix P(s) corresponding to E of (1.1) is (f.s.e.) to the system matrix (3.1) of Er-

• 

While the first algorithm is based on the realization of T(s) defined in (1.3), a 
second reduction may be based on a realization of T ( s ) _ 1 . 

Algorithm 2 

Step 1. Given E of (1.1), form T(s) E l [ s f X r " of (1.3) where r = r + p+m. 
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Step 2. Compute a strongly irreducible realization [E,A £ RXxX
j B £ RXxf C £ 

RfxX,De Rfxf] ofT(s)-1 inthesenseofVerghesei.e. T(s)-1 - C(sE-A)~1B + 
D where the compound matrices 

i - A ON (sE - A (sE-A B); f _c 

have no finite nor infinite zeros. 

Step 3. The "equivalent" generalized state space system ET_i of E will be the 
following 

( E r - i ) : Ex(t) = Ax(t) + BUu(t) (3.9a) 

y(t) = VCx(t) + VDUu(t). (3.9b) 

Theorem 4. The linear multivariable systems E of (1.1) and E7--1 of (3.9) are 
(f.s.e.). 

P r o o f . This follows in a similar way to the result in Theorem 3. The (f.s.e.) 
transformations which relates the systems (1.2) and (3.9) are the following 

T(s)C(sE-A)~1 0\(sE-A BU \ _ (T(s) U\(C -DU\ 
o ip)\-vc VDU)-\-V o jvo Im ) 

B 0\(T(s) U\ _ (sE-A BU \ ((sE - A)~1BT(s) 0 
VD Ip) \ -V - 0 ) ~ \ -VC VDU) \ 0 Im 

(3.10) 

(3.11) 

As we can see from Algorithms 1 and 2 the construction of an "equivalent" gen
eralized state space realization of the system E in (1-1) centres on the computation 
of a strongly irreducible realization either of T(s) or T ( s ) - 1 . [1] and [9] ([8]) gave a 
solution to this problem with the construction of a strongly irreducible realization of 
T(s) (T(s)-1) in terms of finite and infinite Jordan pairs of T(s) (T(s ) - 1 ) . A conse
quence of this kind of solution is, that these algorithms are not easily implemented. 
In contrast [2] proposed a more practical solution to the above problem. 

4. AN EXTENSION OF TAN AND VAN DEWALL'S MODEL 

A different approach to the implementation of the above algorithms is given by an 
extension of the known generalized state space realization method for MFDs (matrix 
fraction descriptions) presented by [6]. We first present some useful lemmas. 

Lemma 1. [7] Let T(s) £ R(s)Pxm with rankM(s)T(s) = m (resp. = p). Then 
T(s) is column (row) reduced at s = 00 iff the pole-zero structure at s = 00 of T(s) 
is given by the pole-zero structure of its columns (rows) taken separately. 
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Lemma 2. [7] Let T(s) e l ( s ) p x m and T(s) = Qi(s)-1H,i(s) (= R2(s) <22(s)-1), be 
a left (right) MFD of T(s). If the compound matrix [Qi(s) Hi(s)], ([Q2(s)T I^2(s)T]T) 
possesses no zeros in CU{oo} then 

k 

M Q i O O " 1 ^ * ) ) = _ > [ C ? i Hi] = 8M(Qi(s) Ri(ff)) 

SM(R2(S)Q2(S)-1) = X > [ $ T RTf = 8M(Q2(s)T R2(s)Tf 
i-l 

(4.1) 

where qi[Q\ Hi] > 0 (qi[QT RT]T > 0) are the degrees of the infinite poles of 
[QiOO Ri(ff)] ([Q2(s)T R2(s)T]T). 

If (1.2) is the normalised form of £ then let 

S?(s)(s) := diag î í l C?2 ?9fc 
1 _ __ 

> • • • > S?fc+i sq, 
(4.2) 

be the Smith McMillan form at s = oo of T(s). The following readily implementable 
algorithm for the construction of an "equivalent" (g.s.s.) reduction of £ is proposed. 
The algorithm represents a generalisation of the proposed in [6,10]. 

Vigor it hm 3 

Step 1. Compute a unimodular matrix U(s) £ IR[s]rxr such that 

T(s)-1 = [U(s)] x [T(s)U(s)]-i 

where the following compound matrix is column reduced 

Q(s) 
R(s) 

Step 2. Define, 

5, [Q(,)T Җ,)T] тлт [s] — 

T(ff)Ct(ff) 
U(s) 

diag [s? 1, s*2,..., s«?l 
Uf Yf 

Define the matrix 

;?1 ç î l - 1 

ST(s) = 

V 0 sЧř s Чf-l l) 

and write the polynomial matrices Q(s) and H(ff) as follows 

Q(s) = QcS(s); R(s) = RcS(s) 

where Qc and Hc are constant matrices. 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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Step 3. Construct the core realization 

Ecs — Ac = block diag{E"cls - Ac\,..., EcfS - Acf} 

0 0 ... 0 o-
... 0 0 

fcjr.iS Aci — 
1 l(?. + l)x(g, + l) 

L 0 0 . . . ~1 sj 

BT = blockdiag[Bi, B2, • • •, Bf}\ B{ = [1 0 . . . 0] G B l x ( f t + 1 ) 

Cc = In, n = ^Гqi + 

i=l 

The "equivalent" (g.s.s.) model of the system E in (1.1) is then 

(£*) : Ex(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t), 

where 
E=EC, A = AC-BCQC, B = BCU, C = VRCCC = VRr 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12a) 

(4.12b) 

(4.13) 

Theorem 5. The linear multivariate systems E# of (4.12) and E of (1.1) are 
(f.s.e.). 

P r o o f . It is easily checked ([6]) that the PMD [sEc - Ac + BCQC,BC,RC] is 
strongly irreducible and realizes T(s)~x i.e. T(s)~l = Rc(sEc — AC + BCQC)~1BC. 
Thus from Theorem 4 the (g.s.s.) system (4.12) will be (f.s.e.) with the system E^-* 
in (1.2), and thus with the system E in (1.1). • 

Remark 1. The dimension of x(t) of the (g.s.s.) system E# in (4.12) is 

X = ? + SM(T(s)). (4.14) 

To see this note that from (4.8), (4.9) and (4.13) 

Л = І > + 1). (4.15) 

The compound matrix [Q(s)T R(s)T]T has been constructed from [If T(s)T]T 

with unimodular operations which have no finite zeros. Thus [Q(s)T R(s)T]T possess 
no finite zeros. [Q(s)T R(s)T]T has also no infinite zeros by Lemma 1 because it is 
column reduced. Hence from Lemma 2 

ľП 6M(T(s)) = J 8U(T(S)-1) = 6M(R(s)Q(s)-1) = 6M([R(s)T Q(s)T]T) = J > . 
ť=i 

The combination of relations (4.15) and (4.16) gives the result. 

A similar more practical version of Algorithm 1 can also be given. 

(4.16) 
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5. ILLUSTRATIVE EXAMPLE FOR ALGORITHM 3 

Consider the linear system S described by the following system equations 

( E ) : (p2 + ЬP + 6)ß(t) 

У(t) 

(p+l)u(t) 

(-2p + 5)ß(t) + (3p + 2)u(t). 

The normalized system matrix V(s) of the above system will be following 

T(S) l*\ 
V(s) = 

-V 0 

/sг + 5s+6 s + 1 
2s-Б Зs + 2 

0 - 1 

V 0 0 •1 

0 \ 
o 
1 

o 7 

(E.l) 

(E.2) 

Step 1. The polynomial matrix T(s) 1 may be written as 

T(s)-1 = hT(s)-1 =: R(s)Q(s)-\ 

Note that the matrix 

R(s)J-{ 73 

(E.З) 

(E.4) 

is column reduced with column degrees {2,1, 0} and so there is no need to determine 
the unimodular matrix U(s). 

Step 2. Let now 

S(sf = 

The 

1 I 

Q(s) = (= T(s)) = QcS(s) = 

_0 \ 

| 8 1 | 

(E.5) 

1 5 6 1 1 0\ 
0 2 - 5 3 2 1 S(s) (E.6) 
0 0 0 0 - 1 0 / 

/0 0 1 0 0 0\ 
R(s) = (= I3) = RcS(s) = 0 0 0 0 1 0 S(s). 

\0 0 0 0 0 1/ 
(E.7) 
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The core realization is then 

sEr — A, -

0 

B, and Cг = Iв 

i / 

The (f.s.e.) g.s.s. system of (E.l) will be the following 

/ 

PяM 8Ее-Ас + всдс вси 
-VRC 0 

Vo 

(E.8) 

1 5 6 1 1 0 °\ 
-1 s 0 0 0 0 0 
0 - 1 s 0 0 0 0 
0 2 - 5 3 2 1 0 
0 0 0 - 1 s 0 0 
0 0 0 0 - 1 0 ' 1 

0 0 0 0 0 - 1 0 / 
(E.9) 

CONCLUSIONS 

The problem of the reduction of a linear multivariable system to an "equivalent" 
(g.s.s.) system has been studied. All the known reduction algorithms proposed 
by [1,2,8,9] can be classified by two different theoretical reduction algorithms. In 
either case the problem is reduced to the construction of a strongly irreducible 
realisation of a square rational matrix. It was shown that these two general reduction 
algorithms gives rise to g.s.s. models, which are (f.s.e.) to the original. Thus the 
original system and any g.s.s. reduction of it share the same finite and infinite 
system properties. A more computationally attractive form of Algorithm 2 has been 
presented via Algorithm 3 and a similarly attractive form of Algorithm 1 can be 
developed, although this has not been given here. 

(Received February 24, 1995.) 
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