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A N T I C I P A T I O N IN D I S C R E T E - T I M E LQ C O N T R O L I I : 
Closed—Loop Control 

VACLAV S O U K U P 

Following the first part of the work, this second one deals with anticipating LQ discrete-
time control realized in the feedback SISO structure. Again the investigation is based on 
the polynomial technique the necessary survey of which can be found in the first part. 

I L L I N T R O D U C T I O N 

Closed-loop structures are usually applied to stabilize and control dynamic systems 

and processes. A control signal U is generated by a controller (control algorithm) 

which operates on so far available values of the measurable process magnitudes. As 

a rule, the only error signal E = Wr—Y enters the controller C in the usual feedback 

structure shown in Fig. I L L 
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Fig. I L L 

A controlled process P is subjected to possible load disturbances as well as initial 

nonzero conditions affecting the output Y as V and YQ, respectively. 

T h e control algorithm C minimizing the performance index (1.3.1) should be 

determined in discrete-time, closed-loop LQ control. The external signals Wr, V 

and YQ are supposed to be deterministic; possible random components of them are 

reduced by feedback and their characteristics are not taken into account for the 

design. 

Many works have dealt with the algebraic input-output approch to LQ and LQG 

feedback control during recent years. Basic and general results for MIMO systems 

can be found in [3], various types of SISO problems have been treated in [1]. 
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This contribution is based on the known results which are for deterministic feed
back control of reachable as well as observable, strictly proper SISO processes sum
marized in the next section. The own anticipation problem is then solved in Section 
3 and the illustrating example is solved at the end. 

II.2. STANDARD LQ FEEDBACK CONTROL 

Returning to Fig. II. 1 we assume that 

P=-; a,b coprime, a = ac but 6 = </?V,/J > 0, (II.2.1) 
a 

and 
W = Wr - Y0 - V = p h,f coprime, h = hc, (II.2.2) 

i.e., P is realized as strictly causal, reachable and observable, discrete-time system 
and a (generalized) reference is a causal sequence. 

A controller 
m 

C=—; (n,m)- ~ 1, n = nc, (II.2.3) 
n 

is assumed and sought. 

Generally, the minimum deg z solution m,n,z, deg z < p, of the coupled equations 

dps*m + ahaz = dpb*4>p (II.2.4) 

and 
dps±n — bhaz = dpa*(pp (II.2.5) 

solves the LQ problem, where p = max (deg a, deg 6), s = s+ follows from (1.4.7) 

ss* = a(pa* -f biftb* (II.2.6) 

and (as in 1.4.5) 
h" = 7—T\ a n d ah = 7—-T- (II.2.7) 

(a,n) (a,h) 
Moreover the stable polynomial 

p = <^f+P (n.2.8) 

occurs in the equations (11.2.4,5). The resulting errror and control signals are 

E = ^ l and tr=--4-2-, (n.2.9) 
hasp hasp 

respectively. 
Since the possible factor p° = +a^ / ° 7̂  1 has been excluded from p the problem 

become solvable always if and only if ha ~ / i+ . The optimal controller (II.2.3) is 
unique. 
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Combining the equation (2.4) and (2.5) the so-called "implied" equation for the 
closed-loop pseudocharacteristic polynomial 

c = аn + Ьm = sp (П.2.10) 

is obtained. 
If (dps*,a) ~ 1, the only equation (2.4) instead of the couple may be solved for 

mindegz, degz < p, to obtain the optimal m. The remaining n then follows from 
(2.10) (cf. [2]). 

II.3. ANTICIPATION IN LQ CLOSED-LOOP CONTROL 

Let us assume that the external signals in Fig. II. 1 may be determined and gener
ated before they really occur, say v steps in advance. Then feedback control can be 
improved through the additional feedforward paths according to Fig. II.2. Feedfor
ward controllers Cw and Cy operate on signals which are constructed starting at 
time —vT. 

Г" 
— • » d~v —»• Cy V *-o»zгj Cy • * — d~v * < 

V + Y0 
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C P 

Fig. II.2. 

The equhalent block diagram in Fig. II.3 may be considered if the problem is 
restricted to the case Cy = Cw and time steps are numbered by zero at time — vT. 
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Fig. II.3. 

The entire control algorithm realized in one-system fashion is described in the 
form 

nU = mE + qW (II.3.1) 

where W stands in (2.2). The using (2.1), (2.2) and (3.1) yields 

E = Wdv - ЬMW (И.3.2) 
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and 

where 

M 

U = aMW 

mdv + q 

(II.З.З) 

(ІI.3.4) 

with c given by (2.10). 
Then the optimal solution of LQ feedback discrete-time control with anticipation 

is given by the following theorem. 

T h e o r e m 2. Given a process (2.1) subjected to the equivalent input (2.2), LQ 
closed-loop control minimizing the performance index (1.3.1) and using <v-steps an
ticipation results in the control algorithm (3.1), where polynomials n, m and q =- aqo 
along with z satisfy the equations 

dp+v s*n — dps*bqo — bhaz = dp+v a+ipp 

and 
dp+v s*m + dp s^aqo + ahaz = dp+vb*ipp 

(II.3.5) 

(II.3.6) 

with the minimum deg z. 
In (3.5) and (3.6) there is s the stable polynomial following from (2.6), ah and 

ha stand in (2.7), p = max (deg a, deg b) and p stands in (2.8). 
The resulting error signal 

and the control signal 

E = 

U = 

ahf(ndv - bg0) 

hasp 

ahf(mdv +ago) 

hasp 

(П.3.7) 

(И.3.8) 

are unique while the optimal controller (3.1) is not. The problem is solvable if and 
only if ha ~ h+. 

P r o o f . 

1. It has been shown in the first part that s = s+. 

2. To investigate solvability of the equations (3.5) and (3.6) we write them in the 
form 

C[n; m; qo; z] = D 

whe 

C 
dp+vs* 0 -dps*b -bha 

0 dp+vs± dps*a aha 

and D = 
dp+va^p 
dp+vb*ipp 

The equations are solvable if and only if the greatest common divisors (GCD) of 
all nonzero minors of C and [C; D] are identical. Finding the respective GCD of 
nonzero first and second order minors of C to be 

gx — (dpsџ, ha) and g2 = dp+vs+gi 
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and the respective G C D of nonzero first and second order minors of [C; D] 

03 = (gi,dp+vp) and g4 = dp+vs*g3 

we obtain g3 = g\ ~ 1 and g4 = g2 = dp+vs* if ha ~ h+ since dps* is unstable 

polynomial. Therefore (3.5) and (3.6) are solvable if ha ~ h+. 

3. Considering the expression (1.3.1) and using gradually (3.2), (3.3) and (2.2) we 

get 

J = ipE*E + ipU*U -

Щ-(ф - bџMЉvф - bMd~vф + s*sM*M) = TЦ-JQ. 
ҺЉ ҺЉ 

(И.3.9) 

Multiplying (3.9) by 
ah*aҺ 

ӣh*ah 
= 1 and applying (2.8) yields 

, f*fah*ah т o o P*P т 
J = т—: Io = P*P — Io = 

P°У 

ҺЉaҺ*aҺ 

P*P 
Ф Ф 

h*hah*ah 

, b*bp*p 

+ 
b*pф sp 

SЉÜҺ ҺUҺ 
Md~v 

h*hah*ah s±sh*hah+ah 

b*pip sp 

+ 

sЉah ҺUҺ 
Mdrv 

JA + Jв 

where p° = ±a°hf° and pp° = a*hf*. 

Obviously 

JA = Фp*p 
o 0P*p(s*s-фbЉ) _ PІP°<pфp*p 

s^sh^hahifah 

does not dep nd on M and is stable and 

b*pip sp \ ( b*pip 

o * Sílaje ÍIQ 

o„o Jв = P*P 
s*hah hah 

Mđ— 

,O(Ь*Ф*L_JŁM 

sp 

s*hah hah 

b*pipdv sp 

Md~v = 

s*hah hah s*hah hah 

Using the decomposition 

b*pipdv dp+vb+pip dps*y + hahz y 

M 

s*hah dpsЉah 

in (3.10) we get 

'sЉat + hah dps 

(II.3.10) 

(H.3.11) 

o^o JB=P[ÍPV [X + 
dpi 

x + 5"- |=* 0 j ß 

where 

x=У-lŁм. 
hah hah 

(П.3.12) 
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Let us assume p° = 1 at first, i.e., ah(d) and f(d) having no zeros on the unit 
circle in d plane. It has been proved in [3] and applied in the proof of Theorem 1 in 
the first part tha t (JB) obtains its minimum for X = 0 provided degz < p. Hence 
X = 0 being optimal for all zeros of ah and / inside as well outside the unit circle 
must be also optimal for p° / 1, i.e., if there are zeros just on the unit circle, seeing 
that both X and (JB(X)) are continuous regardirg the zeroes. 

Then 

M=— (II.3.13) 
sp 

follows from (3.12) and 

c = sp and y = mdv + q (II.3.14) 

from the comparison (3.13) and (3.4). 
If M given by (3.13) and the relation 

dp+vbifp^-ahaz = dpSify (II.3.15) 

following from the decomposition (3.11) are substituted into (3.2) we have 

E 
fdv bfy _ dpf(s*spdv - s*by) _ af(dp+va*(pp + bhaz) _ ahfx 

h sph hdps*sp hdps*sp hasp 

where the denotation 

dp+v a*<pp + bhaz = dps*x (II.3.16) 

has been introduced. 

Now adding (3.15) multiplied by b and (3.16) by a yields 

dps*(ax + by) = dp+v s*sp or ax + by = spdv = (an + bm)dv. 

Hence using (3.14) and seeing that x must be a polynomial the relations 

y = mdv + aqo and x = ndv — bqo (II.3.17) 

have been found. 
The unique minimum degz solution x,y,z of the equations (3.15) and (3.16) 

results in the unique optimal signals E and U. Using the obtained x and y in the 
equations (3.17) and solving them generally by 

m = mp — at, n = np + bt and qo = qop + dvt 

where mp,np and qop is a particular solution and t an arbitrary polynomial, yields 
the optimal control algorithm (3.1) which therefore is not unique. 

Combining (3.15) to (3.17) we obtain the equations (3.5) and (3.6). Seeing that 
the sequences (3.7) and (3.8) must be stable the problem is solvable for ha ~ h+ 

only. 
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II.4. EXAMPLE 

One small example is given to illustrate the described approach. 
Given 

P=- = - ^ - , Wr = -±- and V = Yo = 0. 
a 1 — d 1 — d 

Let us determine the optimal LQ control algorithm for ip = <p = 1 assuming Wr is 
known u steps in advance, alternatively v = 0; 1; 2. 

At first we find that the problem is solvable and 

f 
W = T = Wr, ah = ha = l, s = 1.618-0.618c., p = l and p = 1. 

h 

The equations (3.5) and (3.6) are 

(-0.618 + 1.618c?) dvn - (-0.618 + 1.6180 dq0 - dz = ( -1 + d)d" 

and 

(-0.618 + 1.6180 dvm + (-0.618 + 1.6180 (1 - d) q0 + (1 - d) z = d" 

The way solving the equations (3.15) and (3.16) at first and then (3.17) separately 
will be shown. 

1. For v = 0 (control without anticipation) (3.15) and (3.16) are 

(-0.618 + 1.6180 y + (l-d)z = l 

and 
(-0.618 + 1.6180 x - dz = - 1 + d 

which solved for the minimum degz by x = 1.618, y = 1 and z = 1.618. 
Hence 

1 C I Q 1 

f 7 = 1.618-0.618J' ^=1 .618-0 .618cf a n d ^ 1 6 1 8 " 

The equations (3.17) 

m + (1 — 0 <7o = 1 and n — dqo = 1.618 

are solved by m = 1 — (1 — 0 * , n = 1.618+cli and go = t. Obviously the feedforward 
path can be ignored here using t = 0 and consequently q = aqo = 0. 

3. For v = 1 we solve the equations 

(-0.618 + 1.6180 V + (1 - 0 z = d 

and 
(-0.618 + 1.6180 x-dz = (-l + d)d 

for the minimum deg z with the resulting x = 1.618c?, y = 1 and z = 0.618. 
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Hence 

g = 1.618-oV U= 1.618 -0.618.1 ^ ' = ° ^ 
Then the equations 

md + (1 — d) go = 1 a n d nd — dq0 = 0.618c/ 

are solved to reach m = \ — (l — d)t, n = 1.618 + dt and c/0 = 1 + c/i and m = 1, n = 

1.618 and c/0 = 1 for the simplest controller. 

3. Finally for v = 2 the equations (3.15) and (3.16) 

( -0 .618 + 1.618c/) y + (1 - c/) z = d2 

and 

( -0 .618 + 1.618c/) ar - <*z = ( - 1 + d) d2 

have the minimum deg z solution x = —0.382c/+ 0.618c/2, y = 0.382 + 0.618c/ and 
z = 0.236. Then 

„ -0 .382c /+ 0.618c/2
 TT 0.382 + 0.618c/ . . n Arrn 

E = 1 , tj = ; and ij = 0.472. 
1.618-0.618c/ ' 1.618-0.618c/ 

Writing (3.17) 

/ 2 | / i i\ nooo i n e i o j „».A —?2 J„ n OOOJ i n c i o j 2 
m c/2 + (1 - c / ) 5o = 0.382 + 0.618c/ and ndl - dqQ = - 0 . 3 8 2 d + 0 .618^ 

and solving then generally yields m = 1 — (1 — d) t, n = 1.618 + c// and q0 = 
0.382 + c/ + c/2/ with the simplest (t = 0) m = 1, n = 1.618, q0 = 0.382 + d. 

(Received December 3, 1992.) 
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