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SUBOPTIMAL CONTROL OF LINEAR DELAY 
SYSTEMS VIA L E G E N D R E SERIES 

M. R A Z Z A G H I , M. F . H A B I B I AND R. FAYZEBAKHSH 

A method for finding the suboptimal control of linear delay systems with a quadratic cost 
functional using Legendre series is discussed. The state variable, state delay, state rate, and 
the control vector are expanded in the shifted Legendre series with unknown coefficients. 
The relation between the coefficients of the state rate with state variable is provided and 
the necessary condition of optimality is derived as a linear system of algebraic equations. 
A numerical example is included to demonstrate the validity and the applicability of the 
technique. 

1. INTRODUCTION 

The control of systems with time-delay has been of considerable concern. Delays 
occur frequently in biological, chemical, electronic and transportat ion systems [1]. 
Time-delay systems are therefore a very important class of systems whose control and 
optimization have been of interest to many investigators. The application of Pon-
tryagin's m a r m u m principle to the optimization of control systems with time-delays 
as outlined by Kharatishvili [2] results in a system of coupled two-point boundary-
value (TPBV) problem involving both delay and advance terms whose exact solution, 
except in very special cases, is very difficult. Therefore, the main object of all com
putat ional aspect of optimal time-delays systems has been to devise a methodology 
to avoid the solution of the mentioned (TPBV) problem. 

Inoue et al. [3] have proposed a sensitivity approach to obtain the suboptimal 
control for linear systems with small delay in the state. They expanded the control in 
a Maclaurin's series in the delay and obtained the series coefficients from the solution 
of simple (TPBV) problems. The method presented in [4,5] are also sensitivity 
approaches in which the original system is imbedded in a class of non-delay systems 
using an appropriate parameter . 

Recently, orthogonal functions and polynomial series have received considerable 
attention in dealing with various control problems. The main characteristic of this 
technique is tha t it reduces these problems to those of solving a system of algebraic 
equations thus greatly simplifying the problem and making it computationally plau
sible. The approach is based on converting the underlying differential equations into 
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an integral equations through integration, approximating a various signals involved 

in the equation by truncated orthogonal series and using the operational matr ix of 

integration P, to eliminate the integral operations. Clearly, the form of P depends 

on the particular choice for the orthogonal functions. Special attention has been 

given to applications of Walsh functions [6], Block pulse functions [7], Bessel series 

[8], Laguerre polynomials [9], Chebyshev polynomials [10], [11], Legendre series [12], 

and Fourier series [13]. 

The numerical methods for obtaining the optimal control of linear delay systems 

with a quadratic cost functional has been presented, among others, by Hwang and 

Shih [7], Chou and Horng [11], Perng [12] and Hwang and Chen [14]. References [7], 

[11] and [12] used Block pulse, shifted Chebyshev and shifted Legendre operational 

matrices of integration respectively to calculate the integral involved in the perfor

mance index and Reference [14] employed the integration of the product of three 

shifted Legendre polynomials and the integration of the product of shifted Legendre 

polynomials and its derivative to obtain the integral in the performance index. 

In this paper, the shifted Legendre series is used for the optimal control of lin

ear delay systems with a quadratic cost functional. The state variable x(t), state 

delay x(t — r ) , state rate x(t) and control variable u(t) are expanded in the shifted 

Legendre series with unknown coefficients. The Legendre properties are used to re

late the coefficients of state rate and state delay to the coefficients of state. Using 

the method, the performance index, system dynamics, and the initial condition are 

converted to a system of algebraic equations. A method of constrained extremum 

is applied which consists of adjoining the constraints equations which are derived 

from the given dynamical system and the initial condition to the performance index 

by a set of undetermined Lagrange multipliers. As a result the necessary conditions 

of optimality are derived as a system of linear algebraic equations in the unknown 

coefficients of x(t), u(t) and the Lagrange multipliers. These coefficients are deter

mined in such a way that the necessary conditions for extremization are imposed. 

As compared to Perng [12] and Hwang and Chen [14] the present method is sim

pler to use. An illustrative example is given to demonstrate the applicability of the 

proposed method. 

2. P R O P E R T I E S OF S H I F T E D L E G E N D R E POLYNOMIALS 

The shifted Legendre polynomials, Pn(t), where 0 < t < h are obtained from [15], 

Pm(') - ^ ( 4 " 1 ) p «(*)- TTi*-1 W ' ' - 1 ( 1 ) 

with 

ЗД = 1 (2) 

ЛW - 2 Í - i (3) 
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The orthogonality property is given by 

-» r o, i?j 
Pl(t)Pj(t)dt=\ . . (4) 

'° I 2T+T' • = * 
Further a function, /(<), which is absolutely integrable within 0 < t < h may be 
expressed in terms of shifted Legendre series as 

oo 

/ « = £/.P.(*) (5) 
i = 0 

where 

fl = ^^'Jo
hf(t)Pl(t)dt (6) 

if Eq. (5) is truncated up to its first m terms, then 

m — 1 

/(o « x] /-^w = fTpv (7) 
i=0 

where 

fT = [fo,fl,-..,fm-l] (8) 

P T ( 0 = [ P o ( 0 , P l ( 0 } - - - > P m - l ( < ) ] . (9) 

If we assume tha t the derivative of fit) in (5) be described by 

oo 

/ M = X > - W ) (10) 
! = 0 

then, using the recurrence formula 

m) = ^ ^ T ) [A+iW - A-i«] (ii) 

the relationship between the coefficients / ; in Eq. (5) and #; in Eq. (10) can be 
obtained from [16] 

h 2 
ffť-l <7i + l 

t = 1,2,... (12) 
. (2 i- l ) (2z- + 3)J 

Also, if /(<) in (7) has its initial function for t < 0 as 

f(t) = h(t) -r<t<0 (13) 

then the delay function / ( i — r ) can be expressed by [12] 

f(t-T) = [fTD(T) + GT(T)]P(t) (14) 

where -D(r) is an m x m matr ix and is given in [12] and G(r) is an m vector given 
by 

G T ( r ) = [ G o ( r ) , G i ( r ) , . . . f G m _ i ( r ) ] 

where 

Gi(r) = ^i-J /i(t-r)Pi(0dt, i = 0,1,...,m- 1. (15) 
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3. PROBLEM STATEMENT 

Consider the following class of linear systems with time-delay 

x(t) = Ax(t) + Bu(t) + Cx(t-T) (16) 

x(0) = xo 

x(t) = xi(t) -T<t<0 

where x(t) and u(t) are n x l state and control vectors, respectively, A and B are 
matrices of appropriate dimensions and r is the time-delay. The problem is to find 
the optimal control u(t) and the corresponding state trajectory x(t), 0 < t < h, 
satisfying (16) while minimizing the quadratic cost functional 

J = lxT(h)Sx(h) + i / [xT(t)Qx(t) + uT(t)Ru(t)] dt (17) 
2 2 Jo 

where T denotes transposition, S, Q, and R are matrices of appropriate dimensions, 
S and Q are symmetric positive semi-definite matrices and R is a symmetric positive 
definite matrix. 

4. THE PERFORMANCE INDEX APPROXIMATION 

By expanding each state vector and each control vector in shifted Legendre series of 
order m, we determine the following approximate solutions, i .e., for N = 0 , 1 , . . . , n — 
1 

m - l 

*N(t) = J . aNiPi(t) (18) 
i=0 

m - l 

ulv(t) = Yl bNiPi(t) (19) 
i=0 

where (ajvo,_iVl,... ,a/v(m-i)) and (&J/VO,&JVI, • • • ,lj/v(m-i)) are unknown. 
Let 

(aoo aoi ••• ao(m-i))T 

a = (a0 ai ... a m _ i ) T = | : | , (20) 

(fl(n-l)O a ( n - l ) l ••• a ( n - l ) ( m - l ) ) T 

(ho hi ••• &0(m-l))T \ 

P = (boh ... 6m_i)T= I 

(b(n-l)O 6(n-l)l ••• 6 ( n - i ) ( m _ i ) ) T ) 

(21) 
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and 
/ Pт(i) 0 

P(t) = (22) 

V o Pт(t) 

Note that a, (J, and P(t) are matrices of order nmxl, nmxl, and nxnm respectively. 
Then using (18) and (19) the state and control vector can be expressed as 

(23) 

(24) 

x(t) = P(t)a 

u(t) = P(t)ß 

sub stituting (23) and (24) in (17) we get 

J = -ЛaтÞт(h)SP(h)a + \aт 
• fh 

/ PтQP(t)dt 
Jo 

«+ì"т fh 

/ PT(t)RP(t)dt 
Jo 

Equation (25) can be computed more efficiently by writing J as 

ß 

(25) 

J = \aT[P(h)PT(h) <g) S]a + \ocT(D <g) Q)a + i /?T(D <g) R)(3 (26) 

vhere 

D = I P(t)PT(t) dt = h (diag 

In (26), ® denotes Kronecker product [17]. 

li1 1 
) o > r > " " " > 
3 5 ' ' 2 m - l 

(27) 

5. APPROXIMATION OF THE TIME DELAY SYSTEM 

By expanding the derivative of each of the n state vector in equation (16) by shifted 
Legendre series, we get 

Let 

m - 2 

xN= J2CN-PІ^> N = 0,l,...,n-l 
i=0 

m — 1 

(A(x(t))N = -- J2УN 

i=0 

iñ(t) 

(Bu(t))N = 
m — 1 

J2ZNг 

i=Q 

Pi(t) 

Jx(t - т))N 

m— 1 

= ] Г WNІPi(t) 

(28) 

(29) 

(30) 

(31) 
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Using (29) - (31) for each N, N = 0 , . . . , n - 1, the right hand side of (16) has the 
form 

m— 1 

22 (VNi + ZNi + wNi)Pi(t) (32) 
i = 0 

which is a polynomial of degree m—1 while the left hand side is a polynomial of degree 
m — 2. By equating the coefficients of same-order shifted Legendre polynomials, we 
obtain 

/ CNI, i = 0 , 1 , . . . , m - 2 . . 
ym + zm + wm = | Q i > m - \ (33) 

Equation (12), (18), and (33) give the following relationship 

Ei_i = h [(2i + 3)Cjv(i-i) - (2i - l)Ci\r(t+i)] 

- 2 ( 2 s - l ) ( 2 t + 3)ajvi = 0, i= l , 2 , . . . , m - l (34) 

Ei_i = (2i + 3)Cjv(i_i) - (2i - l)Cjv(i+i) = 0, for i > m, (35) 

with 
C7V(m_i) = CN{m) = 0 (36) 

Using (18), the initial condition x(0) = xo, can be replaced by 

m—1 m—1 

Fm= Y,aNiPi^)= ]V(- l) l 'a iVi=Zjv(0), N = 0 , l , . . . , n - 1 (37) 
i=0 i=0 

Further the relation between WNI and a,Ni can be obtained by using (14). 

6. THE SHIFTED LEGENDRE COEFFICIENTS FOR x(t) AND u(t) 

The optimal control problem has been reduced to a parameter optimization problem 
which can be stated as follows. Find a and /? so that J(a, f3) is minimized subject 
to the constraints (34)-(37). 

Let 
m 

L(a, 0) = J (a, /?) + ^ A i F i ( a , 0) (38) 
y=o 

where A = (Ao, \\, . . . Am) represents the unknown Lagrange multipliers, then the 
necessary conditions for stationarity are given by 

dL dJ <-j-̂  . dFj .' /0ftN 
- _ = : _ + V A i - - r - - = 0) 1 = 0 . 1 . . . . . m - 1 39 
oa,i ocii z—/ oai 

j = 0 

dL 5 J A , 5E,- _ , . .._. 

i=o 

F / = 0 , i = 0, 1, . . . , m (41) 
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7. ILLUSTRATIVE EXAMPLE 

Consider the linear system with time delay 

x(t) = u(t) + x(t - 1) 0 < t < 2 

x(t) = 1 - 1 < t < 0 

with the cost functional 
»2 

J = 
1 5 „,2 10йæ (2) + / u\t) 

Jo 
åt 

(42) 

(43) 

(44) 

The problem is to find the optimal control u(t) which minimizes (44) subject to (42) 
and (43). We determine the shifted Legendre approximation for m = 6. 

Let 

x(t) = Y,^Pi(t) = aTP(t) 
i = 0 

5 

U(t) = ^2biPi(t)=:bTP(t) 
i=0 

5 

Ít-l) = 51diPi(t) = dTP(t) 
i=0 

4 

x(t) = J2aPi(t) = cTP(t) 
i=0 

using (33) and (42) we have 

Ci 

c5 

Further, using (14) we obtain 

where, r = 1, 

bi + di % = 0 , 1 , . . . 

b5 + d5 = 0 

атD(т) + G(r) = J1 

D(т) = 

í 1 
2 

3 
4 

0 7 
16 0 11 

32 \ 

1 
4 

1 
4 

5 
16 

7 
16 

3 
32 

11 
32 

0 3 
16 

7 
16 

7 
32 

9 
32 

77 
256 

1 
16 

3 
16 

5 
32 

5 
32 

99 
256 

33 
256 

0 1 
32 

5 
32 

77 
256 

53 
256 

77 
512 

к 1 

32 

3 
32 

35 

256 

21 

256 

63 

512 

157 

512 / 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 
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and 

G(r) = - - - 0 — 0 — (53) 
K ' \2 4 16 32j K ' 

By applying (33)-(37) the unknown coefficients must satisfy the constraints 

FQ = 10c0 - 2c 2 - 10ai = 0 

Fx = 14ci - 6c 3 - 42a 2 = 0 

F2 = 18c3 - 10c4 - 90a 3 = 0 

F3 = 22c 3 - 14c5 - 254a 4 = 0 

E4 = 26c 4 - 234a 5 = 0 

F 5 = 15c5 = 0 

Es = a 0 — ai + a 2 — a 3 + a 4 — a 5 — 1 = 0 

Using (26) we obtain the following approximation for J 

>-\ ю5Е".2+Е 
i = l 

2*4- 1 

(54) 

(55) 

(56) 

Equations (39)-(41) give 19 equations from which x(t) and u(t) in (45) and (46) 
can be calculated. 

In Table (1), a comparison is made between the values of x(t) and u(t) using 
present method with m = 6, method of [11] with m = 8 and the exact solution. 

Table 1. Estimated and Exact values of x(t) and u(t). 

x(t) u(t) 
Method of [11] Present Method of [11] Present 

t m = 8 m = 6 Exact m = 8 m = 6 Exact 

0.0 1.000043 1.000000 1.000000 -2.114431 -2.108100 -2.100000 

0.2 0.800846 0.801121 0.801000 -1.893601 -1.890831 -1.890000 

0.4 0.644449 0.644048 0.644000 -1.676797 -1.679410 -1.680000 

0.6 0.528564 0.529163 0.529000 -1.475604 -1.475431 -1.470000 

0.8 0.456059 0.456019 0.456000 -1.250573 -1.257838 -1.260000 

1.0 0.424890 0.424948 0.425000 -1.078828 -1.055281 -1.050000 

1.2 0.394360 0.394385 0.394400 -1.040670 -1.052383 -1.050000 

1.4 0.328484 0.328397 0.328200 -1.057799 -1.054334 -1.050000 

1.6 0.234327 0.234542 0.234800 -1.046507 -1.051482 -1.050000 

1.8 0.122659 0.122576 0.122600 -1.053616 -1.053163 -1.050000 

2.0 0.000182 0.000010 0.000000 -1.064356 -1.054316 -1.050000 
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8. CONCLUSIONS 

In the present work, a technique has been developed for obtaining the optimal con
trol of linear delay systems with a quadratic cost functional using shifted Legendre 
polynomials. The method is based upon reducing a linear delay quadratic opti
mization problem to a set of linear equations. The unity of the weight function 
of orthogonality for shifted Legendre series and the simplicity of the approximated 
performance index are merits tha t make the approach very attractive. Moreover, 
only a small number of shifted Legendre series are needed to obtain a satisfactory 
solution. The given numerical example supports this claim. 
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