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T W O SPECIAL MODELS OF AR(n) PROCESSES 
W I T H T I M E - D E P E N D E N T R A N D O M PARAMETERS 

A L E N A K O U B K O V Á 

Two special models of AR(n) series with MA(1) random parameters are investigated. 
Conditions for their second-order stationarity and explicit forms for their covariance func­
tions are derived. In the case of nonzero covariance function spectral density and the best 
linear prediction are computed. 

1. INTRODUCTION 

Random coefficient autoregresive series are natural variations of classical models with 
fixed or non-random time trending parameters. In view of practise they are suitable 
for modelling the time series da ta e.g. in hydrology, meteorology or other situations 
in which the underlying mechanism described by the parameters may be expected to 
change in a nondeterministic fashion. The theory of these series has been developed 
almost twenty years ago by Conlisk [4], [5], Andel [2], Nicholls and Quinn [9] and 
others. There were many questions of interest - stationarity, stability, estimates 
of parameters, testing of hypotheses etc. Later there was a perceptible effort of 
some authors to generalize the basic model with independent random coefficients 
assuming some type of dependence among them - see e.g. Brandt [3], Koubkova 
[6] [8], Tj0stheim [10] or Weiss [11]. But soon it turned out that computations in 
sucii models are rather complicated. The example of this fact is this paper, the main 
question of which is tha t of the second-order stationarity of finite AR(n) processes 
with MA(1) random parameters. 

Let us remind the model solved by Andel [2j. He introduced the scalar AR(n) 
series with random parameters as a series X\,... XN for which 

Xt = b1(t)Xt-1 + ... + bn(t) Xt_n +a~1Yt, t = n + l,...,N, (1) 

where 

(i) X1,..., Xn are random variables with zero mean and variance matr ix C — 

(ii) Yn+1,. .., Y,v are independent random variables with zero mean and unit vari­
ance independent of X\,..., Xn; 
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(hi) a is a positive number; 

(iv) b(t) = (b1(t),...,bn(t))',t = n + l,. 
independent of Xi,..., Xn and Yn+\. 

N, are vectors of random parameters 

-,YN; 

(v) b(t), t = n - f 1 , . . . , N, are independent samples from a distribution with mean 
(Pi, • • • >0n)' and variance matr ix A = (8{j). 

Assuming (i) - (v) he derived conditions for second-order stationarity of the series 
(1). Nicholls and Quinn [9] generalized AndePs model to the multivariate case. 

Now suppose tha t the random parameters are not independent in time. The sim­
plest kind of their dependence is tha t of MA(1). So we shall replace the assumption 
( v ) b y 

b(t) = K + AZ(t) + BZ(t-l) (v') 

where K, A, B are real matrices and Z(n),.. ., Z(N) are independent random vec­
tors with zero mean and the same variance matr ix D (independent of Xi..., Xn 

and Yn+1, ...,YN). 
The simplest special cases of such a model, i .e. AR(1) processes with MA(1) 

parameters , were solved by Koubkova [6], [8] and Tj0stheim [10]. It is quite inter­
esting to compare the results of them. The basic model is the same in all cases. 
The only difference is that in [6], [8] there are no assumptions concerning the distri­
bution of the process {Zt} while in [10] {Zt} is assumed to be Gaussian white noise. 
Furthermore, in [6] and [8] the second-order stationarity of the finite series {Xt} 
is investigated. It has been proved that stationarity of {Xt} depends both on the 
form of the variance of {Xt} and the forms of the third and the fourth moments of 
random parameters . In [10] the asymptotical second-order stationarity is the ques­
tion of interest. For this type of stationarity all roots of some specified polynom 
are required to be inside the unit circle - without any assumption concerning the 
variance of {Xt}. It can be easy to see that in [6] and [8] {Zt} cannot be normally 
distributed and thus the conditions for the second-order stationarity derived in [6] 
and [8] do not imply the asymptotical one in [10] (this implication evidently holds 
without the assumption of normality in [10]). The correlation structure is always 
given by the same second-order difference equation with generally different initial 
conditions and it is similar to that of the classical AR(2) or ARMA(2,1) series. 

Two special models investigated in this paper are generalizations of the model of 
Koubkova [6] for the case of the higher-order autoregression with n > 2. 

2. MODELS AND RESULTS 

Assume that Xi, . .., XN is defined by (1) and that (i) - (iv), (v') and (vi) are satisfied 

where 

A = 

a i 0 0 • • 0 ' ßi 0 0 • •• 0 

0 a2 0 • • 0 0 ß'2 0 • •• 0 

0 0 a 3 • • 0 , в = 0 0 ßз • •• 0 

0 0 0 • • otn 
0 0 0 • •• ßn 

K = 0 (vi) 
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Then introduce 

Model I. Z(t) = (Z\(t),.. .,Zn(t))', t = n,...,N, where Zi(t) are independent 
random variables with zero mean and variance Sf > 0; 

Model II. Z(t) = (Z(t),..., Z(t))', t = n,...,N, where Z(t) is a random variable 
with zero mean and variance 82 > 0. 

Note that under the assumptions of Model I 

bi(t) = cnZi(t) +PiZi(t-l), t = n+l,...,N, (2) 

i.e. {bi(t)}, i = 1,... ,n, are independent scalar MA(1) processes. In Model II 

bi(t) = QiZ(t) +/3iZ(t-l), t = n+l,...,N, (3) 

i.e. {bi(t)}, i = 1,... ,n, are scalar MA(1) processes generated by the same system 
{Z(t)} and thus they cannot be independent. 

Theorem 1. Under the assumptions of Model I, the series X\,...,XM defined by 
(1) is stationary iff the following three conditions are fulfilled: 

a i A = 0, (4) 

X > 2 + A 2 R 2 <i , (5) 
»=i 

/ a"2 

o-ii = [ o 

Its covariance function is given by 

*o-{ o2 £ l;l. m 
Remarks . 

(i) Under the assumption (4) process {b\(t)} is white noise, 

(ii) Under the assumption (4), one of the matrices A, B is necessarily singular, 

(iii) The covariance function (7) is the same as that of white noise. 

Theorem 2. Under the assumptions of Model II, the series X\, •.. ,XN defined 
by (1) is stationary iff 

£>? + #)* <1, (8) 
»=i 

f a- 2[ l -Er=iK 2 + /??)<52r1 = ̂ 2 for i = j 
*ij = { n . , . ( 9 ) 

1 0 for J / J , 

for i ^ j . * ' 
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and also one of the following three conditions is satisfied: 

ft = 0 and ai02+...+ <*n-l/3n = 0, (10) 
/?i ^-0 and o 1 = ... = o„ = 0, (11) 
ft ± 0, O! = . . . = a n _ ! = 0, an ± 0, EZ3(t) = 0 (12) 

and EZ4(t) = 64 for all t = n,...,N. 

Its covariance function is 

if (10) or (11) hold or 

( a2 for ť = 0 
RW = \ (13) 

0 for І / Ö 

{ (an3l6
2)^a2 for < = k(n + I) where k is an integer 

(14) 
0 otherwise 

if (12) holds. 

Remarks . 

(i) Under the assumption (10) the process {b].(t)} is white noise. 

(ii) Under the assumptions (11) the parameters {b(t)} are independent in time, 

(iii) Under the assumption (12) {bn(t)} can be the only MA(1) process, the others 

are white noises, 

(iv) If both matrices A, B are regular then Xi, •.., x.v cannot be stationary. 

Theorem 3 . The covariance function (13) of the series X\,... ,X^ is the same 
as that of white noise. The covariance function (14) of the series Xlt..., X^ is the 
same as that of a classical AR(n + 1) process Vi , . . . , V}v generated by 

Vt = o„ft*2VJ-„_i + c-xYt, t = n + 2,...,N, (15) 

where Vl}..., Vn+l are random variables with zero mean and variance matrix E = 
a21 which are independent of Yn+2, • • •, Y/v and 

c-^a-1 2\2 i - K/M2) 
l-(ßì + ... + ß2+a2)ő2 

Corollary 4. Under the assumptions (8), (9), (12) the spectral density of the 
series Xlt...,X^ exists and it is equal to 

f m = _f 1 - (arгß.62)2  

J{ } 2ҡ ' l-2anßl6
2cos((n+l)\) + (anßlő

2)2, { ] 

\ Є (-7Г,7Г). 
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Corollary 5 . Let (8), (9) and (12) hold. Denote G = Var(x i , . . . ,XN) where 
N > n + 1. Then elements hSit of the matrix H = G~l are: 

(i) for N = n + 1 : 
f <T~2 for s = t 

hst = < 
[ 0 for s^t; 

(ii) for N = n + 1 + k where k = 1,. . ., n: 

[ ,-[i-(«,./M»)». f o r • = - = - » • . . . * > - * + - . . . • . * , 

for s = < = fe+ l , . . . , N - f c 

- 2 [ i - K A * 2 ) 2 ] 
/i. f = 0 otherwise; 

Д.,.+n+i = л.+n+i,« = -m ľ 1 ! ^ f° r s = ť = l , . . . , N - n - l , 

(iii) for N = 2(n + 1): 

1 
ls,t 

<т2[l - ( a n A ^ 2 ) 2 ] 
for S = ť, 

o c2 
n,, t+n+i = hs+n+lit = ~°"n -- for s = t = 1, . . . , N - n - 1, 

<H[1- (a.-./JiO^J 

/iS)t = 0 otherwise; 

(iv) for N > 2(n + 1) : 
a-[l-(a./>1Д-)-l f 0 Г * = * = ! , . . . , П + 1 , N - П , . . . , . . , N 

| £72[l-(a„/3i<5-)2] , . . . , . . , _ , -
Һ s , t = 

„ff(^)>] fot ^ = < = « + 2 J V - n - 1 , 

/iS)t = 0 otherwise. 

Corollary 6. Under the assumptions (8), (9), (12) the best linear prediction of the 

variable Xjv+t based on X\,..., xw is 

' (<*nPi62)kXN for t = fe(n + 1) where k = 0 , 1 , . . . , 

^ N + . = < («„/?!«52) f c+1xN_ i fort = (ife + l ) (n + l ) - j ( 1 7 ) 
and fc = 0 , 1 , . . . ; J = l f . . . , n . 

The residual variance is 

N+t> | «r2[l-(a r i/? 162)2(*+1)] otherwise. 



352 A. KOUBKOVA 

3. PROOFS OF MODEL I 

P r o o f of Theorem 1. We first note that the process (1) has zero mean because 

EXn+1 = Eh(n + 1) EXn + ... +Ebn(n +1) EXX + a~lEYn+1 = 0 

and 
EXt = a1(316

2EXt-2 for t = n + 2,... ,N. 

Its covariance function R(s, t) is then 

R(s,t) = EXsXt. 

The necessity of condition (6) follows from the requirements 

<Tl2 = 0*23 = • • • = oy.-l.ri = R(n + 1> n), 

a13 = a24 = • • • = <rn-2,n = R(n + 1, n - 1), 

<rln = R(n+1,2), 

an = ... = ann = a2 = R(n + 1, n + 1), 

where it is easy to compute 

R(n+l,n) = R(n+l,n-l) = ... = R(n + 1, 2) = 0 

and 
R(n + 1, n + 1) = a2 _ _ > ? + fi)6? + a~2. 

t - i 

(5) is a necessary and sufficient condition for a2 > 0. The necessity of (4) we get 
from 

0 = a13 = R(n + 2,n) = a^fo2. 

The sufficiency of (4), (6) will be proved by the straightforward computation of the 
covariance function R(s + t, s) for s + t > n + 2. It is not difficult to see that 

R(s+t,s) = Ebi(8+t)bi(s+t-l)Xt+i-2Xa = a1/316
2R(s+t-2,s) = 0 for t > 2. 

Computation of the value R(s + 1, s) for s > n + 1 and R(s,s) for s > n + 2 
is technically more complicated. To compute R(s + l,s) we first obtain that for 
s > n+ 1 

Eb]_(s + 1) bi(s) bj(s) Xs-.iXs-.j = 0 for i > 2 and j > i, 
_76i(s + l ) 6 2 ( s ) x , 2 _ i = 0 

and 
Eh(s + l)b1(s)bj(s)Xs.1Xs-j = 0 for j > 2. 
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Using these formulas and independence among the systems of variables {Zs} and 
{Ys} we obtain that 

R(s+l,s) = 0. 

Analogously, for derivation R(s, s) we show 

p\ EZ\ (s) Xf = (3\ 8\a2 for s > n + 1 

and 
Eb\(s) X2

S_X = (a\ + ft) 8\a2 for s > n + 2. 

The first expression can be proved by induction using (4) and (6), the second one is 
a consequence of the former. Then we get 

R(s, s) = EXf = Eb\(s) Xlx+JT Eb2(s) EX?_i+a-2 = J2<T2(a2
i+(32)82+a-2 = a2. 

i = 2 i'=l 

D 

4. P R O O F S O F MODEL II 

We first give two auxiliary lemmas. 

Lemma 7. Let the variables Z(n),..., Z(N) have the same finite moments EZ3(t) 
and EZA(t) for all t. Then 

/.v 1-.. s . i \ a / . , , \ , / . ,v I 0 for k o d d 
(,) Eb_0+k)i__lO+k-l)...KU+l)={ 0 | , A , . . . 0 h . l A , « . forfceven, 

where j > n and - i , . . . , ** G { 1 , . . . , n} are different numbers; 

(ii) £6i(n + 3) &,(n + 3) bk(n + 2) = /3i0jakEZ3(t); 

(iii) £62(n + 3) 62(n + 2) = a2(a2 + /?2) «54 + fia]EZ*(t) + #/??64; 

(iv) £6 t(n + 3) bj(n + 3) bk(n + 2) 6m(n + 1) = pkam(aiaj + &•#)54 ; 

(v) Eb2(n + _)bj(n + 2)6*(n + 2)6m(n + 1) = am[(a2 + # ) # & + flffaA + 
pjak)]82EZ3(t); 

(vi) £6i(n + 3) 6, (n + 3) bk(n + 2) 6^(n + 1) 

= [(3kam(aiaj + frft) + ^ja_(a2
m + O < 5 2 ^ 3 ( 0 ; 

(vii) JS/6?(n.+ 3) 62(n + 2) 62(n + 1) = 2/3fajf3ja
2[EZ3(t)}2 

+ [ c * 2 a 2 ( a 2 + / ? 2 ) + / ? 2 / ^ 

P r o o f . The first formula can be proved by induction, the others by strightfor-
ward computation. D 
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Lemma 8. Under the assumptions (8), (9) and (12) we have 

(i) EZ(t)XtXt-i = an6
2EXt-iXt-n for t > n + 1 and t = 1, . . . , i - 1; 

(ii) EZ(t)X2 = 2a2
nPl6

4EXt-nXt-n-i for t > n + 2; 

(iii) Ebi(t)bj(t) Xt-iXt-j = (3if3j6
2EXt-iXi_j for 2 < i < j ; 

(iv) _76i(t) bi(t) Xt-iXt-i = an{32l3i64EXt_iXt-n-2 for t > n + 3 and » > 3; 

(v) _76i(f)62(t)^_iX t_2 = a n f t f t < $ 4 [ 2 f t ^ 2 £ x , _ n _ 2 x . - n - 3 
+ f t £ x , _ 3 x t - n - 2 + • • • + PnEXt-n-lXt-n-2] for < > n + 4; 

(vi) £Z2(*) x.x.-. = atnPiEXt-iXt-n-i for t > n + 2 and t > 2; 

(vii) _7Z2(f)JSCtX«_i = 2a2
n/3

266EXt-n-iXt-n-2 

+an/326
4EXt-2Xt-n-i + ... + anPn64EXt-nXt-n-i for < > n + 3. 

P r o o f . All the formulas can again be proved by straightforward computing. • 

P r o o f of Theorem 2. In view of the mutual dependence among the processes 
{bi(t)}, some parts of the proof are technically quite difficult. For the reason of 
readibility an understanding we shall describe only the idea without tedious details 
which can be found in Koubkova [7]. We first prove that all Xt have zero mean. 
This fact follows by induction from 

EXt = <*i/?i 62EXt-2 + ... + an(3l6
2EXi-n-i for * > n + 2 

EXt = 0 for < < n + l . 

The necessity of (8) and (9) can be proved in the same way as (5) and (6). Next we 
shall prove the necessity of (10) or (11) or (12). Solve the system of equations 

H(n + 2,n + 2) = a2, 

R(n + 3,n + 3) = a2, 
(19) 

R(n + 2 , n + l ) = tri2 = 0, 

R(n + 2, i + 1) = R(n + 1, i) = 0 for i = 1 , . . . , n - 1 

which is a necessary condition for the stationarity of {Xt}. Using Lemma 7, we 
obtain after tedious transformations the equivalent system 

p2(a2 + ... + a2
n) (EZ4(t) - 64) + 2ft (a i ft + • • - + « n - i f t ) EZ3(t) = 0, (20) 

2a1p
3
1(a

2 + ... + a2
n)[EZ3(t)}2 

+f32(a{ + ... + a2
n)(EZ4(t) - 64)[l + (a? + ft2) 62] 

+2ft (aift + ... + ar«-iA0[- + («? + Pi) &2}EZ3(t) (21) 
+2ft2[a1(a1ft + fta2) + . .. + ftn_i(ai/?„ + ^an)]62EZ3(t) 

+2ft (a2 + .. . + a2
n) (a-ia-2 + ft ft) 62EZ3(t) 
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+2(aia2 + Pifa) (ai/32 + ... an-iPn) o4 

+2f31 [ai(aior3 + l3i/?3) + • • • + an-2(aiCVn + PiPn)]bA = 0, 

/?i(a2 + . . . + a 2 ) EZ3(t) + ( o iA + .. .an_i/3n) o2 = 0, (22) 

an_./3i<52cr2 = 0 for t '= l , . . . . n - l . (23) 

Now it is evident that (10) is one solution of (19). If /?i -£ 0 then (23) implies 
a1 = .. . a n _ i = 0 and the system of (21), (23) becomes 

fian(EZ\t) - 64) = 0, 

faanEZ3(t) = 0. 

If an = 0 or EZA(t) = <54 and ^Z 3 ( t ) = 0 then (21) is evidently satisfied and thus 
(11) or (12) are solutions of (19). Hence the necessity is proved. 

Computing the value R(s +t,s) we can prove the sufficiency. 

(i) Sufficiency of (8), (9), (10). 
Compute R(s +1, s) for s + t > n + 2. If t > 2 then 

R(s+t,s) = Eb1(s+t)EXs+t-1Xs + ...+Ebn(s+t)EXs+t-nXs+a-1EYs+tXs = 0 . 

If t = 1 or t = 0 we can use induction. Evidently, 

R(s, s) = a2 and R(s, s — 1) = 0 for s < n + 1. 

For s > n + 2 we get 

n n i — 1 

i?x2 = Y, EbUs) EX2_i + 2 X. _C ^(*) bi (s) X-ix-J + a"2 

i= i j = i i = i 

from which it follows by the induction assumption 

EX2 = fJEb2(s)a2+a-2 = a2. 
• . i= i 

Analogously, 

EXS+1XS = Eb2(s + 1 ) ! , ! , _ ! + Ebn(s + 1) XsXs-n+1 

and using induction we have 

EXS+1XS = (otifa + ... + an-iPn) Pa2 = 0. 

(ii) Sufficiency of (8), (9), (11). 
Under the assumption (11) the random parameters are independent in time and we 
can use the result of Andel [2]. 
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(iii) Sufficiency of (8), (9), (12). 
It is quite easy to prove that 

EXs+tXs = anP^EX.+t-n-iX, (24) 

for t > 2 and s + t > n + 2, especially 

R(s + t,s) = an/3i62R(s + t-n-l,s) 

for t > n + 1 and all s. Furthermore, from (24) it can be proved by induction that 

R(s + t, s) = 0 for t = 1 , . . . , n and all s. 

Now it remains only to compute the variance of Xs. We have 

n n j — 1 

EX2 = YEh2(s)X2
s_i + 2YY.Eh^s)bMX^X^+a~2-

t j - i j = I i = i 

Using induction and Lemma 8 (note that all the expressions of Lemma 8 are equal 
to zero now) we first prove that 

Eb^X^^^a2 

and then 

EX2 = (3262a2 + J2 Eh2(s) a2 + a'2 = a 

The form (14) of the covariance function can be obtained as a solution of the system 

R(t) = an/316
2R(t-n-l) for t > n + 1, 

R(t) = Q for t = l,...,n, 

R(0) = a2, 

R(t) = R(-t) for t < 0. D 

P r o o f of Theorem 3. We get a function of the form (14) as a solution of the 
Yule-Walker equation system of the process (15). Q 

Corollaries 4,5, 6 can be proved by the methods known from the classical autore-
gression theory (see Andel [1] e.g.). 

(Received October 19, 1994.) 
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