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M I N I M U M E N T R O P Y OF E R R O R ESTIMATE 
FOR MULTI-DIMENSIONAL P A R A M E T E R 
AND FINITE-STATE-SPACE OBSERVATIONS1 

ANTONÍN OTÁHAL 

The minimum entropy of error estimate (MEEE) is studied for a finite mixture of 
probability densities on a finite-dimensional Euclidean space. It is proved that the MEEE 
coincides with the conditional expectation in case all the densities in the mixture are 
isotropic and unimodal; further a counter-example is given which shows that the result 
cannot be generalized for symmetric non-isotropic densities. 

1. INTRODUCTION 

The minimum entropy of error principle was introduced by Weidemann and Stear 
[6, 7] and the idea has been further pursued by Janzura, Koski and Otahal [2, 3]. 
The principle consists in that one random variable (parameter) is estimated by 
means of another random variable (observation), so that the (differential) entropy 
of the estimation error is minimized. The principle is intuitively plausible, though 
its application is, due to problems with differential entropy, somewhat technically 
involved - cf. also Ikeda [1], Otahal [4], Vajda [5],(10.20). 

One of the main results of [2] states that the minimum entropy of error estimate 
(MEEE) is the same as the conditional expectation in case the state space of the 
observation is finite, the parameter space is (a subset of) the real line and all the 
conditional densities (of the parameter given the observation value) are symmetric 
and unimodal. The present paper studies a possibility of generalizing this result for 
a multi-dimensional parameter. 

2. BASIC NOTIONS 

For convenience we define the real function $ on [0, +oo) as 

#(<) = -t • log(t) 

with the usual convention $(0) = 0. 
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Suppose there is given an m-dimensional random vector U whose distribution 
is absolutely continuous with respect to the m-dimensional Lebesgue measure with 
the corresponding density fu- Further there is given another random variable Z 
(observation, or data) which has a finite range of possible values Z = {z\,... ,zn}. 
For j = 1,. ..,n we denote fj(u) = fu\z(u\zj) and ctj = P{Z = Zj}. The MEE 
estimate is defined as the mapping G from Z to the m-dimensional Euclidean space 
Rm minimizing the entropy of the error e = U — G(Z). In other words, denoting 
tj = G(ZJ) we can express the problem of finding the MEEE as the problem of 
minimizing, ior t = (t\,... ,tn) and ff(x) = ]T)?=1

 ajfj(x + */')> t n e v a l u e of 

H(t)= [ Ф(ft(x))dx 
JR™ 

with respect to the shifts t\,...,tn. We have to suppose f $(fj(x))dx < +00. 
In [2] we can find details of this construction, as well as further results: H is a 
continuous and bounded function of t which takes on its minimum on (Rm)n. For 
further reference we point out the following result: 

2.1. T h e o r e m . If m = 1 and all the densities f\, • • •, fn are symmetric unimodal, 

then the minimum of H takes place at t = 0. 

P r o o f . Cf. [2], Proposition 3.12. • 

3. ISOTROPIC UNIMODAL DENSITIES 

If we want to generalize Theorem 2.1 to the case m > 1 we have to decide which gen
eralization of symmetry is the 'proper' one to ensure that a similar result will hold. 
We will show that under an assumption of isotropic (rotation invariant) densities 
the result can be generalized and, by means of a simple example, we will establish 
that a more general notion of symmetric (i.e. even) densities is not sufficient. 

For x £ Rm we denote by |a?| the usual Euclidean norm of x. A real function g 
on Rm is isotropic if the value of g(x) depends only on \x\. An isotropic function g 
is unimodal if g(x) is a non-increasing function of \x\. 

Before coming to the main result we have to go through an auxiliary technical 
one. 

3.1. Lemma. Let V be a proper linear subspace of Rd and W be its orthogonal 
complement. Suppose that there is given a real function g on Rd such that 

I g(v -f w) dv > 0 
Jv 

for every w £ W. 

Then fRd g(x) dx > 0. 

P r o o f is an immediate consequence of the Fubini theorem. D 
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3.2. T h e o r e m . Let, in the notations of Part 2, the conditional densities f\,... ,fn 

be isotropic and unimodal. Then the minimum of H takes place at t = 0, in other 
words, the MEEE of U by means of Z is the same as the conditional expectation 
E{U\Z). 

P r o o f will be carried out by induction in the dimension m. 
1. For m = 1 the assertion is the same as that of Theorem 2.1, since on the real 

line the notions of isotropy and symmetry are the same. 

2. We will assume that the assertion holds for the dimension equal to m — 1 and 
will prove it for m. 

Fix an (m — l)-dimensional subspace A in Rm, denote by 7r the orthogonal pro

jection onto A and put Tj = ir(tj) for j = 1, . . . , n. 

Now we first prove the inequality 

# ( r i , . . . , r n ) > H ( 0 , . . . , 0 ) . (1) 

In fact, denote, for a hyperplane B parallel to A and for j = l,...,n, by fj the 
restriction of fj to B. Since obviously all fj's are isotropic and unimodal in B (with 
r(0) playing the role of the origin), by the induction assumption we conclude that 

ІĄŸ- ifi(y + 

and (1) follows by Lemma 3.1. 

In the second step we prove 

H(tu...,tn)>H{TU...,Tn). (2) 

For this we choose a unit vector a (of either orientation) in Rm orthogonal to A and 
define, for j = 1, . . .,n, the real rj by the relation tj = Tj + rja. For a straight 
line p orthogonal to A and j = 1 , . . . ,n we consider the restriction fj of fj to p, 
which is obviously a symmetric unimodal function on p. Hence by Theorem 2.1 the 
inequality 

Jp*h2<Xjfj(t + rj)\ ^>J^\Tajfj(o) d£ 

is true and (2) again follows by Lemma 3.1. 

Putting together (1) and (2) we complete the proof. Q 

4. SYMMETRIC DENSITIES 

In this section we will present an example of even unimodal densities for which the 
MEEE differs from the conditional expectation. 

Let us, for a, /?, 7 > 0, denote 

$ (a , 0,7) = $ ( a + 0 + 7) - $ ( a + /3) - $ ( a + 7) - $(/? + 7) + $(a ) + $(/?) + $(7)-
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4.1 . Lemma . For all a, /?, 7 > 0 it holds 

% A T ) > O . 

P r o o f . For fixed /? and 7 we define 0(a) = ^(a,P,j). Then 0(0) = 0 and the 
derivative of 0 is given as 

(q + /?)(c* + 7) 
0 (a) = log — — / v 

a(a + /? + 7) 
which is obviously non-negative. Q 

4.2. Example . Suppose m = 2, i.e. the example takes place in the plane; we 
write X for the two-dimensional Lebesgue measure. By K we denote a rectangle 
whose center is at the coordinate origin, whose width is w and whose length is i; we 
take i^> w. The orientation of K is such that its vertices are given by coordinates 
(±i/2,±w/2). For 77 > 0 and the rotation p which rotates by the angle 27r/3 we 
take the sets 

Ki(v) = K + (0,ri), 

K2(r,) = p(K±(0,V)), 

K3(r]) = p'(K + (0,rl)). 
For positive reals a, 0, 7 such that (a + f3 + 7) • X(K) = 1 we put 

Kv) - I (a- 1K,(V) + P • ̂ K2(n) + 7 • ltf2(r?)) <-A, 
Jp? 

where 1M stands for the indicator function of a set M. 
Let us for the sake of brevity write 

0i = 0 i (a , /?, 7) = $(a) + *(/?) + $(7), 

02 = 02(a, /?, T) = *(« + /?) + *(« + 7) + HP + 7), 

03 = 03(a, /?, 7) = $(« + /? + 7)-

Then we can calculate for -q £ [0, ttf/6] 

A(9) - ( ^ - ^ 2 - 6 v / 3 r / 2 ) ^ 3 + 

+ ( ^ 2 + 6vW)02+ 

+(AW - i ^ - 6 v V ) 0i 

and for 77 £ [w/6, w/2] 

^ = ( i T i ^ 2 - 3 ^ 7 ? - ^ ) ) 03 + 

+ ( " i T s ^ 2 + ^ M - V*)) 02+ 

+ ( A W - iTa™2 - 3 v ^ - ^2)) &• 
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It is easy to see that the function h of 77 has a local maximum at 0, because Lemma 
4.1 ensures that on the interval [0,w/G] the function h is decreasing. Since 77 = 0 
corresponds to zero shifts of symmetric sets A'i(0), A'2(0) and A'3(0), we have really 
proved that for conditional densities given by their indicator functions the MEEE 
differs from the conditional expectation. 

The example is based on the fact that minimizing the differential entropy of a 
mixture of shifted indicator functions of the sets K\, A'2, A'3 we seek for a small 
volume of the intersection K\ n A'2 f\ A'3 while maximizing the pairwise intersections 
Ai n A'2) A'2 n A'3 and K\ n A'3. 

Just for the completeness of the analysis of the example let us mention that for 77 
large enough the sets K\(rj), A^r/) and K.3(r)) are pairwise disjoint, h(rf) — \(K)ip\ 
and h(r)) > h(Q). That is, the local maximum of h at 0 is not global. • 

Th is example seems to indicate (the exact calculations would be rather complicated) 
that even for Gaussian densities, if they are suitably chosen (i.e. if their level ellipses 
'copy' the shape of the sets considered in Example 4.2) the MEEE will not coincide 
with the conditional expectation, which is a rather surprising statement. 

(Received August 25, 1994.) 
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