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A PENCIL APPROACH TO HIGH GAIN FEEDBACK 
AND GENERALIZED STATE SPACE SYSTEMS 

DlEDERICH HlNRICHSEN AND JOYCE O'HALLORAN1 

In this paper we study limits of generalized state space systems under high gain feedback 
modulo system equivalence. Different group actions on the space of system pencils are 
considered and related to the action of pencil equivalence. A recent result on the orbit 
closure problem for pencils is applied to obtain necessary conditions for a system to be 
a limit of a given system under high gain feedback. These conditions are shown to be 
sufficient for arbitrary state space systems. The result is used to investigate a high gain 
version of Roscnbrock's problem: invariant factor assignment in the limit via high gain 
state feedback. 

1. INTRODUCTION 

In the sixties the theory of matrix pencils [4], [14], [24] created by Weierstrass (1867) 
and Kronecker (1890) was the main mathematical source of inspiration for the emerg
ing structure theory of linear state space systems, sec [13], [21]. In the late seventies 
and eighties, Roscnbrock's description of linear systems by polynomial system ma
trices [21], [22] provided a bridge for the application of pencil ideas to generalized 
state space systems. Pencil ideas were used to work out an adequate equivalence 
concept for singular systems [20], [22], [23] and to obtain invariants and canonical 
forms for controllable systems under the action of the "state" feedback group [5], 
[15]. In this paper we apply pencil methods to classify limits of generalized state 
space systems under high gain feedback. 

As explained in [7], a natural setting for studying limits of state space systems 
under high gain feedback is that of generalized state space systems. Neglecting 
the outputs, these systems are described by mixed linear algebraic and differential 
equations of the form 

Ei(t) = Ax(t) + Bu(t), t>Q; E,AeKnxn, B e l " " 1 , (1) 
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University of Bremen for its support during the writing of this paper. 
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where K is either the field C of complex numbers or the field M of real numbers, and 
the pair (E, A) defines a regular pencil, i.e. 

det(sE-A)^Q (2) 

If E = I, we refer to the system (1) as a state space system. 
Generalized state feedback u = Fx transforms the triplet (E, A, B) into (E, A + 

BF,B); but this triplet does not necessarily satisfy the regularity condition (2). 
Therefore it is convenient to study the effect of feedback transformations on the 
whole space of triplets (E,A, B) G K n x ( 2 n + m ) . If (F£) is a high gain feedback fam
ily (i.e. an unbounded family in K m x " ) , the resulting closed loop triplets E£ = 
(E,A + BFe,B) will in general not converge as e —> 0. Generalizing an idea of 
Young, Kokotovic and Utkin [28], one may obtain a "limit" of this family of systems 
by replacing each system S£ with an equivalent one in such a way that a limit exists 
as f —• 0. In [28], high gain feedback is applied to state space systems and only scai-
ing operations are considered as equivalence transformations. The limits obtained 
are generalized state space systems. In this paper we apply high gain feedback 
to generalized state space systems and allow more general equivalence operations. 
To yield adequate equivalence concepts, these operations must preserve both the 
"finite" and the "infinite frequency behaviour" of a system. The most general oper
ations of this kind are the transformations of strong equivalence as defined in [23]. 
Unfortunately these transformations depend on the individual system and do not 
form a transformation group. Therefore we also consider the stricter concept of 
restricted system equivalence [22] which is described by a Gln(K) x Gln(K)-action. 
Additionally we allow for linear coordinate transformations in the input space. 

Two systems (Ej,At, J3;), i = 1, 2 are said to be feedback equivalent if one can be 
transformed into the other by state feedback and the above equivalence plus input 
transformations. In this paper we focus on the high gain feedback classification 
problem: Given a system Ex = Ax + Bu, which systems Ex = Ax + Bu can be 
obtained as limits of systems that arc feedback equivalent to Ex = Ax + Bu? 

There are two distinct versions of this problem (see (HGF1), (HGF2) in §2) 
corresponding to the two different equivalence concepts considered in this paper. 
A third and closely related question is that of determining all the limits of pencils 
which are equivalent to a given system pencil [sE — A B] satisfying (2). While this 
problem has been solved completely [11], only partial results are available to date 
concerning the two versions of the high gain feedback problem. Our results include 
a complete solution of the state space high gain feedback classification problem, i.e. 
a complete description, up to feedback equivalence, of state space systems which can 
be approximated by applying high gain feedback to a given state space system. 

This paper is partly a survey and partly a research paper. It develops a pencil 
approach to high gain feedback and gives a unified presentation with full proofs of 
recent results, which have been reported in a scattered way and without proofs in 
several conference proceedings [8], [9], [10]. On the other hand it also contains a 
number of new results. The paper is organized as follows. In the next section we 
analyze the action of various groups of pencil transformations on system pencils of 
generalized state space systems. We show that every operation of pencil equivalence 
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which preserves the structure of a system pencil can be decomposed into the product 
of four transformations, vz. 1) an operation of state feedback, 2) an operation of 
strong equivalence, 3) an input transformation, and 4) another operation of state 
feedback. In Section 3 we derive from Kronecker's result a canonical form for gen
eralized state space systems with respect to these transformations. For later use we 
also discuss a canonical form due to Loiseau, Oscaldiran, Malabre and Karcanias 
[17] with respect to the operations of state feedback, restricted system equivalence, 
and input transformation. Section 4 contains the main results of this paper and 
deals with orbit closure problems for pencils and, in particular, for system pencils. 
Necessary and sufficient conditions are specified which the Kronecker invariants of a 
pencil have to satisfy in order that it be representable as the limit of pencils belong
ing to a fixed equivalence class ("orbit") of pencils. However, these conditions are 
not sufficient if the limit is required to be a limit of system pencils. In Section 4 we 
show that these necessary conditions are sufficient in the case of state space systems. 
In Section 5 we present some system-theoretic applications. In particular, we discuss 
a high gain version of Rosenbrock's problem: Given a generalized state space system 
(E, A, B), which invariant factors can be obtained in the limit by applying high gain 
feedback to the system? 

For the convenience of the reader, we have included a glossary of terms at the 
end of the paper. 

2. SYSTEM TRANSFORMATIONS AND PENCIL EQUIVALENCE 

The concept of high gain feedback limit depends on the underlying concept of system 
equivalence. In this paper we consider the two concepts of strong equivalence and 
restricted system equivalence. Two systems Eii = AiX + B;u of the form (1) or the 
associated pencils [sE{ — Ai B,], i = 1,2 are said to be strongly equivalent [23] if 
one can be transformed into the other by a finite sequence of the following two kinds 
of operations: 

i) Operations of strong equivalence: 

[sE2 - A2 B2] = L[sEx -A, B1}\^ f \ , i. e. 

E2 = LEiR, A2 = LAXR, B2 = L(BX - AXX), (3) 

where 
L,ReGln(K), X sKnxm and E,X = 0. (4) 

ii) Trivial augmentation/deflation: 

E2=Z[E0 o L ]' A*=\ A0 I • B2=\ o f ' I for some k e N- (5) 
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Two systems Eti = A,x + B{U or the associated pencils [sEi — A( B,], i = 1,2 are 
restricted system equivalent if there exist L, R& Gln(K) such that 

[sE2-A2 B-] = L[sE} -Ax Bj] [ J £ ] , i.e. 

£ 2 = LEiR, A2 = LA i i i , fl2 = LB\. (6) 

If det E ^ 0 — in particular if the system is a state space system — the oper
ations of strong equivalence coincide with the transformations of restricted system 
equivalence. 

Note that systems of different dimensions may be strongly equivalent, whereas 
restricted system equivalence preserves the dimension of a system. It follows from 
[20, Thm. 7] that two systems of the same dimension are strongly equivalent if and 
only if they can be transformed into each other by operations of the form (3). 

The definition of strong equivalence is of an algorithmic nature. A closed form 
expression which yields a common framework for both kinds of operations (3), (5) 
has been given in [20] ("complete system equivalence"). While the operations of 
strong equivalence (3) will be primarily used in this paper, the trivial deflations and 
augmentations (5) allow us to consider lower dimensional state space systems as 
feedback limits of higher dimensional state space systems. 

In [23] arguments are given which show why strong equivalence is an adequate 
equivalence concept for singular systems. In fact, strong equivalence can be charac
terized by an isomorphy between the solution spaces of the corresponding system 
equations [23, Remarks 3.3, 3.4], Moreover, two state space systems are strongly 
equivalent if and only if they are similar. Finally, an extended version of Kalman's 
realization theorem holds for this concept of equivalence: Controllable and observ
able generalized state space systems are strongly equivalent if and only if they have 
the same transfer matrix [23]. 

In (3), left multiplication by L corresponds to row operations on the system 
of equations and right multiplication by R corresponds to a change of state space 
coordinates, but what system-theoretic sense does the modification of B have? This 
question is best answered in Willems' behavioural framework [25], The behaviour of 
a system Ex = Ax + Bu is the set of pairs of C°° functions x : E —» Kn , u : M —> Km 

such that Ex(t) = Ax(t) + Bu(t) for all t £ E. Consider the transformed system 

Ex = Ax + (B- AX)u 

or, equivalently, 
E(x - Xii) = A(x - Xu) + Bu, 

where EX = 0. The behaviour of this system is isomorphic (as a K[^]-module) to 
the behaviour of the original system Ex = Ax + Bu via the isomorphism (x,u) —» 
(x - Xu,u) which preserves the control but modifies the state by adding to it a 
linear combination of control variables. 

The operations of restricted system equivalence (6) form a transformation group. 
On the contrary, the more general operations of strong equivalence (3) are defined 
relative to a given system (1) (because of the constraint EX = 0); they do not 
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define transformations on the set of all systems of the form (1). In order to describe 
strong equivalence in terms of the action of a transformation group, we suspend 
the condition EX = 0 in the first part of the analysis. This is done by viewing 
systems and system transformations within the larger context of pencils and pencil 
equivalence. 

For arbitrary integers p, q > 1, a p X q matrix pencil is, by definition, a pair 
(M, N) of matrices M,N £ K?XI>. These pairs are denoted by sM + N. Two p x q 
pencils are said to be equivalent [4] if they can be transformed into each other by 
the following action of the group Glp(K) x G1,(K) on the space of p x q pencils 

(P, Q) • (sM + N) = (sPMQ-1 + PNQ-1), P G G1P(K), Q G Glq(K). (7) 

Every system (1) defines an n x (m + n) pencil [sE - A B]; we refer to pencils of 
this form as system pencils. System pencils which satisfy the regularity condition 
(2) are called regular. By 7>n,m(]K) = K 2 n x ( " + m ' we denote the vector space of 
n x (m + n) pencils over K endowed with the usual product topology. The closed 
subset of all system pencils is denoted by 5 n , m (K) . The subset Sn'm(K) of regular 
system pencils is dense in 5 n m ( K ) . 

Applying any pencil transformation (7) given by 

P G Gln(K), Q-1 = \ I * 1 € GVm(K) (8) 
. F w . 

to a system pencil [sE — A B] G <5>n,m(lK) yields an n x (n 4- m) pencil 

(P, Q) • [sE - A B] = [sPER-P(AR-BF) P(sEX + BW - AX)] (9) 

which is, in general, not a system pencil. Thus «Sn,m(K) is not invariant under 
arbitrary pencil operations. In fact we have, for any [sE — A B] G >?n,m(K), 

P[sE-A B] [ £ J j e 5 „ , m ( K ) ^ M = 0. (10) 

If (P, Q) • [sE - A B] = [sE-A B] G 5 n ,m (K) we obtain from (9) and (10) that 

r k £ = rkP£*[R X] = rk [PER 0] = rk E, (11) 

i.e. the rank of E does not change under pencil transformations which preserve the 
system structure of the pencil. Given any pencil sM + N G Vn,m0&) there exists 
Q G GJ n + m (K) such that MQ-1 is of the form [E 0], E G K n x n . Thus every 
pencil orbit in Vn,m(K) 

0(sM + N) = {P(sM + iV)<J--; P G Gln(K), Q G Gln+m(K)} (12) 

contains a system pencil [sE — A B]. However, it does not necessarily contain 
a regular system pencil. In the following lemma we see that pencils whose orbits 
contain regular system pencils are those which are regularizable in the sense of 
Ozcaldiran and Lewis [19]: 
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L e m m a 2 .1 . A system orbit 0([sE - A B]) contains a regular system pencil if 
and only if it is regularizable, i.e. there exists F £ Kmxn such that det(s£; - (A -
BE)) t 0. 

P r o o f . The 'if part is immediate since every feedback transformation is a 
transformation of pencil equivalence. Now assume that there is a pair (P,Q) as in 
(8) such that 

det(sPER - P(AR - BE)) =£ 0, 

see (9). Then dci(sER, - (AR - BF)) £ 0 and, by continuity of the determinant 
and density of nonsingular matrices in the space Knxn there exists a nonsingular 
matrix R close to R such that 

dct(sER - (AR - BE)) = de.t(sE -(A- BFR'1)) det R ± 0. 

Hence (E,A,B) is regularizable by state feedback. D 

Regularizability has been characterized in terms of (A, E,Im /?)-invariant sub-
spaces in [19], In Section 3 we will express this property in terms of pencil invariants 
and thus obtain a characterization of those pencil orbits 0(sM + N) which contain 
regular system pencils. 

R e m a r k 2.2. If 0([sE — A B]) contains a regular system pencil it follows from 
similar arguments as in the previous proof that 0([sE — A B]) n Sn

e
m(DC) is dense 

in G([sE - A B]) 0 Sn,m(K): 

d(0([sE-A B])nS™m(K)) = d(0([sE-A B])nSn,m(K)). (13) 

The group Gln(K) x G/n+m(IK) of pencil operations (P,Q) on 7 ,„,m(K) contains 
the following important subgroups of system transformations of which the first three 
leave Snfn(K) invariant whereas the remaining ones ((17), (18)) preserve the system 
structure but may destroy the regularity condition (2): 

1. Similarity transformations: 

I n 7° I 

2. Input transformations: 

1 o w\. 

3. Transformations of restricted system equivalence 

R ( 
0 /, 

P,\ J r° I), P,ReGln(K). (16) 
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4. Statc fєєdback transformations: 

In 0 
ғ Im 

5. Generalized feedback transformations: 

FeKmXn. (17) 

P> [ F w})> P G G'"^> [ F W } € G ,"+m(K). (1 8) 

The corresponding transformation groups are, respectively, G1„(K), Glm(K), 
Gln(K) x Gln(K), K m x " and the generalized feedback group 

Gn<m(K) = Gln(K) x ^ n , r a (K) , (19) 

where J-n,m(K) is the full feedback group 

jF„ im(K) = | [" P
 w~\: ReGln(K), WeGlm(K),F€Kmxn\. (20) 

If the generalized feedback transformations are restricted to the set of state space 
systems, we have the full feedback group action on the set of state space systems: 

[F W]*1-*
 B^RisI~A *][? w] l- (21) 

Pencil equivalence (7) is given by the action of a reductive group (G1P(K) x G19(K)) 
on a vector space whereas the generalized feedback transformations (18) and the 
full feedback transformations (21) are actions of non-reductive groups (<7n,m(K) and 
J~n,m(K) respectively) on vector spaces. 

Definition 2 .3 . Two systems (Ei, At, B,), i = 1,2 are said to be feedback equi
valent in the first (resp. second) sense if [sE? — Av B2] is obtained from the pencil 
[sEi — Ai Bi] via some combination of operations of state feedback (17), input 
change of coordinates (15), and strong equivalence (3) (rcsp. restricted system e-
quivalence (6)). 

Clearly, systems which are equivalent in the second sense are also equivalent in 
the first sense. 

Using the transformations introduced above, we now turn to the main topic of 
this paper and consider limits of a given system under high gain feedback (in the 
sense indicated in the introduction). Depending on the equivalence concept used, 
two different notions are obtained, one (HFG1) is based on strong equivalence and 
the other (IIFG2) is based on restricted system equivalence. 

HGF1: The system Ex — Ax + Bu is said to be a high gain feedback limit in the 
first sense of_the_system Ex = Ax + Bu (for short, HGFl-limit of (E, A, B)) if 
the pencil [sE — A B] is a limit of a sequence of regular system pencils [sEk — 
Ak Bk], where the system pencils [sEk — At Bjt] are feedback equivalent in 
the first sense to [sE — A B]. 
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HGF2: The system Ex - Ax + ~Bu is said to be a iiigii gain feedback limit in 
the second sense of the system Ex = Ax + Bu (for short, HGF2-limit of 
(E, A, B)) if the pencil [sE — A B] is a limit of a sequence of regular system 
pencils [sEk - Ak Bk], where the system pencils [sEk —Ak Bk] are feedback 
equivalent in the second sense to [sE — A B]. 

In either case, we refer to a high gain feedback limit as nontrivial if it is not feedback 
equivalent (in the first, resp. second sense) to the original system. 

Note that the set of transformations applied in HGF2 is a subset of the set of 
transformations applied in HGF1; comparing the definitions of strong equivalence 
and restricted system equivalence,'we see that the two concepts coincide when the 
matrix E is nonsingular. 

Both concepts of limits under high gain feedback are defined via special trans
formations of pencil equivalence (7). We will now show that arbitrary pencil trans
formations may be used in the definition of HGFl-limits, i.e. Ex = Ax + Bu is a 
HGFl-limit of the system Ex = Ax + Bu if it is the limit of a sequence of regular 
system pencils which are pencil equivalent to Ex = Ax + Bu. It is not a priori 
clear that a pencil equivalence operation (9) which transforms a system pencil into 
another one can be decomposed into a product of system transformations of the 
form (15), (17), (3). (Note, in particular, that in (8) the matrices R and W need 
not be nonsingular.) The following lemma resolves this issue. 

L e m m a 2.4. Every transformation T € GJn+„ 
the form 

can be written as a product of 

T = 
ln O l í / i X 
Ei /m 0 W 

where Fx, E2 £ Kmxn, X € i \ Re Gl„( 

TU Tx 
T 2 

E2 such that R, W are nonsingular and 

I Jíj £ £ | 6 GlnЛ 

R + XF2 X 
EiE + EXE2 + WF2 FXX + W J ' 

(22) 
0 and W eGlm(K). 

K). We need to find FUR, W,X and 

Гц Tu 
E21 T2-

R + XF2 X 

FXR + F1XF2 + WF2 FXX + W 
(23) 

Set X = TX2 and choose E2 such that R := Txx — T\2F2 is nonsingular. Since 
r k [ T u Tu] = n, this is possible. Now define Fx ~ (Tn - E22E2)(En - E12E2)"1 

and W = T22 - FXTX2. Then 

E1E + FXXF2 + WF2 = ETn + E22E2 - E1E12E2 = E21 

so that (23) is satisfied. It only remains to show that det W ^ 0. But this follows 
from 

detW = d e t ( T 2 2 - ( E 2 i - r 2 2 E 2 ) ( r u - E i 2 F 2 ) _ 1 T i 2 ) 
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= det 
Г ц Гl 
E21 E2 

] (det(Tn - TuF,))-1 + 0. 

R e m a r k 2.5. i) The factorization of T G G l „ + m ( K ) in (22) is not unique. But 
once F2 6 K m x n is chosen such that det(Tn — T12E2) / 0 the remaining submatrices 
Ei, R, W, X are uniquely determined. 

ii) By transposition of (22) we see that every transformation T £ Gl n + m (K) can 
be written as a product of the form 

where again R 6 G1„(K) and W 6 Glm(K). 

As a consequence of the above lemma we obtain 

P r o p o s i t i o n 2.6. Any two system pencils [sE{ — Ai Bi] which are pencil equi
valent can be transformed into each other by applying successively the following 
operations: i) State feedback (17), ii) strong equivalence (3), iii) input transform
ation (15), iv) state feedback (17). In particular, they are feedback equivalent in the 
first sense. 

P r o o f . If 

(E, Q) • [sEx - A! EJ = [sE2 - A2 B2], (25) 

EGG1„(K), 0 - l = [ j j ; ^ ] e G l „ + m ( K ) 

then E1T12 = 0. Decomposing T = Q'1 according to Lemma 2.4 we obtain 

El Im J [ 0 Im J [ 0 W \[ F2 I, _ 

where R £ Gln(K), W £ Glm(K) and E^W"1 = 0. This concludes the proof, 

since the pair I P, \ j defines an operation of strong equivalence for 
0 In, 

[sEy - (Ai - B1E1)" Ei]. D 

For state space systems, pencil equivalence simply reduces to equivalence modulo 
the conventional action of the full feedback group En,m(K) (21). In contrast with 
general pencil transformations (see Proposition 2.6), the operations of the full feed
back group on state space systems can be decomposed into successive application of 
only three elementary operations (14), (17), (15). In particular, state feedback does 
not have to be used twice. 
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Corollary 2.7. Two state space systems [si — At flj], i = 1,2 are pencil equi
valent if and only if they lie in the same orbit of the full feedback group Tnrn(K). 
More precisely, each one can be transformed info the other by successive application 
of the following three operations: i) Similarity transformation (14), ii) state feedback 
(17), iii) input transformation (15). 

P r o o f . If (25) holds with E\ = i?2 = /„, then necessarily T 1 2 = 0 and Q _ 1 has 
the form 

P~x 0 1 Г P " 1 0 /„ 0 1 ľ /„ 0 
T2i г 2 2 I 0 Im Г 2 1 Im 0 г 2 2 

Thus 

[si - A2 B2] = P[sl - Ai Bi] 

and this concludes the proof. 

p-1 0 1 Г /„ 0 1 Г /„ 0 
0 Im Гм /m 0 Г 2 2 

For our purposes, the most important consequence of Proposition 2.6 is that the 
first high gain feedback concept HGF1 can now be expressed in terms of pencil 
transformations: 

H G F 1 ' : The system Ex = Ax + Bu is a high gain feedback limit of the system 
Ex = Ax + Bu if and only if 

[sE-A B]ed (0{[sE-A B])C\Sn

e

m(K)) = c l (0([sE - A B])~Sn m{K)). 
(27) 

(The set equality follows from Remark 2.2.) This characterization establishes a 
connection between high gain feedback limits and orbit closures of system pencils 
under pencil equivalence. Note, however, that a characterization of the orbit closure 
cl {0{[sE - A B])) does not determine the set of all HGFl-limits of Ex = Ax + Bu 
since, in general, equality does not hold in the following inclusion 

c\(0{[sE-A B])n5„,m(K)) ccl{G{[sE-A B])) nS„,m(K). 

The following characterization of IIGF2-limits follows immediately from the defini
tion. 

HGF2' : The system Ex = Ax + Bu is a high gain feedback limit of the system 
Ex = Ax + Bu if and only if 

[sE-A B]-cl{gn,m{K)[sE-A B]). (28) 

If we restrict our attention to state space systems {E = E = I), the two concepts 
HGF1 and HGF2 coincide and we obtain the following characterization: A system 
x = Ax + Bu is a high gain feedback limit of the system x = Ax + Bu if and only if 

[si-A fl]£cl(7-„,m(K)-[s/-A B]). (29) 
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3. CANONICAL FORMS OF MATRIX PENCILS AND SYSTEMS 

In this section we describe Kronecker's canonical form for pencil equivalence [14] 
and a canonical form for the action of the generalized feedback group established 
by Loiseau, Ozcaldiran, Malabre, and Karcanias [17]. A simple modification of 
Kronecker's canonical form provides a canonical form for arbitrary regularizable 
systems with respect to transformations of strong equivalence, state feedback, and 
change of coordinates in the input space. 

Kronecker's canonical form is described in terms of the following invariants: 
column indices, row indices, and elementary divisors, see [4], The column indices 
( " 1 , . . ..c,,) of a pencil sM + N 6 7 ,

n,m(K) are defined as follows. Choose a min
imal degree solution Xi(s) € (K[s])n+ 'm to the equation (sM + N)X(s) = 0. For 
each t > 2, choose a minimal degree solution Xi(s) E (K[s])"+m to the equation 
(sM + N)X(s) = 0 which is not contained in the K[s]-span of {Xi(s),. . ., Xi-i(s)}. 
This process ends after a finite number k of steps (k < m). We define c,- = 
degXk-i+i(s), i = 1,.., k. Obviously, Ci > .. > C/j. The row indices (1*1,... ,rt) of a 
pencil sM + N are defined similarly as minimal degrees of solutions of X(s)(sM + 
N) = 0. 

We also associate to each pencil sM + N of rank p a set of polynomials {Dj(sM + 
tN)}j=1 in K[s,t.]. Let Dj(sM + tN) be the (normalized) greatest common divisor 
of the set of all minors of order j of the associated homogeneous pencil sM + tN, 
j < p. The invariant factors of the pencil sM+N are, by definition, the homogeneous 
polynomials 

џ^-D-æmi- <*-«>-» (30) 

Splitting the invariant factors into powers of homogeneous polynomials irreducible 
over K we obtain the eJementary divisors of the pencil sM + N. Elementary divisors 
of the form t1 are called "infinite" and the other elementary divisors are called 
"finite". 

Theorem 3 .1 . (Kronecker 1890 [14]) Two n x (n + m) pencils are equivalent if 
and only if they have the same row indices, column indices, and elementary divisors. 

Because we shall see (Proposition 3.2) that regular system pencils have no row 
indices, we restrict our attention to n x (n + m) matrix pencils which have this 
property. The canonical form of such pencils has the following structure (see [4]): 

0 ••• 0 5C, 

(31) 
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where the first k — h columns are zero, h = max{i : c; > 0}, each block SCi, 
i = 1 , . . . , h is a c< x (c; + 1) rectangular block of the form 

5c. = 

S 1 

S 1 

(32) 

-lc,x(c, + l) 

and the r x r regular block R (r = n - Sf=1C{) is written in "Jordan form": 

*=[V J-r}- (33) 
J is a matrix in (real or complex) Jordan form and N is a nilpotent matrix in Jordan 
form. Each nonzero column index cy defines the number of rows in a rectangular 
block 5c,and each zero column index corresponds to a zero column. Hence the 
number of column indices k is equal to the number of zero columns plus the number 
of rectangular blocks. It follows that k = m. The matrix J is determined by the 
finite elementary divisors and the matrix TV is determined by the infinite elementary 
divisors. 

In the following propositions we apply Kroneckcr's results to regular system pen
cils of generalized state space systems. Since our interest is in pencils which represent 
systems, we modify the pencil canonical form (31) as follows to obtain a "system 
canonical form". Move the last column of each block SCi to the right side of the 
matrix and move the zero columns to the right side of the matrix. This gives us the 
following canonical form: 

0 
(34) 

where the pair (A\,B\) defines a state space system in Brunovsky canonical form 
(see [1]) and R is the regular block given by (33). 

The next proposition, which also appears in [9], [17], characterizes regularizability 
(see Lemma 2.1 for the definition of regularizability). 

P r o p o s i t i o n 3.2. The pencil [sE — A B] is regularizable if and only if it has no 
row indices. In particular, every regular system pencil has no row indices. 

P r o o f . If [sE — A B] is regularizable, then there is a pencil transformation Q £ 
GLn+m(K) such that the pencil [sE — A B]Q=[sEt~Ai Bi] is a regular system 
pencil. Suppose [sE -A B] has a row index. By Theorem 3.1, the pencil [sEi -
Ai Bi] has a row index, i.e. there is a polynomial vector f(s) € (K[s])n, f(s) •£ 0 
such that f(s) [sEi -Ai Bi] = 0. Then f(s) (sEx -A^) = 0 and so det(sEi -Ai) = 0. 
This contradicts the statement that [sEi — A\ B\] is a regular system pencil. 
Conversely, if the pencil [sE — A B] has no row indices, then it is equivalent to 
a pencil of the form (34). Since pencils of this form are regular system pencils, it 
follows from Lemma 2.1 that [sE - A B] is regularizable. O 
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In [1], Brunovsky introduced a canonical form for controllable state space systems 
under the action of the full feedback group. Here we extend the Brunovsky canonical 
form to arbitrary generalized state space systems. 

P r o p o s i t i o n 3.3. Every regularizable system Ex = Ax + Bu is equivalent un
der transformations of strong equivalence, change of input coordinates, and state 
feedback to exactly one system (up to reordering of blocks) of the following form: 

±i = Aixi + Biu (35) 

X2 = A2X2 (36) 

E3x3 = x3, (37) 

where the subsystem (35) is a controllable state space system in Brunovsky canonical 
form, A2 is a matrix in Jordan form, and E3 is a nilpotent matrix in Jordan form. 
Furthermore, if E is nonsingular, then the canonical form consists only of the parts 
(35) and (36). 

P r o o f . Expressing R in (34) by (33) and setting A 2 = J and E3 = N, the 
canonical form (35), (36), (37) follows directly from (34). H we write (35)-(37) in 
the form Ex = Ax + Bu we obtain from (11) that rk E = rk E. Hence the singular 
part of E must be absent if det E ^ 0. D 

Remark 3.4. Restricting Proposition 3.3 to the set of state space systems, one 
obtains a canonical form for arbitrary (possibly uncontrollable) state space systems 
under the action of the full feedback group (see Corollary 2.7). Note that in this 
canonical form the controllable and the uncontrollable parts of the system are de
coupled. 

Next we describe the system canonical form (35), (36), (37) for controllable gener
alized state space systems. For definitions and discussions concerning controllability 
of singular systems, see [27], [23], [2], and [16]. We will use the concept of control
lability introduced in [23] which may be characterized as follows: Ex = Ax + Bu is 
controllable if and only if 

ik[aE-A B] = n for all a e C and ImE + AKer E + Im B = Kn. (38) 

Note that controllability is preserved under operations of strong equivalence (3) and 
generalized feedback transformations. 

Corollary 3.5. If an n-dimensional system Ex = Ax + Bu is controllable, then 
it can be transformed to a controllable state space system of dimension less than or 
equal to n by state feedback (17), change of input coordinates (15), strong equiva
lence operations (3), and trivial deflations (5). 

P r o o f . Let Ex = Ax + Bu be a controllable system. Theorem 1 of [15] states 
that rkE = EJ^c,-. It follows that no "s" can appear in the r x r regular block of 
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the canonical form (34). Hence the regular block is simply the r x r identity matrix 
Iy. Therefore the pencil [sE — A B] is equivalent to a pencil of the form: 

SІ-AÌ 0 ßi 

0 lт 0 
(39) 

where the system x = Atx + Biu is controllable. This pencil can be trivially deflated 

[sI-Ai Bt]. (40) 

This concludes the proof by Proposition 2.6. • 

Up to this point, we have focused on transformation groups which include strong 
equivalence operations. We now move on to the smaller group of generalized feedback 
transformations (18) relevant to the IIGF2 problem. Loiseau, Ozcaldiran, Malabre, 
and Karcanias [17] describe a canonical form for the action of the generalized feed
back group <7n,m(K). Their canonical form is applicable to arbitrary implicit systems 
Ex = Ax + Bu with rectangular pencil sE — A; we present the theorem here only 
for the case of regularizable systems (i.e. sE — A is a square pencil and the pencil 
[sE — A B] has no row indices). First we introduce some notation. For each integer 
m > 2, let 

uПi = and eПг = 

- Jn»x(»,-i) 

Corresponding to each pencil of the form 

0 ••• 0 

(41) 

U = 
0 

UПl 

0 
(ju zero rows) (42) 

let 

Bu = 

Vnъu J (ь+£lV.)x(П = >.-M 

hu 

(43) 

tftf+£toifli>x0«H--tO 

T h e o r e m 3.6. [17] Under the action of the generalized feedback group (7n,m(K), 
each regularizable system pencil [sE -A B] may be transformed to exactly one 
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pencil (up to reordering of blocks) of the form: 

h 0 
(44) 

where (AC,BC) defines a controllable state space system in Brunovsky canonical 
form, P is a pencil in the canonical form (31), and (U, By) is a pair of the form (42), 
(43). If the pencil P has jp zero columns and kp blocks of the form (32) and the 
pencil U has ju zero rows and ku blocks of the form (41), then jp + kp = ju + ku• 

To clarify the relationship between pencil orbits 0([sE — A B]) and orbits under 
generalized feedback transformations Gn,m(K)-[sE — A B], recall that the regulariz-
able system pencils have the following invariants with respect to pencil equivalence: 
column indices, finite elementary divisors, and infinite elementary divisors. Each 
nonzero column index corresponds to a block of the form (32) and each zero column 
index corresponds to a zero column. The finite elementary divisors correspond to the 
Jordan blocks in the matrix J of (33) given by the list of eigenvalues and block sizes 
{(<*., r,-)}*=1, and the infinite elementary divisors correspond to the Jordan blocks of 
the nilpotent matrix TV in (33) given by the list of block sizes ( n i , . . . , n n _ e ) where 
e = rk E. In the following we refer to the block sizes (nlt. . ., n n _ e ) as nilpotency 
indices. 

In the canonical form for generalized feedback transformations (44), all blocks 
corresponding to the finite elementary divisors appear in the pencil P. The column 
indices correspond to blocks in both the pencil [si + Ac Bc] and the pencil P. 
The column indices corresponding to blocks in the pencil [si + Ac Bc] we call 
regular and those corresponding to blocks in the pencil P we call singular; thus the 
column indices are partitioned into two lists, the regular column indices ( c i , . . . , cM) 
(listed in decreasing order) and the singular column indices (C/i+i,... , c m ) (listed 
in decreasing order). We denote the partitioned list by (ci, , . ., c^; c M + i , . . . , c m ) . 
Similarly, the blocks defined by the infinite elementary divisors appear in both the 
pencil P and the pencil [U By], partitioning the list of nilpotency indices into 
regular nilpotency indices ( u i , . . . , u „ ) from the pencil P and singular nilpotency 
indices ( u „ + i , . . . , u„_ e ) from the pencil [U By] with _i > .. • > u„ and u„+i > 
. . . > u n _ e . Again we denote the partitioned list by (_i , . . . , u „ ; u „ + i , . . . , u n _ e ) . 
Because jp + kp = ju + ku, we have m — ju = n — e — v, i.e. the number of 
singular column indices is the same as the number of singular nilpotency indices. If 
[sE — A B] is a pencil in the canonical form (44), then the horizontal rectangular 
blocks and the zero columns of the nxn pencil sE — A correspond to singular column 
indices and the vertical rectangular blocks and the zero rows of sE — A correspond 
to the singular nilpotency indices. 

It follows from Theorem 3.6 that the <Jn,m(__)-orbits of regularizable pencils are 
parameterized by the invariants 

( ( c i , . . . , c„; Vt- i , . . . , cm), {(a,-, -,-)}!_!, ( u i , . . . , u„; u „ + i _ n _ e ) ) . (45) 

The canonical form (44) which has only regular indices is the system canonical form 
(34) described in Section 2. Let [sE — A B] be a regularizable system pencil with 
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column indices (_i, . .. , _ m ) , finite elementary divisor blocks given by {(<-,•, r,-)}^_-, 
and nilpotency indices (n\, . .., n n _ e ) . Comparing these invariants with the gener
alized feedback invariants, we see that the set 0([sE — A B]) n _>n,m(K) of sys
tem pencils equivalent to [sE — A B] is a finite union of t /n m(K)-orbits, specif
ically the union of orbits with invariants (45) where (_ i , . . . , cu; cM+i . . ., cm) and 
( « ! , . . . , _ „ ; _ „ + i , . . ., _n_ e) are rearrangements of (_ i , . . . ,d m ) and ( n i , . . . , n n _ e ) , 
respectively. Note that, if E is nonsingular, there are no nilpotency indices and so 
all column indices are regular. Hence 0([sE — A B])nSn,m(K) is a Gn,m(K) orbit. 

4. ORBIT CLOSURES AND„LIMITS UNDER HIGH GAIN FEEDBACK 

At the end of Section 2 we observed that a determination of limits under high gain 
feedback requires computation of cl (0([sE -A B]) n 5n ,m(K)) for HGF1 and of 
c\(Gn,m(K) • [sE - A B]) for HGF2. The conclusion of Section 3 brings the two 
problems together; there we established that the set 0([sE - A fl])n5-m(K) of 
equivalent system pencils is a finite union of £n ,m(K)-orbits, i. e. there is a finite set 
of system pencils {[sEt — At _-;]}*= 1 (specifically those of the form (44) with the 
same pencil invariants as [sE — A B]) such that 

t 

G([sE -A B])C\ Sn,m(K) = ( J Gn,m(K) • [sEi - A, B,] 
i= l 

Thus the intersection of the G/n(K) x Gin + m(K)-orbit of [sE -A B] e Sn,m(K) 
with the linear subspace 5n ,m(K) C Vn,m(K) is a union of £-,m(K)-orbits and 

cl((G;-(K)xG/n+m(KHs£-A B])nSn,m(K)) = (J cl(a„,m(_C)[._.,--tj B.]). 
i= l 

Hence a complete description of HGF2-limits would produce a complete description 
of HGFl-limits. Unfortunately, a complete description of the closures of Gn,m(K)-
orbits is not yet available. As noted previously, Gn,m(K) is a non-reductive group 
whereas G/n(K) x Gi n + m (K) is reductive. Since the representation theory of non-
reductive groups is known to be much more complex than that of reductive groups, 
one would expect descriptions of orbit closures to be more difficult to determine 
for the action of Gn,m(K) than for the action of G/n(K) x G/ n + m (K) . Indeed, a 
complete characterization of the closures of Gin(K) x Gj'n+m(K)-orbits containing 
regular system pencils will be given in Theorem 4.1. As mentioned at the end of the 
previous section this does not completely solve the high gain feedback problem in 
the sense of HGF1. On the other hand there exist only partial results for closures of 
-•n.mW-orbits. For instance, in [6] these closures have been determined for reachable 
input pairs (see the glossary for a definition), and some sufficient conditions for orbit 
closure appear in [12], For arbitrary state space systems we will give a complete 
description at the end of this section (Theorem 4.6). In spite of these results the 
complete description of the sets of all HGFi-limits, i = 1,2 (for arbitrary regular 
system pencils) still remains an unresolved problem. 

The first theorem of this section gives a complete characterization of the pencils 
in cl (0([sE — A B])); a consequence of this characterization is a set of conditions 
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necessary for a system to be a limit of another system under high gain feedback (in 
either sense). We begin by introducing some notation. The dual column indices of 
an arbitrary n x (n + m) pencil are defined as follows: 

4 = \{i • -. > i}\, j = h...,n, (46) 

where ( c i , . . . , c m ) is the list of column indices of the pencil and | 5 | denotes the 
cardinality of the set S. Note that the dual column indices do not depend upon the 
ordering of the list ( c x , . . . , cm) . A useful illustration of the dual indices is via Young 
diagrams which consist of squares arranged as follows: row 1 has c\ squares, row 2 
has C2 squares, etc. Then the dual indices (c\) are the lengths of the columns. For 
example, the dual indices to (4,4,3,1) are (4, 3,3, 2 ,0 , . . ., 0). 

4 
3 
2 
1 

1 2 3 4 
columns 

The dual column indices are "controllability indices" of the system (E, A, B) in 
the following sense (which generalizes the characterization of controllability indices 
for state space systems, see [26, §5.7]): Define the subspaces V; and TZi of K" by: 

V o ^ S C , V. =A-1(lmB + EVi-i), i > l ; V* = f] Vf 

igK 

Tl0 = Q, 1li = E-'L(\mB + A1li-i), • > 1. 

Then it follows from [17, Prop. 2.2] that 

j 

dim Uj nV* = VJcJ, j = l,...,n. 

The following theorem gives necessary and sufficient conditions for an arbitrary 
regularizable system pencil sM + N 6 Sn,m0&) to lie in the closure of the orbit 
0(sM + N) of another n x (n + m) pencil with no row indices. We write the 
invariants for sM + N with an upper bar; e.g. the column indices of sM + N are 
denoted c,-. The proof of the theorem appears in [11]. 

T h e o r e m 4 . 1 . Let sM + TV, sM + N E Vn,m{K) be pencils with column jndices 
( c i , . . . , cm) , ( c i , . . . , cm) respectively, and with no row indices. Then sM + N is in 
the closure of the orbit 0(sM + N) if and only if the following two conditions hold: 

fe<E4 j = l,...,n (47) 
i=l .'=1 

Dj(sM + tN)\Dj(sM + tN), j=l,...,n. (48) 

The general orbit closure problem for arbitrary singular matrix pencils (possibly 
having row indices) is still open. 
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E x a m p l e 4.2. The following regular system pencil, representing a state space 
system, has column indices (1,1) and divisor polynomials Da — s — 1, D2 = D\ = 1: 

s 0 0 | 1 0 
0 s 0 1 0 1 
0 0 s - 1 | 0 0 

(49) 

The list of dual column indices is (2,0,0). From Theorem 4.1 it follows that any 
regular system pencil in the closure of the orbit of the pencil (49) is equivalent to 
(49) or to one of the following pencils (in canonical form (34)): 

(i) Pencils in the orbit closure with column indices (2, 0) (i. e. dual column indices 
(1,1,0)): 

s i 0 | 0 0 " 
0 s 0 | 1 0 . (50) 

_ 0 0 s - 1 J 0 0 

(ii) Pencils in the orbit closure with column indices (1,0): 

(51) 

S 0 0 1 1 0 1 s 0 0 1 0 
0 S - 1 1 1 o 0 OГ 0 s - 1 0 0 0 
0 0 s - 1 1 o 0 0 0 аs + ß 0 0 

( a , / 3 ) / ( 0 , 0 ) . 

(iii) Pencils in the orbit closure with column indices (0,0): 

S - 1 
0 
0 

1 0 | 
s - 1 1 | 

0 s - 1 | 

0 0 ' 
0 0 
0 0 

S - 1 
0 
0 

1 0 | 0 0 " 
s - 1 0 | 0 0 

0 аs + ß | 0 0 
• 

S - 1 
0 
0 

0 0 1 ( 
аis + ßì 1 | ( 

0 аlS + ßi | 

0 ' 
) 0 
) 0 

S - 1 
0 
0 

0 0 | 
cчs + ßi 0 | 

0 а2s + ß2 1 

3 0 " 
3 0 
3 0 

S - 1 
0 
0 

0 0 | 0 0 ' 
1 s 1 0 0 
0 1 1 0 0 

{а,ß)ф (0,0) 

« i / 0 

( a . , Ä ) # ( 0 , 0 ) 

(52) 

As an immediate consequence of Theorem 4.1 we obtain the following necessary 
condition for a system to occur as the limit of another system under high gain 
feedback. 
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Corol la ry 4 .3 . If a generalized state space system Ex = Ax + Bu is a limit of the 
system Ex = Ax + Bu under high gain feedback (in the sense of HGF1 or HGF2), 
then the pencils [sE — A B] and [sE — A B] satisfy the conditions (47), (48). 

Remark 4.4. In the context of the HGF2 problem, we have as invariants regular 
and singular column indices ( c i , . . . ,cM; cM+i, . . . ,cm), regular and singular nilpoten-
cy indices (ui, . . . , u„; u„ + i , . . ., u„-e) , and finite elementary divisors. The inequal
ities of (47) are conditions on the column indices written in decreasing order; the 
condition (48) may be rewritten in terms of the nilpotency indices and finite elemen
tary divisors as follows. Because Dj([sE — tA tB]) is a homogeneous polynomial 
in the variables s,t, it factors over C as 

hi 

Dj([sE - tA tB] = trj ]J(s - ait) =: trjgj(s,t) 
;= i 

The condition (48) is equivalent to: 

rj <Tj and gj(s,t) \gj(s,t) , j = l , . . . , n . (53) 

Let q = n — rk E, q — n — rk ~E. From Section 3 of [7], we have 

i i 
Y J n , = V J n , - r n _ j , j = l , . . . , n 
i= l i= i 

and 
i q 

£>=Y>,--rn_.<, i«l,...,n, 
1=1 i=i 

where (n,)?=1 (resp. (n"j)'=1) are the nilpotency indices written in decreasing order, 
n,- = 0 for q < i < n and n,- = 0 for q < i < n. Because q < q, the condition f;- < rj 
may be written as 

£ » . < £ « . . J = l,...,_ (54) 
i=i •'=;' 

For the second part of (53), we note that gj(s,t)\g~j(s,t) if and only if gj(s, l)\gj(s, 1). 
Using the fact that each j x j minor of [sE — tA tB] is homogeneous and hence can 

be factored as f n , = i ( s ~ a 't)> w e s e e t n a t 9jis' 1) ^s t n e g r e a t e s t common divisor 
of the j x j minors of the polynomial matrix [sE — A B]. Therefore the second 
part of (53) is equivalent to (54) along with the following condition on the finite 
elementary divisors: 

Dj([sE-A B])\Dj([sE-A B]), j = l,...,n. (55) 

Note that, in the conditions (47), (54), and (55) no distinction is made between 
regular and singular indices. 
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In general, the converse to Corollary 4.3 does not hold. Suppose there are system 
pencils [sEk — Ak Bk] equivalent to [sE — A B] such that 

lim [sEk - Ak Bk] = [sE - A IS] 

If E is nonsingular, we have Bk = LkBWk for some Lk <E Gln(K), Wk 6 Gim(K) so 
that the rank of B cannot be greater than the rank of B. On the other hand it is not 
hard to find examples of pencils [sE-A B] and [si—A B] which satisfy conditions 
(47), (48) with r k B > r k 5 . Hence conditions (47) and (48) are not sufficient for 
either concept of high gain feedback limits. (The two concepts coincide since E = I 
is nonsingular.) The next example illustrates that an increase in the rank of B is 
not the only way in which a pencil limit can fail to be a limit of equivalent system 
pencils. 

E x a m p l e 4 .5 . Consider the following system pencils P and P which have invari
ants ((2, 1), (t)) and (3, 1) respectively: 

P = 

s 1 0 0 | 0 0 
0 s 0 0 | 1 0 
0 0 s 1 | 0 0 
0 0 0 0 1 0 1 

p = 

s 1 0 0 | 0 0 
0 s 1 0 j 0 0 
0 0 s 0 I 1 0 
0 0 0 s I 0 1 

Again the concepts HGF1 and HGF2 coincide since P represents a state space 
system. The pencils P and P satisfy the conditions (47) and (48) of Theorem 4.1, 
so P is a limit of pencils equivalent to P. Limits of P under high gain feedback are 
pencils which lie in the closure of the 5n,m(IK)-orbit of P . In terms of the <7n,m(K)-
invariants described at the end of Section 3, P has only regular column indices 
(invariants (3,1; )) and the column index list of P is (2,1). Since both of the systems 
represented by P and P are reachable (69), we may apply the characterization in 
[6] of closures of £/„,m(]K)-orbits within the set of reachable systems. For the case 
rk E = rk E — 1 and P with only regular column indices, the characterization is as 
follows. We define the following partial ordering on lists of nonnegative integers: If 
a = (aj am) (not necessarily in increasing or decreasing order), let 

r M ( a ) = ( z - l ) | { f c : a t > . 1 l < f c < m } | + | { f e : a » > t , l < / i < i } | + ] T ag. 
l<g<m,a,<i-l 

We say a = ( a i , . . . , a m ) 4 (ai,...,am) = a if rijfi) < r,,j(a) for all i,j. A 
reachable system with column indices (c\,... ,CJ;CJ+1, ... ,cm) is in the closure of 
the (7,i,m0K)-orbit of a reachable system with column indices (c\,. ..,Cm\ ) if and 
only if there is an integer h, 1 < h < m, such that (ci , . . . , Cp CJT+] , . . . , cm) 4 
( c i , . . . , ch,..., cm, Ch — l)where " denotes omission of this index. In this example, 
if P lies in the closure of the (7n,m(K)-orbit of P, then 

( 2 , 1 ) 4 ( 1 , 2 ) or ( 2 , 1 ) 4 ( 3 , 0 ) . 

Neither of these inequalities hold (3 = ^ ( 2 , 1 ) •£. r 2 , i ( l ,2) = 2 and 3 = r2 ,i(2,1) •£. 
^,1(3, 0) = 2); it follows that the pencil P cannot be in the closure of the £n ,m-orbit 
o f > . 
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In Corollary 2.7 we showed that the restriction of pencil equivalence to the set of 
state space system pencils [si — A B] coincides with equivalence under the action 
(21) of the full feedback group ^ ^ ( K ) , It follows directly from Theorem 4.1 that 
the conditions (47), (48) are necessary for orbit closure of state space systems under 
the action of the full feedback group. Now we establish that these conditions are, in 
fact, sufficient. 

T h e o r e m 4.6. A state space system x = Ax + Bu is a limit of the state space 
system x = Ax + Bu under the action (21) of the full feedback group J-„ m(K) if 
and only if the pencil [si — A B] is in the closure of 0([sl — A B]), i.e. if and 
only if the pencils [si — A B] and [si — A B] satisfy the conditions (47), (48). 

P r o o f . Because elements of the full feedback group •?"„,„, (K) are pencil trans
formations, we know that [si — A B] is in the closure of 0([sl — A B]) whenever 
i = Ax + Bu is a limit of a system x = Ax + Bu under the full feedback group 
action. 
Conversely, suppose [si — A B] is in the closure of 0([sl — A B]), i.e. for some 

Lk 6 Gln(K), [ fk * * ] € Gi n + m (K) , 

lim Lk[sl-A B ] [ J * * ] = [ , J-7l B] (56) 

i.e. 

lim LkRk = I, lim Lk(ARk - BFk) =A (57) 

lim LhXk = 0, lim LkBWk - LkAXk =B. (58) 

Set Mk = Lk(ARk - BFk) - A; then limj^oo Mk = 0. From (57) and the conti
nuity of the determinant function it follows that there is an integer N such that 
Rk is invertible for k > N. From (58) we have limjt^oo LkRkR^lXk = 0, hence 
limfc_,oo Rk

 1Xk = 0. Substituting 

LkAXk = LkARkRk
lXk = (Mk + LkBFk + A)Rk-

1Xk 

into (58), we obtain 

B = lim LkBWk - (Mk + LkBFk + A)R~1Xk 

= \imoLkB(Wk - FkRllXk) - (Mk + A)R~k
1Xk. 

Because limt_oo Mk = 0 and limj,-,^ Rk
 lXk = 0, it follows that 

B = ton LkB(Wk - FkR-k
xXk). (59) 

If the matrix Wk—FkRk
lXk is not invertible, there is an mxm matrix Wk arbitrarily 

close to Wk such that Wk — FkR~^}Xk is invertible; hence, without loss of generality, 
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we may assume that Vk = Wk - FkRk
 1Xk is invertible. It follows from (57), (58), 

and (59) that 

Um Lk[sl- A B]\^fk ° ] = [ s / - I B]. (60) 

Because limj,-»0o LkRk = I, we may replace Lk in the equation (60) by Rk
] = 

(LkRk)~
lLk (the matrix LkRk is invertible for large k). Therefore 

limR-^sI-A B][fk ^=[sI-A B]. 

Altogether we have shown that every pencil [si —A B] representing a state space 
system which is in the closure of 0([sl — A B]) belongs to the closure of J>, |m(K) • 
[si — A B]. The theorem then follows from Theorem 4.1. O 

Theorem 4.6 extends the main result of [18] which characterized orbit closure 
only within the set of controllable state space systems. 

5. SYSTEM-THEORETIC APPLICATIONS 

In this section we discuss some consequences of the results of § 4. We consider only 
systems which are regularizable. In the two concepts of "limits under high gain 
feedback" we have included limits which may be realized without applying feedback 
transformations; we identify cases in which feedback transformations are necessarily 
applied. We then discuss how many nonequivalent systems may occur as high gain 
feedback limits of a given one and we identify those systems which never occur as 
a nontrivial high gain feedback limit of any system and those systems which have 
no nontrivial high gain feedback limits. The last part of this section is devoted to 
a discussion of the "high gain Rosenbrock problem". We compare the set of lists 
of invariant factors which can be achieved by applying state feedback to a given 
system (E,A,B) with the set of invariant factor lists which are producible in the 
limit by high gain state feedback. If controllability and the rank of E are to be 
preserved, we will see that the two sets coincide, i.e. nothing is gained with respect 
to the assignability of invariant factors by allowing high gain feedback limits. On 
the other hand, if we admit noncontrollable high gain feedback limits of a given 
controllable state space systems, any set of invariant factors can be achieved. We 
begin by summarizing the system-theoretic results of the previous section: 

1. If Ex = Ax + Bu is a limit of Ex = Ax + Bu under high gain feedback (in 
either sense), then the pencils [sE — A B] and [sE — A B] satisfy conditions 
(47), (48). 

2. For state space systems, HGF1 and HGF2 coincide and we have: x = Ax + Bu 
is a limit of x = Ax + Bu under high gain feedback if and only if the pencils 
[si - A B] and [si - A B] satisfy conditions (47), (48). 
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A system Ex = Ax + Bu which is a limit under high gain feedback of another 
system Ex — Ax + Bu (in the sense of HGF1 or HGF2) may have actually arisen as 
a limit in which feedback transformations were absent. In the following propositions, 
we identify some limits which can be achieved only when feedback transformations 
are applied. 

L e m m a 5 .1 . Suppose a regular system pencil [sE — A B] is a limit of system 
pencils which are equivalent to a regular system pencil [sE — A B] under input 
transformations and operations of strong equivalence alone. Then: 

det(sjfj — A) is a nonzero scalar multiple of det(sE — A) (61) 

and 
Dj(sE-tA) | Dj(sE-tA), \<j<n. (62) 

In particular, rk E = rk E and hence a singular system cannot be a limit of a state 
space system under transformations of input and strong equivalence alone. 

P r o o f . By assumption, we have 

[sE-1 B]=limLk[sE-A B] [ RJ *» 

where EXk = 0. It follows that 

sE-A= lim Lk(sE- A)Rk. 

The conclusion (61) follows from [7, Lemma 3.3], and (62) follows from [7, Theorem 
3.7]. • 

Proposi t ion 5.2. Let Ex = Ax + Bu and Ex = Ax + Bu be systems given by 
nonequivalent pencils in system canonical form (34) which have the same regular 
blocks (R = R). If the system Ex = Ax + Bu is a limit of Ex = Ax + Bu under 
high gain feedback (in either sense), then the limit could not have been achieved by 
using only operations of strong equivalence and input transformations. 

P r o o f . Let ( c i , . . . , cm) and (c i , . . . . , cm) be the column indices of [sE -A B] 
and [sE — A B] respectively. Because R = R, we have 

n-r = VJc,- = V j c , , 
t = l i = l 

where R = R is an r x r pencil. Since the system Ex = Ax + Bu is a limit 
of Ex = Ax + Bu under high gain feedback, it follows from Corollary 4.3 that 
conditions (47) and (48) hold. Because the sequences of column indices for the two 
pencils are partitions of the same integer, the condition (47) is equivalent to 

3 3 

] [ ] c . > X ! c ' > J = ! . • • •»" . . (63) 
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(This is a standard combinatorics result; see for instance [3].) Since the pencils 
[sE — A B] and [sE — A B] are not equivalent, at least one of these inequalities 
is a strict inequality; i.e. there is an h, 1 < h < m, such that 

h h 

X>>!> (64) 

In system canonical form (34), the nonzero column indices ( c i , . . . ,Cp) (respectively 
( c i , . . . , cp)) are the block sizes of the Jordan blocks si + A%f (respectively si + NCi) 
of the pencil si - A\ (respectively si — A\). Let r\,..., rk be the block sizes of the 
'nilpotent' Jordan blocks si + NT, in R = R; then the sizes of the Jordan blocks 
of this form in sE — A (resp. sE - A) are 6] > . . . > bw (b\ > . .. > b^) where 
(6i, . .. , 6,„) is a rearrangement of the list (c\, . .. ,cp,r\, ... ,rk) and (&i,. . . ,bm-) is a 
rearrangement of the list (c\,... ,Cp,ri, ... ,rk) (both in decreasing order). For ease 
of exposition, set 6; = 0 for w < i < n and 6,- = 0 for w < i < n. Let hg be the 
minimal integer h such that (64) holds, so that C; = ct- for i < h0 and ch„ < C/,0. Let 
z be the smallest integer such that bz ^bz. Simple combinatorial reasoning shows 
that bz < bz and so: 

i>>x> (6s) 
i= i .=1 

Let dj be the largest power of s dividing Dj(sE + tA) and define dj similarly. From 
the discussion of block sizes and invariant factors in [7, Sec. 3], we see that 

j 

Y J 6,- = dn - rf„_j , j = l , . . . , n - l 
i= i 

and j 
Y^b^dn-dn-j, j=l,...,n-l 

Suppose Ex = Ax + Bu is a limit of systems which are equivalent to Ex = Ax + 
Bu under input transformations and operations of strong equivalence alone. By 
Lemma 5.1, we have dn = dn and dj < dj, 1 < j < n — 1. It follows that 

contradicting (65). • 

In the following propositions, we discuss the number of non-feedback equivalent 
systems which may occur as high gain feedback limits of a given system Ex = 
Ax + Bu (see Definition 2.3). 

P r o p o s i t i o n 5^3. For HGF1 or HGF2, there are only finitely many high gain 
feedback limits Ex = Ax + Bu of Ex — Ax + Bu which are non-feedback equivalent 
and satisfy 

£ * = 2 > . (66) 
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where ( c i , . . . , c m ) and (ci, . . . , cm) are the column indices of [sE — A B\ and [sE — 
A B\, respectively. 

P r o o f . It suffices to establish the proposition for the HGF2 case. Let Ex = 
Ax + Bu be an HGF2 limit of Ex = Ax + Bu such that the condition (66) is satisfied. 
It follows from Corollary 4.3 that conditions (47) and (48) are also satisfied. Given 
n and m, there are only finitely many possible column index lists for [sE — A B\. 
We may assume that both systems are in the canonical form (34) with regular blocks 
R and R respectively. From condition (66) it follows that R and R are both r x r 
blocks (r = n — 5_i_i ci)- Let R\ and R2 (respectively R\ and .R2) be the r x r 
matrices such that R = sRi + R2 (respectively R = sRr+ R2). It follows from 
condition (48) that 

Dj(sRi +tR2) I D^sf i j + t~R2), j = l , . . . , r 

(see [4], vol. 2). In particular, Dr(sRi +tR2) = Dr(sRi + tR2). Because D^sRx + 
tR2) divides Dr(sRi + tR2) for j = 1, . . ., r, there are only finitely many possible 
lists (Di(slRi +tR2),..., D r ( s R i + t~R2)). It follows that, under the condition (66), 
there are only finitely many possible lists of invariants for the pencil [sE — A B\; 
the conclusion follows from Kronecker's classification (Theorem 3.1) and the fact 
that each class of equivalent pencils contains only finitely many IIGF2 equivalence 
classes (see the last paragraph of § 3). • 

P r o p o s i t i o n 5.4. A system Ex = Ax + Bu has infinitely many non-feedback 
equivalent limits under high gain feedback (in either sense) if and only if the pencil 
[sE — A B\ has at least one nonzero column index. 

P r o o f . Suppose all column indices of [sE — A B\ are zero. If E i = Ax + Bu is 
a high gain feedback limit of Ex = Ax + Bu (in either sense), then by Corollary 4.3, 
the corresponding pencils satisfy (47); hence [sE — A B\ has no nonzero column 
indices. In particular, (66) is satisfied and we conclude from Proposition 5.3 that 
Ex = Ax + Bu has only finitely many non-feedback equivalent limits under high 
gain feedback (in the sense of IIGF1 or of HGF2). 
Suppose the pencil [sE — A B\ has a nonzero column index, i.e. ci ^ 0 . It suffices 
to produce infinitely many HGF2 limits which are nonequivalent in both senses. 
Without loss of generality, we may assume that the pencil [sE — A B] is in the 
canonical form (44).If cx is a regular column index, then the pencil [sE — A B\ has 
a "controllable state space block" [si — ACl __J> where ACl is a nilpotent Ci x ci 
Jordan block and BCl = [ 0 • • • 1 ] . It suffices to show that there are infinitely 
many nonequivalent high gain feedback limits of [si — ACl BCl\ in canonical form, 
since every generalized feedback transformation of [si — ACl BCl\ can be trivially 
extended to a generalized feedback transformation of the whole pencil [sE — A B\. 
We see from Theorem 4.6 that all of the following pencils are high gain feedback 
limits (HGF1 and HGF2) of the pencil [si - ACl BCl\: 

sI + ACl.x 0 Bci-i 
0 s - a 0 
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Because there are infinitely many choices for a, giving nonequivalent pencils, the 
conclusion follows. 
If c\ is a singular column index, then the pencil [sE — A B] has a c\ x (ci + 1) 
block in P of the form SCl (defined by (32)). Applying HGF2 transformations only 
to this block, it follows from Lemma 5.4 of [11] that all of the following pencils are 
in the orbit closure of SCl: 

s..-i o 
0 s - a 

Any pencil equivalence transformation for the block SCl can be trivially extended to 
a transformation of restricted equivalence for the whole pencil [sE — A B]. Since 
different a's lead to nonequivalent pencils, the conclusion follows. • 

P r o p o s i t i o n 5.5. There is a state space system x = A0x + B0u such that every 
system Ex = Ax + Bu is a limit of x = A0x + B0u under high gain feedback (in 
either sense). Moreover, up to transformation by elements of (7n,m(K), the system 
x = A0x + B0u is the only such system. Consequently, the system x = A0x + B0u is 
the only system (up to transformation by elements of <5„,m(K)) which is a nontrivial 
high gain feedback limit of no other system. 

P r o o f . It suffices to consider only the IIGF2 case since all IIGF2 limits are 
HGF1 limits as well. Let x = A0x + B0u be the controllable state space system in 
Brunovsky canonical form with associated pencil [si — A0 B0] having the following 
invariants: 

Dj{[sI-tA0 <Bo] )= l for all j = l , . . . , n 

+ 1 if 1 < i < n- [ £ ] m 

if n — [£ l m + 1 < i < m 

for 1 < i < — 
~ - LmJ 

0 if m | n 
n — — m otherwise 

for [» ] 
LmJ 

4 = 0 for — + 2 < i < n. 
LmJ ~ — 

Among all lists of invariants of n x (n + m) pencils with no row indices, the above list 
of invariants is the (unique) largest one with respect to the partial ordering given by 
conditions (47) and (48). If x = A0x + B0u is a high gain feedback limit of another 
system Ex = Ax + Bu, then E is nonsingular and so the system is equivalent to 
a state space system. We conclude from Theorem 4.6 that the two systems are 
equivalent. It also follows from Theorem 4.6 that every state space system pencil 
[si - A B] lies in the closure of Gn,m($) • [si - Ao So]- It follows from the 
characterization of <7n,m(R)-orbit closure given in [6] that every controllable system 
Ex = Ax + Bu is in the £„,m(K)-orbit closure of some state space system. Let Ex = 



A Pencil Approach to High Gain Feedback and Generalized State Space Systems 135 

Ax + Bu be an arbitrary system. If ftn,m(K) is the subgroup of &n>m(K) consisting 
of transformations of restricted system equivalence, it follows from [7, Prop. 4.6] that 
there is_a regular system pencil [sE -A B] representing a controllable system such 
that [sE -A B] is in the closure of nn,m_K) • [sE - A B]. Since nn,m(K) is a 
subgroup of (7n>m(K), it follows that [sE -A B] S cl (Gn,m(K) • [sE -A B]). By 
transitivity, we have 

[sE-A B)ecl(0„,m(KH*J- J4 ( , Bo]). 

This concludes the proof. Q 

A consequence of Theorem 5.5 is that every system occurs as a high gain feedback 
limit of some state space system. Moreover, with the exception of the system x = 
A0x + B0u described above, every system occurs as a high gain feedback limit of a 
system which is not equivalent to it. 

P r o p o s i t i o n 5.6. Let Ex = Ax be a system satisfying det(sE — A) =£ 0 such 
that sE — A is equivalent to a diagonal pencil. Then the system Ex = Ax has no 
nontrivial IIGF1 limits. 

P roo f . The pencil [sE — A 0] with sE—A diagonal has all column indices equal 
to zero and all elementary divisors of the pencil have degree 1. If Ex = Ax + Bu is 
a high gain feedback limit of Ex = Ax, then it follows from Corollary 4.3 that the 
pencils [sE — A B] and [sE —A 0] must satisfy conditions (47) and (48). Hence 
the pencil [sE — A B] has all column indices equal to zero and the two pencils have 
the same elementary divisors. It follows from Kronecker's Theorem and Proposition 
2.6 that the pencils are equivalent in the sense of HGF1. O 

We conclude the paper with a brief discussion of what we call the high gain 
feedback version of Rosenbrock's problem. While a complete high gain counterpart 
of Rosenbrock's Theorem is not yet available, we will present results concerning two 
extreme special cases. 

The pencils in canonical form (44) which represent controllable systems are those 
with no regular nilpotency indices, no finite elementary divisors, and the singular 
nilpotency indices are all equal to 1. Using Theorem 4.1 and the generalization 
of Rosenbrock's Theorem which appears in [15], we obtain the following result for 
controllable systems with fixed degree of singularity (i.e. tkE fixed). 

P r o p o s i t i o n 5.7. Let [sE — A B] and [sE — A B] be pencils representing con
trollable systems with rk E = rk E such that [sE — A B] is in the closure of 
_([s__ A B]). For any feedback transformation F € K m x " such that det(sE -
A + B F) ^ 0, there is a feedback transformation F G Kmx" such that the pencils 
sE — A + BF and sE — A + B F have the same invariant factors. 

P r o o f . By the remarks above, the pencil invariants of the two pencils [sE — 
A 5 ] and [sE—A B] are as follows: k (respectively k) infinite elementary divisors, 
all of degree 1, and column indices (ci, . . . , cm) (respectively ( c i , . . . , cm)). Since the 
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pencil [sE — A B] is in the closure of 0([sE - A B]), it follows from Theorem 4.1 
that k < k and 

_ i i 

£ 3 ___-.. i-l,...,n. (67) 
i=l i= l 

Since by assumption YlT=i î = rk i? = rk i5 = YlT=i c>i (67) is equivalent to 

X > > £ c . , i = L •••,"»• (68) 
i=l i= l 

Let F £ K m x n and let p~i(s), . . . . ,pm(s) , 1, . . ., 1 be the n invariant factors of the 
pencil sE — A + B F. From the main theorem in [15] and (68), it follows that 

; j j 

Vjdeg p,(s) > V > > VJCJ, i = l,...,m. 
i = l i= i i=i 

Again applying the main theorem of [15] it follows that the invariant polynomials 

Pl(s)>- ••,Pm(*),l>- • - , ! 

are the invariant factors of the pencil sE — A + BF for some feedback transformation 
F. a 

Roughly speaking, the previous proposition can be summarized as follows: Noth
ing new is gained as long as neither controllability is sacrificed nor rk E is strictly 
decreased. 

On the other extreme, if we do not require any controllability property of the 
high gain feedback limit we will see that all lists of invariant factors may occur. 

P ropos i t i on 5.8. Let pi(s), . . . ,pn(s) be monic polynomials in K[s] such that 
Pi-(.i(s) divides p, (s), i = l , . . . , n — 1 , and Yli=l ^eS Pi (s) — "• —'* = Ax + Bu is a 
controllable state space system, then there is a high gain feedback limit x = Ax + Bu 
of x = Ax + Bu (in the sense of IIGF1 or HGF2) such that the invariant factors of 
the pencil si — A are p i (s ) , . . . ,pn(s). 

P r o o f . Let A be an n x n matrix such that the invariant factors of si — A are 
P i ( s ) , . . . ,pn(s). Then the nx(n + m) pencil [si-A 0] has only zero column indices 
and invariant factors fj — pj, j — 1 , . . . , n. Because x = Ax + Bu is controllable, 
we have Dj([sl - A B]) = 1 for all j = 1 , . . . , n. It follows from Theorem 4.6 that 
x = Ax is a limit of i = Ax + Bu under high gain feedback. (Recall that, in the case 
of state space systems, the high gain feedback concepts HGF1 and HGF2 coincide). 

D 

The previous two propositions show an interesting trade-off between the gain in 
assignability of invariant factors and the loss in controllability. If controllability is 
to be preserved in the limit no new lists of invariant factors can be assigned in the 
high gain feedback limit (compared to ordinary state feedback). If, however, we 
are willing to sacrifice controllability completely, then all possible lists of invariant 
factors can be produced in the limit. 
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APPENDIX. GLOSSARY 

7>„,m(K) = Kn x 2<n+m) = the set of n x (n + m) pencils sM + N over K 

0(sM + N) = {P(sM + N)Q : P £ GJ„(K), Q £ GJ„+ m(K)} 
where sM + AT e 7>„,m(K) 

5„,m(K) = {[sE-A B]:E,AeKnx",BeKnXrn} 

5™m(K) = { [ s E - A B] (E S„,m(K) : d e t ( s F - A ) ^ 0 } . 

Strong equivaJence: [sE -A B] ~ [sLFJi - LAfi 1 ( 5 - AX)] 

where J,, J? 6 GJ„(K), X S K " x m , F X = 0. 

Restricted system equivalence: [sE — A 5] ~ [sLFB — L A B LB] 
where L , B e GJ„(K). 

FuJJ feedback group: 

^n,m(K) = | [ J ^ 1 : R g GJ„(K), W € GJm(K), F e Km 

Action of jF„,m(K) on the set of state space systems: 

[* £]•[-/->. fl] = ̂ J - A B l [ ? ^ ] " 
Generalized feedback group: G„,m(K) = GJ„(K) x Fn,m(K). 
Action of <7„,m(K) on 5„,m(K): 

( P ' [ ғ w ] ) ^ ^ B] = P[sE-A 5 ] [ 
Я 0 

ғ w 
Limits under high gain feedback ( c l ( ) denotes topological closure): 

H G F 1 : The system F x = Ax + Bu is a high gain feedback limit of the system 
Ex = Ax + Bu in tne sense HGF1 if 

[sE-A B] E cl (0([sE - A B ] ) n S „ , m ( K ) ) 

H G F 2 : The system F x = Ax + Bu is a high gain feedback limit of the system 
JJi = Ax + Bu in the sense HGF2 if 

[sE-A 5]ecl(e„,m(K)-[sF-A B]). 

A system Ex = Ax + Bu is controllable if 

r k [ a F - A B] = n for all a £ C and I m F + A K e r F + I m B = K". 
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A s y s t e m Ex — Ax + Bu is reachable if 

A[aE + /3A B] = n for all ( a , / 3 ) G C 2 \ { ( 0 , 0 ) } . (69) 
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