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A M E T H O D OF D E T E C T I N G CHANGES 
IN T H E BEHAVIOUR OF LOCALLY 
STATIONARY SEQUENCES 

JlRI MlCHALEK 

A method for the detection of abrupt changes in the course of a locally stationary 
sequence is proposed. The method is based on a suitable approximation of an observed 
sequence by autoregressive models that are compared by means of a similarity measure de
rived from the asymptotic /-divergence rate. The method is illustrated by several numerical 
results. 

1. INTRODUCTION 

The detection of changes in the behaviour of random sequences and processes is very 
intensively investigated in last years because of a direct use of suggested methods 
in practice. From the point of view of mathematical statistics the problem of de
tecting changes is a task belonging to the testing hypotheses region. We test a 
single hypothesis presenting a homogeneous course of an observed sequence without 
any change versrs a composed alternative hypothesis not eliminating, in general a 
change at an arbitrary time instant during observation. The first kind error is the 
false alarm error and the second kind error is expressed via the average length be
tween the occurring of a change and its recording. One can find in literature several 
survey papers dealing with the problem. One can recommend to the reader the 
papers due to Kligiene and Telksnys [5], Basseville and Benveniste [3], Willsky [11], 
Nikoforov [8]. The main difficulties occurring by solving this problem follow from 
the nonexistence of an optimal statistical test as shown by Deshayes and Picard in 
Basseville and Benveniste [3]. We can speak at most about the asymptotic optimal
l y of proposed tests. From these reasons we can meet in literature many methods 
for detecting changes, which can be used under different circumstances. Most of 
these methods are based on the construction of a statistic, usually of a cumulative 
sum type, which under no change has vanishing mean value and after the occur
ring of a change its mean value changes as well. The usual approach in suggesting 
methods for detecting changes is the following. At first, the perfect knowledge of a 
mathematical model describing the situation before a change is supposed. Secondly, 
one supposes sometimes the perfect knowledge of the situation after a change, too. 
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Under these assumptions a method for detecting is derived. In practice, unknown 
parameters in the considered models are substituted by suitable estimates. 

Some random nonstationary sequences ca,n be approximated by locally stationary 
sequences. Such a random sequence can be split into mutually stochastically inde
pendent parts , which can be considered to be weakly stationary. The abrupt changes 
between adjoing stationary parts are to be detected. A change can occur both in 
mean values and in spectral densities. Although in practice one can meet a locally 
stationary sequence w7ith a transitional period between two stationary segments our 
model can serve as a first approximation. Such a situation can happen during the 
monitoring of a signal coming from a measuring sensor bearing information about 
the behaviour of a technological process. A transitional nonstationary period can be 
caused by a transition from one regime to another one. We shall assume our observed 
sequence can be described by a locally stationary time series with unknown mean 
values, unknown spectral densities and unknown time instants of changes. Within 
every stat ionary segment the observed sequence is weakly stationary and regular, 
first we shall assume Gaussian observations, later this assumption will be dropped. 
The basic idea is to approximate the observed sequence by a suitable autoregressive 
models then to watch a similarity among these approximative models. The measure 
of similarity is given by the asymptotic /-divergence rate between two Gaussian 
autoregressive models. This measure of similarity serves as a testing statistic for 
detecting changes in the behaviour of a locally stationary sequence. Under the null 
hypothesis this statistic should be theoretically vanishing under a change it must be 
positive. 

2. T H E O R E T I C A L BACKGROUND 

Let P, Q be two Gaussian measures defined on the measurable space (Roo, I^'oo), 
where Hoo = X 1 Ri, K^ is the Kolmogorov cr-algebra, by mean values rap, rag 
and by spectral density functions (fp(-), ^ Q ( ' ) - Let Pn, Qn be the restriction of P, Q 
to the subspace (Rn, Kn). The problem of detecting changes in the behaviour of a 
random sequences is that of hypotheses testing. 

The quality of a test is given by the first kind and second kind errors. Let 
us assume, for this moment only, we exactly know a change t ime instant and the 
mathematical models describing an observed sequence as well. Then, there exists 
the optimal test of the Neyman-Pearson type via the Radon-Nikodym derivative of 
the corresponding probability measure, let us say 

dPn(x) 

dQn(x) 

where x = (x\,X2,.. • ,xn) are observations at disposal given. The hypothesis "no 
change" is rejected if 

d ^ ( x ) 

d « „ ( x ) > ""•" 
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where J a n is derived from the significance level equal to a. The test function 

M 1 . _ . d P «( X ) j . A 

</?n(x) = 0 otherwise 

determines the second kind error (3n(a) = Ep{\ — (pn(x)}. In the i.i.d. case the 
behaviour of (3n(a) if n —* oo is given by the famous Stein theorem (cf. Bahadur 
[1]), generalizations to the case where an asymptotic /-divergence rate exists 

lim -}—I(Pn\Qn) = l(P\Q)= lim —-r In/?„(_) 
n-+oo c ( n ) n->oo c(n) 

were obtained by Vajda [9,10]. In the stationary case we have c(n) = n. This fact 
says, roughly speaking, the larger I(P\Q) the better chance for distinguishing P from 
Q. The basic idea following from these conclusions: can we use a suitable estimate 
of I(P\Q) as a statistic for detecting changes in behaviour of a locally stationary 
sequence? 

First, we need an expression for I(P\Q) in the Gaussian stationary case. The 
answer can be found, e.g. in the monograph Vajda [9]. 

Lemma 1. Let {Pn, <5n}n*=1 be Gaussian stationary measures generated by ran
dom regular stationary sequences {xj}J=li {yj}?=1, respectively. Then under the 
assumption of equivalence Pn ~ Qn for each n _ jV there exists 

Urn l-EP (in ¥g\ = 1(P\Q) = 
n^oo n { dQn J 

1 r [VP i.V»P A / u ^ , l ( " i p - m Q ) Гf_._hlsг-.-Л(л)dл + 
A- J_% \<pQ '" (pQ 7 v v " ' 2 (T£ 

where y?p, y?Q are the corresponding spectral densities, mp, UIQ are mean values 
and (TQ is dispersion of the best one step ahead prediction error with respect to 
{Qn}-

P r o o f . See [9], pp. 239-240. • 

In case that the Gaussian measure Q is generated by an stationary autoregressive 
random sequence and the Gaussian measure P is given by a regular stationary 
random sequence the corresponding asymptotic /-divergence rate can be expressed 
more in detail. Then the explicit form is written in the following 

Lemma 2. Let Q be a probability measure generated by an autoregressive sta
tionary Gaussian sequence, let P be a probability measure generated by a linearly 
regular Gaussian stationary random sequence with a covariance function R and 
spectral density function tpp. Then 

1 (mP -mQf 1 / a T I R a a2 

2 o~ + 2 \~~~~~ a2 
P I(P\Q) = -S r-~ v / +; —g--ln-f-l 

Q z V Q Q 
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where a = ( l . a i , . . . , ap) are the autoregressive coefficients due to Q, cr'L and ap 
are mean square one step ahead prediction errors, JR is the (p-f 1) x (p-f 1) Toeplitz 
matrix derived from the covariance function R(-)-

P r o o f . First, we shall calculate T= f Z(\\ *-A. As $ is an autoregressive 

model then the corresponding spectral density (PQ{-) is given by 

M A ) = 5Z -
Z7T 

with OQ = 1. Then 

• 0 UJ e 

|2 
P . л , e « ' І A [ 

W - - - ^ Q ( A 4тг./_-- o-2 
p p 

= õ W ÉÉaia*eťŰ'"*Vp(A)dA 

= ЛEÍ.aia*-ГeiCУ"*WA)dA 

1 p p 

= ст_C.Ěв-rв*лУ-*)ï= 
2^n : -

<y j = o jk=o 
l a T I R a 

_~aj-

The second step is to evaluate 4- f__ In ¥>PsA dX. Since we have regular spectral 
densities then 

- i - / In ^ 4 T T dA = - i - / \n<pp(X)dX-^- f ln^n(A)dA. 
47rj_7r ^g(A) 47rj_7r ^ v ; 4* J., ^ ; 

At this moment we can use the formula for one step ahead prediction error in the 
quadratic mean sense, e. g. see [4] for detail 

a2 = 27rexp < — / ln<£>(A)dA 
L 27r y_7r 

Hence, after elementary computations we find out that 

i r___&'<_ i_* 
47Tj_7r <PQ{\) 

Now, we are ready to state that 

1 (mp -mQ)2 1 i a T IRa 
2 aj + _ l ~ T T ~ ~'<r; 1{P\Q) = t^_____^__L_ + ± ( __^_ _ l n _ £ _ , 
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I(P\Q) possesses similar properties as statistical convex distances, e.g. the 
Kullback-Leibler information, Renyi's distances: 

l. 7(P |Q) > o 
2. 1(P\Q) = 0<=>P = Q 
3. I(P\Q) is not a metric in general because of non-valid triangular inequality. 

I(P\Q) can be utilized for a construction of minimal distance estimates. This pos
sibility is used in the proposed method for the construction of an autoregressive 
model of a given order that is in a certain sense the most similar to the observed 
sequence. If the measure P is derived from observations and Q belongs to the class 
of Gaussian autoregressive models of a given order p £ M then we wish to find 
an autoregressive model Q* minimizing the distance I(P\Q). In case we choose 
the measure P derived from observations {x\,x2,... ,xn} via the sample spectral 
density function 

2TT 
with >=-* 

^(A) = \\ £ e~iAi^0'). 
i--p 

1 '. i 
Mi) = - z2(Xk ~ x) (Xk+J ~ *)' j = 0,1,. . . ,p, n > p 

1 n 

R(-J) = Hj), *=-J2xi 
3=1 

then as shown in Michalek [7] this minimization task is unambiguously solved. 
The solution is given by the Yule-Walker estimf^es of autoregressive coefficients 
01,02, . . . , ap. As for the order p this can be approximated by the Akaike criterion, 
e. g. A very progressive method suitable for computer implementation evaluating 
the Yule-Walker estimates is the so called Durbin-Levinson algorithm. 

In case when the observed sequence {xn} is not Gaussian the approximative 
autoregressive model minimizing I(P\Q) can be considered as the closest projection 
of P into the class of Gaussian autoregressive models having the order p in the sense 
of the results presented in Kiinsch [6]. 

In the case of two Gaussian stationary autoregressive sequences the corresponding 
asymptotic /-divergence rate I(P\Q) can be expressed as 

HP\Q)=9 n2 
2 aQ 

where Q = (I, aj, a2,..., ap> aQ, TTIQ), P = (1, b\,..., bp, ap,mp). This fact im
mediately follows from Lemma 2 and from the useful relation 

ap = b T I R p b , 

which is a direct consequence of an autoregressive model. Sometimes one can use 
the symmetric version of I(P\Q) denoted as 

J(P,Q) = ±(1(P\Q) + 1(Q\P)). 
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For autoregressive models J(P, Q) has then a very simple form, namely 

o - 7 P n \ - ! ( ^ P - ^ Q ) 2 , l ( m P - m Q ) 2 1 a T ! R P a 1 b T I R Q b 

- • • t l r i V j - " ; ~2 h o ~2 9 ~- 9 ~2 i ' 
Z (Jp Z (JQ Z CTg Z O p 

Using the corresponding spectral density functions p>p, <pQ J(P, Q) can be expressed 
in a very clear form as 

7(p,Q)=±r^p-™)2(\)dx 
8~ J_v (pp<PQ 

(if for simplicity mp = m,Q = 0). This last expression for J(P,Q) follows directly 
from Lemma 1 because 

^J_ir\pQ(\) pQ(\) J 

im'r(«i,n«a-,)d, 
4TVJ_W\PP(\) <pp(\) J 

hence 

\[i(P\Q) + I(Q\P)} = 

- ±ríeESíi+_m.2\ix 
8TT J_- \PQ(\) <pP(\) 
j _ r (^(A)-^(A))2

dA JL / 
8 ^ 1 . V?Q(A)^g(A) 

3. DESCRIPTION OF T H E METHOD 

Let us assume the observations {_/}?_i form a locally stationary sequence with 
unknown mean values and spectral densities. The method for detecting changes is 
based on the principle of two sliding windows. The first one serves as a reference 
window identifying sequences before a change the other one is a testing window 
moving ahead along observations detecting a possible change. The reference window 
contains a certain number of observations, let us say m, which must be sacrificed for 
starting up the procedure. The first testing window begins at the position m + 1. 
The testing window can be relatively short (in practice we can consider from 20 up 
to 100 observations). Let L be the length of a testing window. 

Under the hypothesis "no change" the sequence {XJ}^-^ forms a regular weakly 
stationary sequence as assumed. Within each window the observed sequence will be 
approximated by a suitable autoregressive model of the order p, where p is chosen 
in advance. In this way we obtained the estimates a = (1, 5i , a-2, • • •, o,p, (JQ) and 
IRQ from the reference window, b = (1, b\, 62, • • •, bp, crp) and IRp from the testing 
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window. Using these quantities we can estimate I(P\Q) expressing the similarity 
between both the windows. This estimate has the following form 

l(P\h\ - U ^ P - ^ Q ) 2 , 1 a T I R p a - b T I R p b 
Y ^ | g j - 2 aQ

 + 2 a% 

where ITIQ is the arithmetic mean in the reference window and rhp is the arithmetic 
mean in the testing window. Under the validity of the hypothesis "no change" the 
considered statistics I(P\Q) forms a sequence with values close to zero. If a change 
occurs this constant course must be violated since new observations after the change 
are s tar t ing to fill up the testing window. Using the statistic I(P\Q) the problem of 
the detection of changes in spectral characteristics is transformed into the problem 
of the detection of changes in constant mean value. When no change is detected the 
testing window is innovated by the latest observation. We see this method cannot 
distinguish two changes that are too close each other. 

Although the proposed method need not assume almost anything about the ob
served sequence except its local stationarity there exists a weak point, namely the 
setup of a limit whose crossing means the detection of a change. From this theo
retical point of view the calculation of such a limit is a very complicated problem 
because of a strong dependence of J-divergence rates on moving windows. Further, 
such a limit would be also strongly dependent on parameters defining the observed 
sequence before a change and after it. But, the parameters after a change are not 
k m w n to the observer a priori. It means if we had any theoretical bound for de
tecting changes, from the practical point of view such a limit would be without any 
applicability as long as we did not know the parameters after the change. Such a 
situation is, unfortunately very rare in practice. There is in fact the only possibility 
how to overcome this difficulty. We must have a possibility to recognize the be
haviour of J-divergence rates before a change. In other words speaking, we must 
sacrifice a certain part of observations for determining a reliable upper bound for a 
J-divergence rate. This approach is systematically used in our simulations described 
in the last par t of the paper. It is evident tha t the setup of an upper bound for J -
divei^ence rates is very closely connected both with the probability of a false alarm 
and with the delayed time after detecting a change. From this reason we considered 
the different length of the testing window to show its influence upon the delayed 
time. 

The method with the fixed reference window and with moving detection window 
is suitable in such a situation when we can expect one change only. In case we can 
watch a series of changes the proposed method must be rather modified, namely 
both the windows must be moving simultaneously, i.e. the reference window must 
immediately follow the detection window. Their length need not be the same, in 
general. On the basis of practical results it is more convenient by this modified 
method to calculate 

\n(\7(P,Q)\ + l) 

instead of J(P,Q) to give chance for detecting changes with relatively smaller dif

ferences in J(P,Q)-
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4. NUMERICAL RESULTS AND CONCLUSION 

The proposed method is illustrated in 6 examples of locally stationary sequences. 
The Models A, B, C, D concern autoregressive sequences before the change and after 
it, too. The Model E deals with a very simple ARMA(1,1) sequence. The last 
Model F considers a sequence of several changes and shows the application of the 
modified method described just above. All the cases A, B, C, D and E are organized 
identically. All the sequences contain 1 000 observations, 500 before the change and 
500 after the change, i.e. the change occurs at the position 501. When the reference 
window has the length m, and the detecting window L then the change in the figures 
is depicted at the position 501 — m — L. For better orientation the change in the 
figures is represented by a vertical line. 

It means the first observation after the change is taken into the detecting window 
having the length L at the position 501 — m - L. All the figures concerning the cases 
A, B, C,D and E present the corresponding J-divergence rate 

J ^ ' ^ j ~ 2 a\ + 2 <x2-
Q P 

between the moving detection window and fixed reference window at the begin
ning of observations. If J(P, Q) is depicted in the figure at the nth position it 
means this value presents the J-divergence rate between the detecting window 
{ x m + n , . . ., x n + _ + m } and the reference window {xi, x 2 , . . . , xm} when the whole 
experiments contains observations x i , x 2 , . . . ,xiooo- In order to show how the pro
posed method works also in the case of nongaussian variables all the sequences were 
generated by white noises from the uniform distribution over the interval (— | , | ) . 

Model A- b e fore the change: x n + i = 1, 6 7 x n - l , 01 xn_i + 0, 2 xn_2 + en + i 
after the change: xn+i = 0 ,85x n -0 ,25x n _ i + 0,06xn_2 + en+i 

Model B: 

Model C: 

Model D: 

before the change: Xn+1 = 0, 6 xn + en+i 
after the change: Xn+1 = 0,1 xn + 2 en+1 

before the change: Xn+1 - 0, 3x n + 0, 5x n_i + 4 e n + i 

after the change: Xfl+1 = 0, 3 xn + 0, 5 xn_i + 0, 25 en+1 

before the change: x n + i = 0, 85 x n - 0 , 25 xn_i + 0, 06 xn_2 + 3 en + i 
after the change: x n + i = 1,33 x n - 0 , 4 5 x n _ i - 0 , 0 4 xn_2 + 0, 5 en + i 

Model E- before the change: Xn+1 = - 0 , 6 xn + en+1 - 0, 6 en 

after the change: xn+1 = - 0 , 1 xn + en + i + 0.5 en. 

The last model F was constructed from the previous models A, B, C, D, E and can 
be schematically expressed as 

F = A + B + C + D + E, 
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i.e. 5 000 observations together with 9 changes at the positions 501 + k • 500, k = 
= 0 , 1 , . . . , 8 . 

Some of the considered sequences were borrowed from the paper [2]. 
We studied the role of the varying length of the moving windows by all the 

models A , B , C , D , E . Similarly, we studied the influence of the varying order p of 
an autoregressive approximation. The order p was chosen up to the value 4. The 
influence of these parameter on the delayed time after the detection is summarized 
in the following table. 

Table of delay 

Model A 

Model C 

Lp 1 2 3 4 
100 82 X X X 

150 75 100 140 147 
200 90 108 109 149 

Lp 1 2 3 4 
25 23 
50 45 48 
100 30 89 92 

Model B 

Model D 

Lp 
1 2 3 4 

25 5 11 
50 12 5 
100 10 17 16 18 

Lp 1 2 3 4 
50 39 
100 59 79 68 
150 69 71 72 89 

Model E Lp 1 2 3 4 
50 X 31 18 
100 X 35 21 
150 81 19 10 

The mark x means the method is failing, i.e. there was no possibility to detect 
unambiguously the change from the behaviour o f J(P,Q), the mark • means this 
case was not carried out. 

In the figure F concerning the model F J(P,Q) is pictured with the choice L = 
150, m = 150 and p = 2. It means, in the figure F the changes are at the points 
201 + k • 500, ' = 0 , 1 , . . . , 8. At the first sight one can see that the modified 
method detected each change. This approach can be used in practice for recognizing 
homogeneous parts in locally stationary sequences. 

As follows from the above results there is probably no general receipt how to 
determine the parameters L, m and p of the method. It is evident the more compli
cated sequence the longer detecting and reference windows must be used. In the case 
of autoregressive sequences it is sufficient to use the simplest approximation models 
with p = 1 or p = 2. But, it is not true in the case of ARM A sequences as follows 
from the model E. Here, the autoregressive approximation must be longer otherwise 
the method is failing. All these particular results can be summarized into a rec
ommendat ion for practical use. If we have enough t ime to handle with data quite 
arbitrarily we have to try finding "optimal" values for L, m and p by experiments. 
In the "on-line" situation there is the only possibility to watch several parallel mov
ing windows with different lengths simultaneously. Such an approach diminishes the 
probability of a false alarm and gets shorter delay time after a change. 
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0.50 

I 59 117 175 233 291 ЗľЭ 107 1GS 523 58 ! í.У) (,'.)/ 

Fig. A. L = 150, m = 150, p = 1, change = 201, delay = 75, upper bound = 0,1. 

1.75 

1.50 

1.25 

1.00 

0.75 

0.25 

1 60 135 202 26!Э ЗЗG 103 170 537 G01 G7I 730 

Fig. B. L = 100, m = 100, p = 2, change = 301, delay = 17, upper bound = 0,1. 
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3 117 175 233 29: 319 107 1G5 523 50! C,У) ґ>97 

Fig. C. L = 100, m = 100, p = 3, change = 301, delay = 30, upper bound = 2, 5. 

o -« 
1 75 H 9 223 297 371 115 519 593 GГ>7 711 015 009 

Fig. D. L = 50, m = 50, p = 1, change = 401, delay = 31, upper bound = 1. 
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3.0 

0.5 

0.0 ' — . — 
1 59 117 175 233 291 319 107 165 523 581 639 697 

Fig. E. L = 150, m = 150, p = 2, change = 201, delay = 19, upper bound = 0, 15. 

1 381 767 U50 1533 19I6 2299 2682 3065 3118 3031 1211 1597 

Fig. F. L = 150, m = 150, p = 2, change = 201 + k • 500, k = 0,1, 2, 
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