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BAYESIAN ANALYSIS OF THE MODEL
OF HIDDEN PERIODICITIES

Jiř́ı Anděl

Consider a model of hidden periodicities Xt = Yt +
Pk

i=1(ai cos ωit + bi sin ωit), t =
1, . . . , 2m+1. It is assumed that Yt are i.i.d. N(0, σ2) variables and that ωi ∈ {λ1, . . . , λm}
where λr = 2πr/(2m+1). Let ai, bi and σ have a vague prior distribution and let the vector
(ω1, . . . , ωk)′ have a rectangular distribution. The posterior distribution of the parameters
is derived and its asymptotic properties are investigated. The results can be used for
estimating the number of periodical components k.

1. INTRODUCTION

Many observed time series are directly or indirectly influenced by periodically re-
peated events. One of the most popular models for describing such time series has
been the model of hidden periodicities

Xt = Yt +
k∑

i=1

(ai cos ωit + bi sin ωit), t = 1, . . . , N (1)

where X1, . . . , XN is the observed time series, {Yt} are i.i.d. N(0, σ2) variables with
σ2 > 0 and ωi ∈ (0, π] for i = 1, . . . , k. We assume that ω1, . . . , ωk are different.
A basic tool for investigating the model (1.1) is the periodogram

I(λ) =
1

2πN

∣∣∣∣∣
N∑

t=1

Xte
−itλ

∣∣∣∣∣
2

=

=
1

2πN


(

N∑
t=1

Xt cos λt

)2

+

(
N∑

t=1

Xt sinλt

)2
 , λ ∈ [0, π].

The periodogram was introduced by Schuster [30]. Later on, periodicities in dis-
turbed series were investigated by Yule [38].

We shall consider only the case that the frequencies ωi are not known. The first
problem is to test if the periodic component in (1.1) is present or not. It means that
we want to test H0 :

∑k
i=1(a

2
i + b2

i ) = 0 against H1 :
∑k

i=1(a
2
i + b2

i ) > 0. To test
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H0, we can apply the famous Fisher test of periodicity (see [13, 14, 2]). It is assumed
that N is an odd number, N = 2m + 1. Define

λr =
2πr

N
, Ir = I(λr), r = 1, . . . ,m.

Denote
I(1) ≥ I(2) ≥ · · · ≥ I(m)

the ordered values of the periodogram. The Fisher test statistic is

F =
I(1)

I1 + I2 + · · · + Im
. (2)

If F exceeds the critical value we reject H0.
Modifications of Fisher’s test and other tests based on the periodogram were

proposed in [19, 31, 22, 3, 6].
The Fisher test has good properties if k = 1. For k > 1 the power of the test can

be rather low. In this case the Siegel test can be recommended (see [32]). A formula
for asymptotic percentage points for Siegel’s test was derived in [34].

Quinn [27] introduces a method for estimating the number of frequencies k. A test
of periodicity in multiple time series can be found in [24].

A generalization of the Fisher test to the case that {Yt} in (1.1) are dependent
variables was proposed by Whittle [36, 37]. However, the power of his test is rather
low (see [26]) and so the problem was further investigated by Hannan [14, 15], Priest-
ley [25, 26] and Cipra [8]. Not all proposed procedures are based on the periodogram
directly. For example, a test suggested by Priestley [25, 26] is based on the cor-
relogram approach. Kedem [21] also presents a method which does not use the
periodogram.

Since the Fisher test looks for the frequencies ωi only in the set

Λ = {λ1, . . . , λm},

Cipra [7] suggested a modification for the case that ωi can be between two Fisher’s
frequencies λj and λj+1. Tests of periodicity when some observations are missing
can be found in Cipra [9].

Several papers are devoted to the problem of estimating frequencies ωi and to the
asymptotic properties of the corresponding estimates ([36, 35, 16, 17, 10, 18, 5, 23, 28,
29]). A review is given by Brillinger [4]. Statistical properties of the maximum of
the periodogram are described in [1].

Our paper has two main parts. First, Section 2 contains a Bayesian analysis of
the model (1.1). It is assumed that there are exactly k periodicities in (1.1) and all
their frequencies ωi are of the form 2πri/N . The parameters ai, bi have a vague
prior density. The assumption that ωi = 2πri/N (i = 1, . . . , k) is rather restrictive.
On the other hand, in many cases when a routine statistical analysis of real data is
carried out, the investigator confines himself to Fisher’s or Siegel’s tests and so, in
fact, he also considers only f¿equencies ωi = 2πri/N . Then our approach can give
some additional information.
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The second main part of our paper (Section 4) deals with asymptotics. Here
we assume that the length Nj = 2mj + 1 (mj → ∞) is chosen in such a way that
the frequencies 2πri/(2mj + 1) are all of the form 2πr/N for the initial N . This
restriction has the following reason. If the frequency of a harmonic component falls
approximately mid–way between the two periodogram ordinates, the height of the
ordinate is reduced by a factor 4/π2 (see [36]; cf. [26]). This would be a source of
difficulties if general sequences {Nj} were allowed.

A simulation study shows that the derived results can also indicate the number
k of the periodic components.

2. BAYESIAN APPROACH

Consider the model (1.1) and assume that a2
i + b2

i > 0 for i = 1, . . . , k. Define

Λk = {(λi1 , . . . , λik
)′ : λi1 < · · · < λik

are elements of Λ}.

Assume that 1 ≤ k ≤ m. Introduce the following notation:

a = (a1, . . . , ak)′, b = (b1, . . . , bk)′, ω = (ω1, . . . , ωk)′,

Ω = {ω1, . . . , ωk}, X̄ =
1
N

N∑
t=1

Xt, Q =
N∑

t=1

X2
t ,

C(λ) =
N∑

t=1

Xt cos λt, S(λ) =
N∑

t=1

Xt sinλt, P (λ) = C2(λ) + S2(λ), λ ∈ Λ.

Theorem 2.1. Let ω = (ω1, . . . , ωk)′ ∈ Λk. Define

âi =
2
N

C(ωi), b̂i =
2
N

S(ωi). (3)

Then the density of the vector X = (X1, . . . , XN )′ is

f(x|a, b, ω, σ) = (2π)−N/2σ−N exp
{
− Z

2σ2

}
(4)

where

Z =
N

2

k∑
i=1

[(ai − âi)2 + (bi − b̂i)2] + Q − 2
N

k∑
i=1

P (ωi). (5)

P r o o f . It is clear that

f(x|a, b,ω, σ)=(2π)−N/2σ−N exp

− 1
2σ2

N∑
t=1

[
Xt−

k∑
i=1

(ai cos ωit+bi sinωit)

]2
 .

But for ω ∈ Λk we have

N∑
t=1

cos2 ωit =
N∑

t=1

sin2 ωit =
N

2
,

N∑
t=1

cos ωit sinωit = 0 (6)
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and
N∑

t=1

cos ωit cos ωjt =
N∑

t=1

sinωit sinωjt = 0 for i 6= j. (7)

After some computation we get the assertion of the theorem. 2

The well known problem in the Bayesian approach is the choice of a prior distri-
bution. In our case we investigate the situation when a, b and σ have prior density
σ−1 for σ > 0 and zero otherwise. The density σ−1 for σ is quite common in the
Bayesian analysis. It reflects the fact that σ > 0. It is supposed that ln σ has the
improper rectangular density on the real line. The vague prior density has some
advantages, e. g. it “approximates” any other reasonable prior density in such a
way that the posterior probabilities do not differ too much (see [12, § 10.4, Theo-
rem 1]). Moreover, the modus â, b̂ of the posterior distribution is identical with
the maximum likelihood estimate (MLE) and the modus σ̂ is nearly identical with
the corresponding MLE. Thus our choice of the prior distribution gives also some
information about the behaviour of MLE’s.

In our paper the symbols like c(x) denote constants which may generally depend
on x.

Theorem 2.2. Let a, b, ω, σ be independent vectors and variables. Let a, b, σ
have prior density σ−1 for σ > 0 and zero for σ ≤ 0. Let ω ∈ Λk have the rectangular
distribution on Λk. Then the modus â, b̂, ω̂, σ̂ of a, b, ω, σ is given by the following
rules:

(a) ω̂ is the element of Λk which maximizes the sum P (ω1) + . . . + P (ωk).

(b) â = (â1, . . . , âk)′, b̂ = (b̂1, . . . , b̂k)′ where

âi =
2
N

C(ω̂i), b̂i =
2
N

S(ω̂i).

(c) σ̂2 = 1
N+1

[
Q − 2

N

k∑
i=1

P (ω̂i)
]
.

P r o o f . From the Bayes theorem we get the joint posterior density

g(a, b, ω, σ|x) = c0(x)σ−N−1 exp
{
− Z

2σ2

}
(8)

for σ > 0 and for ω ∈ Λk; otherwise g vanishes. The variable Z is given in the
formula (2.3). 2

The modus of the posterior distribution can be used as an estimator of the un-
known parameters.
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Theorem 2.3. The marginal posterior density h(ω|x) of the vector ω with respect
to the counting measure on Λk is

h(ω|x) = c(x)

[
1 − 2

N

k∑
i=1

P (ωi)
Q

]−N
2 +k

where the expression c(x) is determined from the condition∑
ω∈Λk

h(ω|x) = 1.

P r o o f . We use the formula (2.6). First of all we calculate the marginal posterior
density

g1(a, b, ω|x) =
∫ ∞

0

g(a, b, ω, σ|x) dσ = c1(x)Z−N
2 .

It gives

h(ω|x) =
∫

Rk

∫
Rk

g1(a, b,ω|x) dadb = c(x)

[
1 − 2

N

k∑
i=1

P (ωi)
Q

]−N
2 +k

.

2

3. A MODIFICATION

The computation of h(ω|x) is difficult when N and k are large. Thus we propose a
modification of the above results. Define

p(ωi) = exp
{

P (ωi)
Q

}
.

Instead of h introduce now the posterior density

v(ω|x) = C0(x)p(ω1)p(ω2) . . . p(ωk), ω ∈ Λk

where C0(x) is determined from the condition∑
ω∈Λk

v(ω|x) = 1.

The function v(ω|x) can be considered as an approximation of the function h(ω|x).
In Section 4 we prove that the asymptotic properties of the both functions h and v
are the same.

But P (ωi)/Q can be very large, in a limit case it can reach even the value N/2.
Denote

Pmax = max{P (ω1), . . . , P (ωm)}, q(ωi) = exp
{

P (ωi) − Pmax

Q

}
.
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Then

v(ω|x) = C(x)q(ω1)q(ω2) . . . q(ωk).

If we put

sk =
∑

{ω1,...,ωk:ω1,...,ωk

are different elements of Λ}

q(ω1)q(ω2) . . . q(ωk)

then C(x) = k!/sk. The values sk can be namely calculated using the tables pub-
lished by David, Kendall [11]. If we use the same notation as that in the cited paper,
viz.

(r) =
m∑

i=1

[q(ωi)]r

then it holds

s2 = −(2) + (1)2,
s3 = 2(3) − 3(2)(1) + (1)3,
s4 = −6(4) + 8(3)(1) + 3(2)2 − 6(2)(1)2,
s5 = 24(5) − 30(4)(1) − 20(3)(2) + 20(3)(1)2 + 15(2)2(1) − 10(2)(1)3 + (1)5,
s6 = −120(6)+144(5)(1)+90(4)(2)−90(4)(1)2+40(3)2−120(3)(2)(1)+40(3)(1)3

−15(2)3 + 45(2)2(1)2 − 15(2)(1)4 + (1)6.

The tables by David and Kendall enable to extend these formulas to the expression
for s12.

4. ASYMPTOTICS

In this section we investigate the limit behaviour of the posterior probabilities and
related variables for the case that m → ∞. We assume that k is fixed and that
Ω ⊂ Λ for all sufficiently large m. Generally, Ω may depend on m but we do not
denote it explicitly. It would be also possible to consider a fixed set Ω where Ω ⊂ Λ
for some m = m0 and then to deal with a sequence m0 < m1 < m2 . . . such that
Ω ⊂ Λ for every mj , j ≥ 0.

First, we remember a definition. A sequence of random variables {Un, n ≥ 1} is
said to converge completely to a constant c if

∞∑
n=1

P [|Un − c| > ε] < ∞ for each ε > 0. (9)

This definition is due to Hsu and Robbins [20]. It is well known that the condition
(4.1) ensures that Un → c a. s. but the converse does not hold (see [33, p. 11,
Theorem 2.1.1]).
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Theorem 4.1. Let {ani, i ≥ 1, n ≥ 1} denote a matrix of real numbers. Let
ξ1, ξ2, . . . be i.i.d. random variables. Define

Cn =
n∑

i=1

a2
ni, Tn =

n∑
i=1

aniξi.

Let E|ξ1|2/α < ∞ for some 0 < α ≤ 1, Eξ1 = 0,

|ani| ≤ Kn−α for i ≤ n and some K < ∞

and

Cn = o

(
1

lnn

)
.

Then Tn converges completely to zero as n → ∞.

P r o o f . See [33, p. 226, Theorem 4.1.3]. 2

Lemma 4.2. Let {cni, i ≥ 1, n ≥ 1} be a matrix of real numbers such that |cni| ≤ 1
for i ≤ n. Let ξ1, ξ2, . . . be i.i.d. random variables with Eξ1 = 0, Eξ2

1 < ∞. Define

Tn =
1
n

n∑
i=1

cniξi. (10)

Then Tn converges completely to zero as n → ∞.

P r o o f . The assertion follows from Theorem 4.1 when we put α = 1 and ani =
cni/n. 2

Lemma 4.3. If {Xt} is given by (1.1) and if ω ∈ Λk for all sufficiently large m
then

1
N

Q → R = σ2 +
1
2

k∑
i=1

(a2
i + b2

i ) a. s. as N → ∞.

P r o o f . Using (2.4) and (2.5) we get

Q =
N∑

t=1

Y 2
t + 2

N∑
t=1

Yt

k∑
i=1

(ai cos ωit + bi sinωit) +
N

2

k∑
i=1

(a2
i + b2

i ).

Since we assume that {Yt} are i.i.d. N(0, σ2) variables, the remaining part of the
proof follows from Lemma 4.2 and from the strong law of large numbers. 2
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Lemma 4.4. We have

Q ≥ 2
N

m∑
i=1

P (λi).

P r o o f . The inequality follows from the known formula

N∑
t=1

(Xt − X̄)2 =
2
N

m∑
i=1

P (λi)

(see [2, p. 85, Theorem 7.4]) because

Q ≥
N∑

t=1

(Xt − X̄)2.

2

Lemma 4.5. Let N → ∞. If ωi ∈ Λ then

1
N2

P (ωi) →
1
4
(a2

i + b2
i ) a. s.

If λ ∈ Λ and λ /∈ Ω ⊂ Λ then

1
N2

P (λ) → 0 a. s.

P r o o f . Using (2.4) and (2.5) we obtain

C(λ) =


1
2Nai +

N∑
t=1

Yt cos ωit for λ = ωi ∈ Ω ⊂ Λ,

N∑
t=1

Yt cos λt for λ ∈ Λ, λ /∈ Ω ⊂ Λ,

S(λ) =


1
2Nbi +

N∑
t=1

Yt sinωit for λ = ωi ∈ Ω ⊂ Λ,

N∑
t=1

Yt sinλt for λ ∈ Λ, λ /∈ Ω ⊂ Λ.

From here we get the assertion. 2

Lemma 4.6. If Ω ⊂ Λ then for any ε > 0 and for all sufficiently large m we have∑
{i:λi∈Λ,λi /∈Ω}

1
N2

P (λi) <
1
2
σ2 + ε a. s.
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P r o o f . Lemma 4.4 gives

1
N

Q ≥ 2
∑

{i:λi∈Ω}

1
N2

P (λi) + 2
∑

{i:λi∈Λ,λi /∈Ω}

1
N2

P (λi)

Now, we use Lemma 4.3 and Lemma 4.5. 2

Lemma 4.7. If m → ∞ then

max
{i:λi∈Λ,λi /∈Ω}

1
N2

P (λi) → 0 a. s.

P r o o f . Since N = 2m + 1, we can denote the variables{
1

N2
P (λi), λi ∈ Λ, λi /∈ Ω

}
shortly by

ξm,1, . . . , ξm,m−k.

The variables {C(λi), S(λi), λi ∈ Λ, λi /∈ Ω} have joint normal distribution and
because of (2.4) and (2.5) they all are uncorrelated. Thus ξm,1, . . . , ξm,m−k are
independent. Lemma 4.6 gives that for all sufficiently large m we have

ξm,1 + . . . + ξm,m−k < σ2 a. s.

Then for all i = 1, . . . ,m − k we obtain

P

(
ξm,i ≥

σ2

m − k

)
= 0

and thus

max{ξm,1, . . . , ξm,m−k} <
σ2

m − k
a. s. (11)

Now, we let m → ∞. 2

Introduce variables Ai = a2
i +b2

i , i = 1, . . . , k. Further define Ai = 0 for i > k and
A = A1 + . . . + Ak. In our Bayesian approach we assume that a1, b1, . . . , ak, bk are
independent and have the vague prior density which is equal to 1 on R2k. Then all the
variables A1, . . . , Ak will be different. To simplify the next derivation we shall assume
that the frequencies ω1, . . . , ωk are ordered in such a way that A1 > A2 > . . . > Ak.

Theorem 4.8. Let {γ1, . . . , γ`} ⊂ Λ where 1 ≤ ` ≤ m. Put γ = (γ1, . . . , γ`)′.
Define

p(γi) = exp
{

P (γi)
Q

}
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and

h(γ|x) = c(x)

[
1 − 2

N

∑̀
i=1

P (γi)
Q

]−N
2 +k

, v(γ|x) = C(x)p(γ1)p(γ2) . . . p(γ`)

where c(x) and C(x) are positive constants determined from the conditions∑
γ∈Λ`

h(γ|x) = 1 and
∑
γ∈Λ`

v(γ|x) = 1,

respectively. Assume that m → ∞.
Let ` ≤ k. If {γ1, . . . , γ`} = {ω1, . . . , ω`} then h(γ|x) → 1 a. s. and v(γ|x) → 1

a. s.; if {γ1, . . . , γ`} 6= {ω1, . . . , ω`} then h(γ|x) → 0 a. s. and v(γ|x) → 0 a. s.
Let `>k. Then h(γ|x)→0 a. s. and v(γ|x)→0 a. s. for arbitrary {γ1, . . . , γ`}⊂Λ.

P r o o f . In the first part of the proof we deal with the assertions concerning the
function h. Assume ` ≤ k and {γ1, . . . , γ`} = {ω1, . . . , ω`}. Then we have

h(ω1, . . . , ω`|x) =
1

1 + D

where

D =
∑

{γ1,...,γ`:P (γ1)>...>P (γ`),

{γ1,...,γ`}6={ω1,...,ω`}}


1 − 2

N

∑̀
i=1

P (ωi)
Q

1 − 2
N

∑̀
i=1

P (γi)
Q


N
2 −k

.

It follows from Lemmas 4.3, 4.5 and 4.7 that

2
N

∑̀
i=1

P (ωi)
Q

→ A1 + . . . + A`

2σ2 + A
a. s.

and
2
N

∑̀
i=1

P (γi)
Q

tends a. s. to a non-negative limit which does not exceed

A1 + . . . + A`−1 + A`+1

2σ2 + A
.

Thus for any arbitrary small ε > 0 and for all sufficiently large m we have a. s. that

0 ≤
1 − 2

N

∑̀
i=1

P (ωi)
Q

1 − 2
N

∑̀
i=1

P (γi)
Q

≤ 2σ2 + A − A1 − . . . − A`

2σ2 + A − A1 − . . . − A`−1 − A`+1
+ ε = α.
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We can choose such a small ε that α < 1. Then for all sufficiently large m we have

D ≤
[(

m

`

)
− 1

]
α

N
2 −k → 0.

Now, consider the case ` < k when {γ1, . . . , γ`} 6= {ω1, . . . , ω`}. We get

h(γ|x) =
1

1 + D

where

D =
∑

{β1,...,β`:P (β1)>...>P (β`),

β 6=γ}


1 − 2

N

∑̀
i=1

P (γi)
Q

1 − 2
N

∑̀
i=1

P (βi)
Q


N
2 −k

.

For sufficiently large N we obtain

D ≥ Z
N
2 −k

where

Z =
1 − 2

N

`−1∑
i=1

P (ωi)
Q − 2

N
P (ω`+1)

Q

1 − 2
N

∑̀
i=1

P (ωi)
Q

.

If N → ∞ then

Z → 2σ2 + A − A1 − . . . − A`−1 − A`+1

2σ2 + A − A1 − . . . − A`
≥ 1 a. s.

and thus D → ∞ a. s.
The case ` = k, {γ1, . . . , γk} 6= {ω1, . . . , ωk} can be treated analogously using

lemmas 4.3 and 4.5.
Now, assume ` > k. For large m the maximum of h(γ|x) is reached at a point

γ = (ω1, . . . , ωk, βk+1, . . . , β`)′ where βi are some frequencies from Λ. Then

h(ω1, . . . , ωk, βk+1, . . . , β`) =
1

1 + D

where

D =
∑

{γ1,...,γ`:P (γ1)>...>P (γ`),

{γ1,...,γ`}6={ω1,...,ωk,βk+1,...,β`}}


1 − 2

N

k∑
i=1

P (ωi)
Q − 2

N

∑̀
i=k+1

P (βi)
Q

1 − 2
N

∑̀
i=1

P (γi)
Q


N
2 −k

≥
∑

{γk+1,...,γ`:P (γk+1)>...>P (γ`),γk+1 /∈Ω,...,γ` /∈Ω,

{γk+1...γ`}6={βk+1,...,β`}}


1 − 2

N

k∑
i=1

P (ωi)
Q − 2

N

∑̀
i=k+1

P (βi)
Q

1 − 2
N

k∑
i=1

P (ωi)
Q − 2

N

∑̀
i=k+1

P (γi)
Q


N
2 −k
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≥
[(

m − k

` − k

)
− 1

] 1 −

2
N

∑̀
i=k+1

P (βi)
Q

1 − 2
N

k∑
i=1

P (ωi)
Q


N
2 −k

.

From Lemmas 4.3 and 4.5 we get

1 − 2
N

k∑
i=1

P (ωi)
Q

→ 1 − A

2R
> 0

and (4.3) yields

2
N

∑̀
i=k+1

P (βi)
Q

≤ 2(` − k)
σ2

m − k

N

Q
∼ 2(` − k)σ2

R

1
m − k

.

Thus D → ∞.
Now, we prove our assertions for v(γ|x). Let ` ≤ k. Then we can write

v(ω1, . . . , ω`|x) = 1/D where

D =
∑

{γ1,...,γ`:P (γ1)>...>P (γ`)}

exp
{

P (γ1) − P (ω1)
Q

}
. . . exp

{
P (γ`) − P (ω`)

Q

}
.

For sufficiently large m we have P (ω1) > . . . > P (ω`) > . . . > P (ωk). Then

D=1+
∑

{γ1,...,γ`:P (γ1)>...>P (γ`),

{γ1,...,γ`}6={ω1,...,ω`}}

exp
{

P (γ1)−P (ω1)
Q

}
. . . exp

{
P (γ`)−P (ω`)

Q

}
≤1+D1

where

D1 =
∑

{γ1,...,γ`:P (γ1)>...>P (γ`),

{γ1,...,γ`}6={ω1,...,ω`}}

exp
{

P (γ`) − P (ω`)
Q

}
.

The sum D1 has
(
m
`

)
−1 terms. It follows from lemmas 4.3 and 4.5 that for sufficiently

large m we have

D1 ≤
[(

m

`

)
− 1

]
exp{−c(A` − A`+1)N}

where c is a positive constant. Thus D1 → 0 a. s. as m → ∞ and the assertion is
proved.

Let ` ≤ k and {γ1, . . . , γ`} 6= {ω1, . . . , ω`}. Assume first that ` < k. Then for
large N

v(γ1, . . . , γ`|x) = 1/D

where

D =
∑

{β1,...,β`:

P (β1)>...>P (β`),β 6=γ}

exp
{

P (β1) − P (γ1)
Q

}
. . . exp

{
P (β`) − P (γ`)

Q

}
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≥
∑

{β1,...,β`:

P (β1)>...>P (β`),β 6=γ}

exp
{

P (β1) − P (ω1)
Q

}
. . . exp

{
P (β`−1) − P (ω`−1)

Q

}

× exp
{

P (β`) − P (ω`+1)
Q

}
≥ exp

{
P (ω`) − P (ω`+1)

Q

}
→ ∞ a. s.

If ` = k then analogously v(γ1, . . . , γ`|x) = 1/D where

D ≥ exp
{

P (ω`) − P (β)
Q

}
, β ∈ Λ, β /∈ Ω.

Again we can see that D → ∞ a. s.
Let ` > k. For sufficiently large m the maximum of v(γ|x) is reached at a point

γ = (ω1, . . . , ωk, βk+1, . . . , β`)′. Then v(ω1, . . . , ωk, βk+1, . . . , β`|x) = 1/D where

D =
∑

{γ1,...,γ`:
P (γ1)>...>P (γ`)}

p(γ1) . . . p(γk)p(γk+1) . . . p(γ`)
p(ω1) . . . p(ωk)p(βk+1) . . . p(β`)

≥
∑

{γk+1,...,γ`:P (γk+1)>...>P (γ`),

γk+1 /∈Ω,...,γ` /∈Ω}

p(γk+1) . . . p(γ`)
p(βk+1) . . . p(β`)

≥
(

m−k

`−k

)
exp

{
−N

1
N

∑̀
i=k+1

p(βi)
Q

}

≥
(

m − k

` − k

)
exp

{
− (` − k)σ2

m − k

N

Q

}
∼

(
m − k

` − k

)
exp

{
(` − k)σ2

R

1
m − k

}
→ ∞.

2

Using Theorem 4.8 we can estimate, at least asymptotically, the number k of the
periodic components. The next theorem shows that the periodogram itself cannot
give such an estimate.

Theorem 4.9. Let A1 > A2 > . . . > Ak > 0 be fixed numbers. Define

F` =
I(1) + . . . + I(`)

I1 + . . . + Im
.

Then for arbitrary ` we have F` → 1 a. s. as m → ∞.

P r o o f . The assertion can be proved in a similar way as Theorem 4.8. 2

5. RESULTS OF SIMULATION

A process

Xt = Yt +
3∑

i=1

(ai cos ωit + bi sinωit), t = 1, . . . , N
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where Yt ∼ N(0, 2) was simulated with parameters introduced in Table 5.1.
Table 5.2 shows results of analysis of one realization for several values of the

length N . Remember that ωi are Fisher’s frequencies such that

ωi =
2πri

N
, i = 1, 2, 3.

Table 5.1. Parameters used in a simulation

i ωi ai bi Ai = a2
i + b2

i

1 1.197 0.8 0.9 1.45
2 1.496 0.6 1.0 1.36
3 2.394 0.5 0.7 0.74

Table 5.2. Results of a simulation

N = 21 N = 63
Fisher test: F = 0.28, P = 0.49 Fisher test: F = 0.17, P = 0.11

i ri r̂i v(ω̂1, . . . , ω̂i|x) i ri r̂i v(ω̂1, . . . , ω̂i|x)
1 4 8 0.47 1 12 24 0.68
2 5 2 0.11 2 15 15 0.20
3 8 9 0.02 3 24 25 0.02
4 – 5 0.00 4 – 12 0.00

N = 189 N = 567
Fisher test: F = 0.15, P = 0.00 Fisher test: F = 0.12, P = 0.00

i ri r̂i v(ω̂1, . . . , ω̂i|x) i ri r̂i v(ω̂1, . . . , ω̂i|x)
1 36 45 0.99 1 108 135 0.98
2 45 72 0.57 2 135 108 0.90
3 72 36 0.44 3 216 216 0.50
4 – 6 0.00 4 – 62 0.00

Since ω1, ω2 and ω3 we keep fixed, the values r1, r2 and r3 are different for
different values of N . The estimates r̂i introduced in Table 5.2 are defined in such a
way that P (r̂1) > P (r̂2) > . . .. For information the value F of the Fisher test given
in (1.2) and its significance P are also introduced.

The difference between A1 and A2 is small and so even for N = 567 the frequency
ω2 was found more significant than ω1. For ` ≤ k the convergence v(ω|x) → 1 is
not very fast, especially for the values of ` which are near to k. But for ` > k
the convergence v(ω|x) → 0 seems to be quite good. Similar numerical evidence
was obtained also from other simulations which are not reported here. Thus v(ω|x)
could be used for detection of the numbers of periodicities; if max

ω
v(ω1, . . . , ω`|x)

is small then the number of periodicities is smaller than `.
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