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O N T H E C O N V E R G E N C E O F A T I M E - V A R I A N T 
L I N E A R D I F F E R E N T I A L E Q U A T I O N A R I S I N G 
I N I D E N T I F I C A T I O N 1 

DIRK AEYELS AND R. SEPULCHRE 

This paper discusses the asymptotic stability for a well-known time-variant system by 
means of the direct method of Liapunov. The system exhibits a positive time-invariant 
Liapunov function with negative semi-definite derivative. The paper focuses on the extra 
conditions needed in order to guarantee asymptotic stability. The proposed criterion is 
compared with the results available in the literature. 

1. INTRODUCTION 

For autonomous differential equations there exists a well developed Liapunov func
tion approach for the examination of asymptotic stability. In particular Lasalle's 
principle is an important tool in cases where the derivative of the Liapunov func
tion along solutions is negative semi-definite. Unfortunately, a complete extension 
of this principle to nonautonomous differential equations seems unlikely te become 
available. Basically this is explained by the particular properties exhibited by the 
limit sets of autonomous differential equations as opposed to nonautonomous equa
tions. In fact, a crucial step in the proof of Lasalle's principle (or closely related 
formulations like Barbashin's theorem) [3] is based on the fact that for autonomous 
differential equations limit sets are invariant under the flow. For periodic differential 
equations this property also holds true (with an appropriate definition of the notion 
of invariance) and so does Lasalle's principle. Extensions to asymptotically constant 
or asymptotically periodic systems, as well as to almost periodic systems have been 
developed in the literature, in general leading to weaker statements. For differen
tial equations with more general types of time-variance no definite statements can 
be made; however, there are theorems capturing some features of the invariance 
principle [3]. 

'The paper presents research results of the Belgian Programme on Interuniversity Poles of 
Attraction initiated by the Belgian State, Prime Minister's Office for Science, Technology and 
Culture. The authors gratefully acknowledge additional support from the EC-Science Project SCl-
0433-C(A). 



716 D. AEYELS AND R. SEPULCHRE 

Time-varying equations arise quite naturally in different applications. We will 
concentrate on the following equation 

x = -m(t)m(t)Tx (1) 

with x(t) and m(t) n-dimensional. This equation or related versions arise in identifi
cation and control problems and have been studied extensively ([2], [5], [6]). Usually 
x(t) represents the parameter error that is driven to zero, based on an observation 
of the error mT(t)x(t). 

The equation arises also in other contexts such as pattern recognition, associative 
memory, and in many questions of numerical mathematics where e.g. algorithms 
are to be constructed converging to solutions of linear algebraic equations, or in 
computing pseudo-inverses. It has also been studied in the context of the so-called 
novelty detector, introduced by Kohonen, where x(t) represents the "weights" or 
the "memory". The change of weights is then brought about by the product of the 
output m x with the so-called input m(t), (this is a particular case of the adaptive 
laws encountered in (linear) neural networks). 

It is perhaps worthwhile to notice that the linear differential equation (1) has 
(n — 1) eigenvalues equal to zero, and one eigenvalue —mT(t)m(t). The stability 
study when m(t) is constant based on the Liapunov function V(x) = xTx is quite 
trivial but not interesting from the point of view of applications. With m(t) peri
odic, (asymptotic) stability can be investigated quite directly with the help of the 
Liapunov function V(x) = xTx and Lasalle's invariance principle. These results are 
well known. Notice also that for any m(t) a Liapunov study quickly leads to stability 
of the origin. 

A set of stability results is related to the notion of persistency of excitation of 
m(t). Let m(t) be a regulated function. It is called persistently exciting if there 
exists T > 0 such that V s 

s+T 

al < f m(t)m(t)Tdt < j3I (2) 

with a > 0 and j3 > 0. 
It has been shown ([5], [2]) that this is a necessary and sufficient condition for 

exponential stability, (trajectories are bounded above and below by exponentials). 
The importance of this result is that it accomodates a wide class of signals, beyond 
the (almost) periodicity constraint of Lasalle's principle, still securing asymptotic 
stability. 
Several remarks are in order. Notice that T is independent of s. Can this not 
be relaxed while still guaranteeing (a weaker form of) asymptotic stability? With 
Anderson ([2]) one notices that if the lower bound fails, there may or may not be 
convergence and when there is convergence, it will not be exponential. What are 
the implications of relaxing the upper bound? 

When examining the proofs of exponential stability as they appear in the litera
ture, it is not entirely clear how they can be altered so as to accomodate the remarks 
raised above. Basically we present two results. One is related to relaxing the upper 
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limit of the integral sign; the other discusses the lower and upper bounds of the 
relation defining the persistency of excitation relation. 

2. MAIN THEOREM 

This section discusses the main contribution of the paper. It is shown how the upper 
limit of the integral sign in (2) can be relaxed without destroying the asymptotic 
stability of (1), being aware that by [2] exponential stability is not retained. 

The proof of our main theorem depends on results developed in [1] where asymp
totic stability results for time-variant systems have been developed based on a Lia-
punov approach. For convenience we first state a result from [1] as needed for our 
purposes. 

Consider the linear time-variant system 

x = A(t)x. (3) 

Assume there exists a positive definite quadratic form V(x) := xTPx such that 

V(x, t) = xT(AT(t) P + PA(t)) x =: xTQ(t) x<0. 

Let x(t;p,ti), t >ti denote the forward solution of (3) with initial condition p at i,. 
For this class of linear systems we have the following theorem. 

T h e o r e m 1. If A(t) is measurable and bounded and there is no sequence i; —* oo 
such that (with p ^ 0) 

/ V(x(t{ + s;p,ti), tì + s) ds -* 0 for U ~* oo 

then x — A(t)x is asymptotically stable. 

We are now ready to state our main result. 

T h e o r e m 2. Let m(l) be regulated and bounded. A sufficient condition for asymp
totic stability of (1) is that for each t there exists a T(i) > t such that 

T(t) 

al < f m(T)m(T)TdT < pi (4) 

with /? > a > 0. 

P r o o f . First notice that V(x) := xTx/2 is a positive definite Liapunov equation 
for (1) with negative semidefinite derivative. This implies stability. Notice also that 
since V(x) = \\x\\2/2 where ||.|| represents the Euclidean norm, Theorem 1 can be 
reformulated as follows (x(ti + t;p,ti) from now on represents a solution of (1)): 
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The system (1) is asymptotically stable if there is no sequence /. —* oo such that 
(with p -/ 0) 

hm \\x(U + / ;p , / , ) | | 2 - ||p||2 for /,- -* oo. (5) 

Assume that (1) is not asymptotically stable. There exists then a point p* and a 
sequence (t*) such that 

lim \\x(t* +t;p*,t*)\\2 -> ||p*||2 for t*-> oo. (6) 

From (6) and since V' < 0 it is immediate that for all t > t* 

| | s ( . * + t ; p V n i | 2 H | p * | | 2 for.J-00. (7) 

For notational convenience, we denote in the following x(t;p*,/,*) by £(/;<*). The 
formulas (6) and (7) respectively may be reformulated as follows: there exists a point 
p* and a sequence (/*) such that 

oo 

/ x T ( r ; / * ) m ( r ) m T ( r ) . r ( r ; / * ) d r - > 0 for *,* -> oo (8) 

t* 

and therefore also such that for each i > t* 

t 

I x T ( r ; / * )m( r )m T ( r ) . r ( r ; / * )d r ->0 for f* -» oo. (9) 

j * 

Consider now the expression 

max ||.c(Z;Z*) — p*||2 

« 6 [ t ; , T ( ( * ) ] n 

and assume the maximum be taken for t\. We will show first that 

||x(i-;/*) - p * | j 2 -> 0 when t* -> oo. (10) 

In order to do so consider the following identity 

t't 

Mt'i-XiW - \\P*\\2 = ||x(tj; t?) - P*||2 - 2 jfTm(r) mr(r) x(r; /*) dr (11) 

« * 

with the left hand side tending to 0 as t* tends to oo because of (7). 
Therefore as t* —* oo 

lk(l.;ln-P*H2-^2 /p*Tm(r)mT(r)x(r;/*)dr. (12) 
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By the inequality of Cauchy-Schwartz the modulus of the right hand side of (12) 
satisfies the following inequalities 

t\ 

I p * T m ( r ) m T ( r ) a : ( r ; i * ) d r 

t* 

t; t\ 

< p*Tm(T) mT(T)p* • / z T ( r ; i * ) ? n ( r ) m T ( r ) x ( r ; < * ) d r < 

t * t * 

oo 

< / % * V | | • J xT(T-t*) m(T) mT(T) «(r;«J) dr (13) 

t * 

invoking (4) in the last inequality. Notice also that by (8) the last integral tends to 

zero for t* tending to oo. This ends the proof of (10). 

Consider now 

Tj'(mT(T)(x(T;t*)-p*))*dT 
t* 

T(t*) T(t*) T(t') 

= J (mT(T)x(T;t*))2dT+ / ( m T ( r ) p * ) 2 d r - 2 / o;T(r;<*)m(r) m T ( r ) p * d r 
t * t* <* 

T(t't) T(t*) 

> / ( m T ( r ) p * ) 2 d r - 2 / x T ( r ; i * ) m ( r ) m T ( r ) p * dr. (14) 
t* t* 

The first term of the right-hand side in (14) is bounded below by a|jp*j|2. By the 
inequality of Cauchy-Schwartz the modulus of the second term is smaller than 

т(t*) т(t*) 

j ( z т ( r ; ť * ) m ( r ) ) 2 d r . j (p* T m(r)) 2 dr 

and therefore smaller than 

oo 

| ( æ
T ( r ; ť * ) m ( r ) ) 2 d r . / ? j | p * | | 2 

. J 

which tends to zero by (8). We conclude that for t* large enough the following is 
true 

T(.J) 
(15) j ((«(r;ť*) - p * ) T m ( r ) ) 2 dr > a/2| |p*| | 2 
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We will now invoke (10), (15) and (4) to establish a contradiction. Notice first that 
the left hand side of (15) is less than or equal than 

T(.J) 

j | K r ; t ; ) - P * | | 2 . | | m ( r ) | | 2 d r 

t* 

This again is less than or equal than 

T((*) 

max \\x(t;t*) -p*\\2 • / m T ( r ) ) m ( r ) d r 
<e[.r.n<?)] j 

< * 

which itself is equal to 

/ T(t-) \ 

IW*U-)-P12- £ / "-tW^V 
Because of (10), inequality (15) can only be satisfied if 

T(i*) 

2_, I ml(r)dr—>oo for t* —• oo. 

But this would imply that for some k* 

T((*) 
/ m\.(т)dт —> oo for t* —> oo 

t* 

which leads to a contradiction by the right inequality featuring in (4). • 

The reader is reminded that m(t) is bounded. This assumption had to be intro
duced in the development of Theorem 1. We have not been able to relax it. Apart 
from this condition Theorem 2 represents a generalization of the stability results 
concerning (1) featuring in [2, 5]. Indeed the sufficient condition is relaxed in that 
the integration interval T(t) — t of the integral sign is no longer constant. As an 
example consider the differential equation x = — (l/i)x for t > 1. This differential 
equation is asymptotically stable as can be verified by direct computation. This 
follows also from (4) for T(i) = 22 but the equation does not satisfy (2). On the 
other hand, Condition (4) is not necessary as shown by the following example: 

Example 1. Consider 

( 1 0 ) for i <t <i + 1 
m(tf = , 

( 0 1/л/ř ) for i + 1 < t < i + 2. 
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By reordering the time-axis we obtain two asymptotically stable decoupled equations 
i i = —x\ and x\ = —Xi/t. It is quickly verified that condition (4) can not be 
satisfied, basically since there is no T(t) that works for both these equations. 

3. THE ROLE OF THE UPPER BOUND 

As far as convergence of the solutions of (1) is concerned, the previous section shows 
that Condition (2) can be relaxed in the sense that the interval of integration may 
depend on the initial time. A natural question is whether the lower and the upper 
bound of the integral can be relaxed. In this section, we discuss the implications of 
the following condition: 

fT{t) 
3a > 0 : Vf > 0 : 37/(0 > t : al < / m(r) mr (r) dr. (16) 

Propos i t ion 1. A equivalent formulation for (16) is given by 

f + CC 

V 7 > 0, V* > 0 : 7 J < / rn(r) mT(r) dr. (17) 

P r o o f . Let j > 0 and suppose that (16) holds. Then, by denoting T°(t) = T(t) 
and Tn(t) = T(Tn~l(t)), we obtain for each integer n: 

fT"^ 
V* > 0 : / m(r) m1 (r) dr > rial. (18) 

(17) is thus satisfied with n > j/a. 
Conversely, if (17) holds, it is obvious that for an arbitrary a > 0, there exists a 
T(t,a) such that 

rT(t,a) 
m(T)mT(T)dr>aI. (19) 

/ 

The following theorem shows that (16) is necessary for attractivity (and therefore 
for asymptotic stability) of Equation (1). 

T h e o r e m 3. If the origin of (1) is attractive, then (16) holds. 

P r o o f . The proof goes by contradiction. Suppose that (16) does not hold. Let 
(ai)i>i be a positive sequence tending to zero as i -+ oo. Then for each a,, there 
exist a p,- with ||pi|| = 1 and a positive ti such that 

/
+oo 

(mT(r)pi)2 dr < a( pT
Pi = a,-. (20) 
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Let x(t;ti) := x(t;p,,U) be a solution of (1). We have the following string of equal
ities: 

/• + 00 

Vi > 1 : / pf m(T) mT(T) X(T;U) dr = lim pj(p. - x(t;U)) = pT
Pi = 1, (21) 

Jt, '-*0 0 

where the first equality follows from (1), and the second equality follows from at-
tractivity of the origin; similarly we have 

/•+°o 
V i > 1: / ( m T ( r ) a ; ( r ; < i ) ) 2 d r = lim (pT

Pi -xT(t;U)x(t;U)) = pT
Pi = 1. (22) 

Jt, '~*°° 

On the other hand, for each i > 1, we have by the Cauchy-Schwartz inequality: 

/ pTm(T)mT(T)x(T;U)dT < / (mT(T) Pl)
2 dr f 

\Jt, Jt, Jt, 
(mT(T)x(T;U))2dT. 

(23) 
Using (20) and (22), we conclude that the right-hand side of (23) tends to zero for 
i —+ oo, which contradicts (21). • 

Remark. It is obvious that in the scalar case, Conditions (4) and (16) are equiv
alent (Let (3 = a and choose T(t) in such a way that a = ft m2(t) dt = 0 ) . In 
this particular case, Condition (16) is thus necessary and sufficient for asymptotic 
stability. This also follows from comparing Condition (17) to the explicit solution 
o f ( l ) . 

In general, Condition (16) is not sufficient for asymptotic stability, as illustrated 
by the following example. 

Example 2. Define 

a0 = тг/2, ai+ï = a г/2, i > 0, 

t0 = 0, ti + i =U + 1 / S І П 2 Q І , 

Let m(-) : JR+ ->• JR2 : m(t) = mi} t{ < t < ti+x. 
Condition (17) is obviously satisfied: indeed, let <,• > 0. If ei := (1,0) then for 
each integer n, f, n + 1 ( m T ( r ) e i) 2 dr = 1 which implies that / ( ° °(m r (r) e i) 2 dr is 
unbounded. The condition is thus fulfilled for p = ce.\, € ^ 0. Now if p is not 
parallel to e\, then for n sufficiently large, (mjp)2 > (mTei)2 and as a consequence, 
r / " + 1 ( m T ( r ) p ) 2 d r > 1. This implies that f

t°°(mT(r)p)2 dr is unbounded for all 
P r O . 
Now it can easily be shown that the above m(t) does not force the convergence of 
solutions of (1) to the origin. Let m^ = (cosai, - s i n o j ) and consider the solution 
starting from mj- at time t = t2, i.e. x(t; mj-,t2). Then xi(t2; mj-,t2) = cosoi > 0 
and it is clear by inspection that xi(t;m,j;,t2) can only increase for all t > t2 which 
prevents the convergence of the solution to the origin. 



On tlic Convergence of a Time-Variant Linear Differential Equation ... 723 

4. C O N C L U S I O N 

Th i s pape r has s tud ied convergence proper t ies of Equa t ion (1) . Exponen t ia l conver

gence of (1) is known to be equivalent, to the persis tency of exci tat ion of m(t). As 

far as convergence is concerned, Theo rem 2 shows t h a t the period of "exci ta t ion" 

of the sys tem may be non uniform in t ime. On the contrary, the constants a and 

,8 in (4) express the uniformity of t he excitat ion in all direct ions of the s t a t e space. 

A uniform lower bound a was shown to be necessary for convergence (Theorem 3) . 

Th i s is not t rue with respect to the upper bound (5 (Example 1) but convergence 

may be lost when relaxing the upper inequal i ty in (4) (Example 2). Finally notice 

t h a t wi th a minor modificat ion of the proofs, the conclusions of the paper still hold 

if the n x l vector m(t) is replaced by a 7! x p m a t r i x , with /; < n. 
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