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LOCALLY HARMONIZABLE COVARIANCE:
SPECTRAL ANALYSIS

DOMINIQUE DEHAY AND ABDELAZIZ LOUGHANI

In this paper we introduce the notion of locally harmonizable covariance. The motiva-
tion is to define a large class of nonstationary processes containing locally stationary and
harmonizable cases, for which the covariance admits spectral components.

1. INTRODUCTION

The notion of a locally stationary covariance function is due to Silverman [11]. A
covariance K defined on R is called locally stationary if there are a positive function
K and a continuous stationary covariance Ky such that,

s

K(t,s) = Kl(t; >Kg(t—s). 1)

In this work, the stationarity of the covariance K, is replaced by a less restricting
notion: the harmonizability in the sense of Loéve [4] (strong harmonizability accord-
ing to Rao [9]). Then we present the spectral analysis of such covariances which are
not necessarily bounded.

Remind that a covariance K defined on R? is harmonizable when there exists a
complex valued measure M on R? such that for all ¢, s in R,

K(t,s) = // =5 M (dz, dy).
E2
A zero mean second order process X = {X(t), { € R} is harmonizable if and only

if its covariance K (t,5) = cov(X(t), X(s)) is harmonizable. Then there exists a
stochastic measure ¢ in R such that

X@t) = /me”’p(dz).

A continuous stationary covariance is harmonizable.



544 D. DEHAY AND A. LOUGHANI

2. NOTION OF LOCALLY HARMONIZABLE COVARIANCE
Definition 1. A nonzero covariance K is called locally harmonizable when there
exist a positive function K; and a harmonizable covariance K3 such that for all £, s

in R,

t+s

K(t,s) = Kl( )Kg(t,s)‘ @)

A second order process is called locally harmonizable when its covariance is locally
harmonizable.

For a locally stationary process, decomposition (1) is known to be unique up to a
constant factor, the problem of the uniqueness of decomposition (2) of the covariance
of a locally harmonizable process is still open to debate.

Every locally stationary covariance as well as every harmonizable covariance is
locally harmonizable. We know that the product of two covariances is a covariance
and here we can state the following result.

Theorem 1. The product of two locally harmonizable covariances is locally har-
monizable.

Proof. Indeed, this result is a direct consequence of the fajct that the product
of two harmonizable covariances is a harmonizable covariance: if

K(t,s) = ]/ etV M(dz,dy) and
&2
K'(t,s) = / / == M’ (dx, dy),
according to Fubini theorem, we deduce that
K(t,5)K'(t,s) = //m ¢t==G(dz, dy),
where G is the measure defined on R? by

G(4,B) = //WM(A-,;,B_y)M'(dx,dy). -

Consequently the product of two locally harmonizable processes which are stoch-
astically independent, is locally harmonizable.

In the following, we produce examples of non locally stationary but locally har-
monizable processes obtained by linear transformations of locally stationary pro-
cesses.



Locally Harmonizable Covariance: Spectral Analysis 545

Examples. 1. Let Z be a nonzero, locally stationary process such that
fEtz@myas < o
Then the harmonizable process X defined by
X@) = /me“” Z(z)dz,

is locally stationary. Furthermore, the process Y; defined by Y1(t) = h * X(t), with
h(z) = 1j_1 1)(z), is harmonizable:

1
Vi) = / X(t - s)ds = / ¢ Q(e) Z(z) d,
-1 B
where Q(z) = 2sinz/z. As, there are no functions f, g such that,

Qt+3)e(t-9) = r®a)

Theorem 1 in [8] implies that Y; is not locally stationary.

2. HY2(t) = e* X () with a € R—{0}, then the process Y3 is locally harmonizable
but not harmonizable, as it is not bounded in quadratic mean. If in addition, we
assume that

fElE@my e <
then the process Y;, derivative in the mean-square sense of Y5,
GO = e [ Qe 2,
with Q(z) = a + iz, is not locally stationary but locally harmonizable.

From the previous discussions we deduce the following inclusions of classes, the
inclusions being strict.

{ Harmonizable}
{Stationary } C # C  { Locally harmonizable }
{ Locally stationary }

3. ASYMPTOTIC SPECTRAL STUDY

Every harmonizable process admits an associated spectrum (see [10]). Michélek [7]
proved that a locally stationary function K admits an associated spectrum if and
only if lim;_. o %fot Ki(s)ds exists and is finite. More generally in the case of a
locally harmonizable process, we have the following asymptotic spectral result.
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Theorem 1. Let K(t,5) = K1 (42) g,

¢ . .
such that K, is locally integrable and t, (t,s)bea locally harmonizable covariance

at
lim l

i f Kuls)emuds = g(u) 3)

exists and is finite for every u in R. Then

N Y L C
JEEOZ/D K+ hys)eionds = b(u, b) (4)

exists and is finite for every u and h in R. Morever
ih(x4 u
I | e PR R ) ©)

where M is the measure in R? associated with the harmonizable covariance K.

Proof. First we note that the function g defined by (3) is B(R)-measurable
and bounded. Indeed g, limit of a sequence of B(R)-measurable functions, is B(R)-
measurable, and since for every ¢t > 0,

I ;
—/ Ki(s)e *"ds
t Jo

1t
< —/ Ki(s)ds,
tJo

it satisfies |g(u)| < g(0), for u € R.
Let h be fixed in R. From Fubini theorem we obtain that, for { > 0,

11
—1-/ K(s+h,s)e”"*"ds
0

t
ih. 1 ! h is(z—y—u)
= e~ Ki|ls+-]e ¥=%ds | M(dz,dy).
B2 t Jo 2

After the change of the variable S = s + h/2, by hypothesis on K, we can deduce
that
. 1t h P —ih(z—y—v)
lim - | Ki(s+=)e*EvWds = e T gl —y—u).
t—oo t [y 2
Then Lebesgue dominated convergence theorem can be applied and the theorem
follows. o

Consequently a locally harmonizable process whose covariance has a decompo-
sition which satisfies the hypothesis of Theorem 1, admits an associated spectrum.
The limit b(u, h) in (5) can be interpreted as the cyclic component at the frequency
u of the function s — K(s + h,s) with the fixed time delay h, and we have the
Fourier decomposition

K(s+h,8)~ Y b(u,h)e™.

u
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Whenever the process is harmonizable, the set A = {u, b(u, h) # 0 for some h € R}
is countable, and the series converges absolutely and uniformly with respect to h
and u in R, towards a covariance K, (see [1]). This covariance K, coincides with
K if and only if for every h, the function s — K(s + h,s) is almost periodic in the
sense of Bohr. See [1] and references therein for more details on the related theory
of the almost periodically correlated processes.

Under the hypotheses of Theorem 1, thanks to the Bochner theorem and [1}, there
exists a unique family {my,u € R} of complex measures on R which are absolutely
continuous with respect to mg, and such that b(w, .) is the Fourier transform of m,,.
For every u, the measure m, can be expressed with A and g. Indeed, consider
the transformation defined on R? by Ty (z,y) = ((z +y +u)/2,2 — y — u) and the
complex valued measure on R?, G,(A x B) = M(T;'(A x B)). Then m, satisfies
the equalities

) = [[ 9 Gu(ds,dy)
/m 9(v) Gul 4, dy).

I

When the covariance K is locally stationary, b(u, -) can be expressed in a simpler
manner.

Corollary 1. Let K(t,s) = K, (’—‘{—t) K5(t — s), be a nonzero locally stationary

covariance where K is locally integrable. The following two conditions are equiv-

alent:

1. limit (4) exists and is finite for all v and h,

2. limit (4) exists and is finite for every u, and h = 0.

Moreover, when these conditions are satisfied, we have
Ks(h)

b(u,h) = mb(u,())e%:m(h)e

ik

7 g(~u). (6)
Proof. For all h, u in R, and every ¢ > 0, we have

t 1
/ K(s+ h,s)e""%ds = Kz(h)/ K (s + g) e ds.
0 0

The change of the variable S = s+ % implies that
t h . wn [UHR? )
/ K (s+ —) e s = e7 Ki(s)e *"ds.
0 2 /2

As K(s,s) = Ki(s) K2(0) is not identically null , we can conclude the equivalence
between the two conditions. When these conditions are satisfied, we can readily
prove (6). o
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Under the hypotheses of Corollary 1, the function K is the Fourier transform-
ation of a nonnegative bounded measure m defined in R and

b(u,h) = g(—u)fei(’+%)hm(dx)
B

g(—u) -/];‘ei’hm (dz - —g) s

thus my(A4) = g(—u) m{A—u/2). When the covariance K is harmonizable, K = Kj,
(3) is satisfied with g{u) = 1{o}(u). Thus for all u, h in R, we get

// =t M(de, dy)

M((A x R)N D)

b(u, h)
my(A)

where Dy, = {(z,y),z — y = u}. More generally, we can state

Corollary 2. Suppose that K(¢,s) = Ky (’—;—’) Ks(t, s) is a locally harmonizable
covariance such that

Ki(s) = /C 2 F(dz)

where F' is a scalar measure on the set of complex numbers C, with support included
in the left half-plane. Thus for all u,h in R,

11
b(u,h) = tl_igg% A K(s+ h,s)e”*uds

//m " p(i(e — y — ) M(dw, dy),

/ /A P Gulds,d),

where G, has been defined above.

1

my(A)

I

Proof. Let u in R, Fubini theorem implies that
1/ ; 1 ;
- / Ky(s)e'ds = / <—~ / e’(’+‘("+”))ds) F(d2),
t Jo c\tJo
where 2 = x + iy. Since for every x > 0 and every y in R, we have

1 11
1 / et ) g g
0

sup
t>0

<1

and

t
lim 2 [ eGHODGs =0 if o+ i(u+y) #0,

tooo t Jy

=1 ifz+i{ut+y)=0.
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Then Lebesgue dominated convergence theorem can be applied, and we obtain that

1 ;
lim ~ Ki(s)e™*%ds = F(iu).
t—oo t fy
From Theorem 1, we can deduce the expressions of b(u, h) and my (A). u}

Let X = X1 X, be the product of two stochastically independent processes,
such that X is a symmetric process, that is, its covariance function K;(t + s) is a
continually exponentially convex (see Michalek (5], Getoor [3] and Loéve [4]), and
such that X, is a harmonizable process. Thus there exists a probability measure F'
on R such that for all£,s in R,

EX(1)Xi(s) = A e+ P(du).

If the support of F is contained in (—oo, 0], then the covariance K of X verifies the
conditions of Corollary 1, it admits an associated spectrum, and for all u, h in

b(u,h) = F(O)//‘e"”‘M(dw,dy).
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