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TESTING LINEARITY AND MODELLING 
NONLINEAR TIME SERIES 

TlMO T E R A S V I R T A 

This paper discusses some of the recent developments in testing linearity of a time 
series against the alternative that the series has been generated by a nonlinear process. 
The focus is on testing linearity against parametric alternatives. Special attention is given 
to the situations in which the parametric nonlinear model only is identified under the 
alternative but not under the null hypothesis of linearity. The use of some of the linearity 
tests in the modelling of nonlinear series is considered and illustrated with an example. 

1. INTRODUCTION 

Modelling possibly nonlinear time series is not an easy task. Once a model builder 
leaves the linear world behind the choice in principle is immense. In some disciplines 
such as physics the model choice may not be a major problem because much of the 
theory is nonlinear, and as a rule this theory is sufficient for specifying the structure 
of the model. In some other fields such as economics the theory often leaves the 
functional form of the model open. In such situations linear approximations to the 
unknown functional form have been very popular when economic relationships have 
been estimated from data. Quite a few such approximations have turned out to be 
satisfactory representations of the underlying economic phenomenon. Before trying 
nonlinear approximations it is therefore advisable to find out whether a linear model 
offers an adequate representation of the data or not. Only if the latter is true should 
nonlinear models be considered. This argument makes linearity testing an integral 
part of nonlinear modelling of time series. In this paper the emphasis lies on tests 
against parametric nonlinear alternatives which will also be called parametric tests 
for short. This area has developed rather rapidly since the contribution of Pagan 
[20]. His paper was perhaps the first one to stress the importance of the score or 
Lagrange multiplier approach in linearity testing. 

Tests against a nonspecified alternative have actually been more popular in the 
applications than those against a completely specified one. In economics this has 
been partly because testing linearity has been an aim as such, and rejection of this 
hypothesis has often not been followed up by any model building exercise. However, 
rejecting the null hypothesis against an unspecified alternative is generally not very 
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helpful if the ultimate aim is to build a workable model for the phenomenon in 
question. In this paper it is shown that some of the parametric tests can be very 
useful in nonlinear time series model building. Other accounts describing these ideas 
include Granger and Terasvirta [12], Terasvirta [26], and Terasvirta, TJ0stheim, and 
Granger [27]. The last-mentioned paper also considers nonpararnetric testing and 
modelling techniques which for reasons of space will be omitted here. 

The contents of the paper are as follows. Section 2 is devoted to linearity testing. 
Section 3 shows how some of the ideas of the previous section can be applied to test­
ing the parameter constancy in linear models. Section 4 briefly mentions some other 
approaches to linearity testing. The use of parametric linearity tests in nonlinear 
model building are discussed in Section 5, and Section 6 contains an application to 
Wolf's sunspot number series. Section 7 concludes. 

2. LINEARITY TESTING 

Consider the following nonlinear model 

yt = f(wt,vt,0\) + g(wt,vt,92)ut (2.1) 

where g(wt,vt,62) > 0, wt = (1, j / t _ 1 $ . . . , y._p)' , vt = ( « ( _ i , . . . , u H ) ' , and ut ~ 
nid(0,<r2). Following Granger and Terasvirta [12, p. 8], if / can be expressed as a 
linear function of its variables 

f(wt,vt,9l) = 9'nwt + 9'nvt (2.2) 

then (2.1) is called linear in mean. If, in addition g = constant, then (2.1) has a 
complete linear representation. Otherwise (2.1) is nonlinear. Linearity testing thus 
involves testing both the hypothesis that the conditional mean of yt is linear and the 
constancy of g within (2.1). However, the discussion will concern a more restricted 
case where the model can be written as 

yt = 0'wt + / i (wt, vt, 9) + ut (2.3) 

where f\ is at least twice continuously differentiable in a neighbourhood of 9 = 0 
and fi(wt,vt,0) = 0. Furthermore, the errors are assumed homoskedastic, i.e., g 
is a constant. The latter assumption is made for the case of exposition, but it is 
also fairly common practice to assume homoskedastic errors when testing linearity 
in mean. Making the tests robust for the situation where this assumption does not 
hold is discussed in Granger and Terasvirta [12, Chapter 6]. The structure of (2.3) 
implies that linearity in mean is a nested alternative within the nonlinear model, 
which simplifies the testing problem. The linearity hypothesis is Ho : 9 = 0. 

Because (2.3) is linear under the null hypothesis it is natural to apply the score 
or Lagrange Multiplier principle to test the null hypothesis. If this is done the 
estimation of (2.3) under the alternative is avoided, which is the whole point. See 
Engle [9] and Godfrey [11] for more discussion. In this standard situation, the test 
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statistic has the form 

- 1 T IT T / T \ _ 1 T \ T 
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t=\ \t=\ t=\ \ť_i / ť=i j t=\ 
(2.4) 

T 
where ut = yt — 0'wt (/i is an OLS estimator of (3 under Ho), v2 = (\/T) J2 ?̂> a n ( l 

ť=i 
it = -§gf\(wt,vt,Q). 

Under the null hypothesis (2.4) has an asymptotic \2 distribution with k degrees 
of freedom where k is the dimension of 9. The same result is obtained in the absence 
of normality if the errors are iid and the moments implied by (2.4) exist; see for 
instance White [33, Chapter 4] or Luukkonen et al. [18]. 

The test may also be carried out as follows. 

(i) Estimate (2.3) under the null hypothesis using ordinary least squares, estimate 
T 

the residuals iit, and compute the sum of squared residuals 55Ho = z3 " t-
v _ l 

(ii) Regress ut on wt and zt and compute the sum of squared residuals SSRi. 

(iii) Compute the test statistic 

F( t , r-*-p- i )- ( « « . - « * ) / -
SSRx/(T-k-p-iy 

The F-version of the test is recommended in the small samples whenever k is not 
small, because its size tends to be closer to the nominal size than that of the x 2 test 
while the power remains good. See e.g. Harvey [14, pp. 174-175]. As an example 
consider a bilinear model in which 

f\(wt,vt,0) = w't<dvt, 0 = vec(G). 

A total of pq — k elements of 9 are assumed zero a priori. Stage (ii) of the test 
simply consists of regressing ut on wt and the t/t_,- «t_j terms corresponding to the 
fc nonzero elements of 9. This is the linearity test against bilinearity discussed in 
Weiss [32] and Saikkonen and Luukkonen [24]. 

The above set-up is simple, but unfortunately it does not cover all the interesting 
nonlinear time series models appearing in the literature. Consider the following 
model 

yt = p,wt + f1(wt;9u62) + ut (2.5) 

where f\(wt; 0,92) = 0. The null hypothesis of linearity is H0 : Q\ = 0 whereas the 
alternative is Hi : 9\ ^ 0 . The problem is that (2.5) is only identified or estimable 
under Hi but not under Ho. An interesting special case of (2.5) is 

Vt = P'wt + (9'2lwt) F(wt; 9U922) + ut (2.6) 
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where 02 = (B'2l,9'22)'. If 02l = (02io, • • •,02 iP) ' with 02io = 0 and 

F(wt; 9\,922) = l - e x p {-9\ y2_\} , 0i > 0 (2.7) 

with 022 = 0, (2.6) becomes the exponential autoregressive (EAR) model discussed 
for instance in Haggan and Ozaki [13]. Another example is obtained by setting 

F(wt; 0\, 022) = (1 + expj -0! (yt-d - 922})~x - 1/2, $\ > 0 (2.8) 

where F + 1/2 is the so-called transition function of the logistic smooth transition 
autoregressive (LSTAR) model; for discussion see Chan and Tong [5], Luukkonen et 
al. [19], Granger and Terasvirta [12], and Terasvirta [26]. Writing 

yt = (?wt + 9[wt F(yt-d; 02) + ut (2.9) 

where F(yt-d; 02) = 0 for yt-d < 62 and F(yt-d\ 02) = 1 for yt_d > 92, it is seen 
that the threshold autoregressive (TAR) model of Tong [29,30] with two regimes 
and threshold variable yt_d fits into this framework as well. 

Davies [6,7] considered the above testing problem in a general setting. His sol­
ution was the following. Fix the nuisance parameter 02 and derive the test, call the 
test statistic LM(92). Use LM* = sup^ LM(92) as the (conservative) test statistic. 
Because the analytic null distribution of LM* is usually not available obtain the 
critical value of LM* at a given significance level through a suitable approximation. 

In this paper I discuss another solution which is feasible for models of type (2.6) 
if the transition function F(wt;9\,922) is sufficiently regular. It is based on approx­
imating F by a suitable Taylor expansion. As an example, consider the EAR model 
(2.6) with (2.7) and assume that under the linearity hypothesis (2.6) is stationary. 
Write the transition function (2.7) using the first-order Taylor expansion as follows 

F(wt; 0!,O) = F'(wt; 0,0)0! + R(wt; 0^0) (2.10) 

where F'(wt; 0,0) = y2_x. Substituting the right-hand side of (2.10) for F in (2.6) 
and reparameterizing yields 

yt = p'wt + 6'wty
2_x + u*t (2.11) 

where ut = ut under the linearity hypothesis HQ : 9\ = 0 and wt = (yt_\,.. .,yt-p)'. 
Furthermore, 8 = 9\8\ so that linearity may be tested within (2.11), the null hy­
pothesis being H'0 : 8 = 0. This leads to a standard test, and again the F-version of 
the test is recommended instead of the X2(P) t e s t if the time series is not long. If 
the errors are iid but not normal, the moment assumption E u® < oo is required for 
the asymptotic theory to apply. 

If the nonlinear alternative (2.6) is a smooth transition autoregressive model with 
transition function (2.8), the corresponding approximation of (2.6) is 

yt = p'wt + 6'wtyt_d + u*t (2.12) 

where 6 = 9\8\. The linearity hypothesis is H'0 : 6 = 0 in (2.12). 
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This theory does not work if the nonlinear model is a threshold autoregressive 
model, because in that case F is a step function of yt-dy and this introduces a 
discontinuity in the likelihood function. Note, however, that the two-regime TAR 
model is a special case of the LSTAR model (2.6) with (2.8) and is obtained by 
letting 6\ —> oo in (2.8). The test based on (2.12) is applicable in this limiting case 
as well. The small-sample power simulations is Petruccelli [21] showed that it has 
reasonable power when the true model is a TAR. 

3. TESTING PARAMETER CONSTANCY 

The aforementioned theory is also applicable in multivariate cases; for discussion 
see Granger and Terasvirta [12]. An important special case is the one in which the 
transition function of (2.6) has time as transition variable. For instance, the logistic, 
transition function has the form 

F(t;6\,922) = (l+exY>{-e\(t~e22)})-
1, 9\ > 0. (3.1) 

The corresponding auxiliary regression for testing Ho : 6\ = 0 against 9\ > 0 
becomes 

yt = f3'wt + 8[wtt + u*. (3.2) 

Using the asymptotic theory in Lai and Wei [16] it can be shown that the asymp­
totic null distribution of the usual test statistic for testing Ho : 8\ = 0 in (3.2) is 
chi-squared with p + 1 degrees of freedom. This requires iid errors, the stationarity 
of (3.2) under H'0 and the existence of the second moments. For more discussion see 
Lin and Terasvirta [17]. 

Combining (2.6) with (3.1) and testing linearity is useful because it amounts 
to constructing a parametric test against structural change in a linear model; see 
Antoch and Huskova [1] for a review of this change-point problem. The approach 
allows the parameter change to be continuous, which often is a feasible assumption 
in areas such as econometrics. If the null is rejected an additional advantage is that 
the alternative may be estimated. This gives the investigator an idea of where in the 
sample the parameter constancy breaks down and whether the structural change is 
continuous or rather resembles a single break. By a suitable choice of the transition 
function different types of structural change may be postulated and detected. The 
logistic function (3.1) is just one example and more general shapes are possible. 
A detailed discussion and examples can be found in Lin and Terasvirta [17]. 

4. TESTS WITHOUT A SPECIFIC NONLINEAR ALTERNATIVE 

As the focus here is on parametric linearity tests many important developments in 
testing linearity are neglected. Tests based on procedures for detecting structural 
change such as the CUSUM test of Brown, Durbin, and Evans [4] may be applied to 
testing linearity against threshold autoregression if the observations are rearranged 
according to the values of the transition variable. There also exists tests without a 
specific nonlinear alternative such as tests based on the bispectrum (see Priestley 
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[22], for a review) or the Brock-Dechert-Scheinkman (BDS) test of independence 
based on the correlation dimension. The latter is usually applied to the residuals of a 
linear model, and a rejection of the iid hypothesis is interpreted as evidence in favour 
of undetected nonlinear structure in the data. For discussion and examples see for 
instance Brock, Hsieh, and LeBaron [3]. Another important class of tests without 
a specific alternative are nonparametric linearity tests. The idea is to compare the 
best linear and nonparametric predictor (both based on the same information set) 
of a variable and reject linearity if the distance between them is sufficiently large. In 
the simulation experiments of Hjellvik and Tj0stheim [15] who recently developed 
tests based on this idea such tests behaved very well. For recent surveys discussing 
nonparametric tests of independence and linearity see Tj0stheim [28] and Terasvirta, 
Tj0stheim, and Granger [27]. 

It should be stressed, however, that some of the linearity tests presented as tests 
without a specific alternative can also be interpreted as Lagrange multiplier tests 
against parametric alternatives. The Regression Specification Error Test or RESET 
(Ramsey, [23]) and the linearity test of Tsay [31] are examples of such tests. The LM 
interpretation helps one to find out when the test is powerful and, conversely, against 
which alternatives it cannot be expected to perform well. For more discussion, see 
Granger and Terasvirta [12, Section 6.3]. 

5. USE OF LINEARITY TESTS IN MODEL BUILDING 

In this section I shall describe the use of parametric linearity tests in nonlinear time 
series model building. For successful use of data-based modelling techniques it is 
necessary to restrict the class of nonlinear models under consideration. Here it is 
assumed that if the model generating the data is nonlinear it can only be a STAR 
model: 

yt = <p'wt + {6'wt) F{yt-d; 7, c) + ut (5.1) 

where wt = (1, yt-U ... ,yt-p)', <p = {<p0, <pi,..., <pp)', and 0 = {9o,0u.. .,9P)'. F is 
a bounded continuous function of yt-d. More specifically, it is assumed that (5.1) is 
either a logistic STAR (LSTAR) model (see Section 2) with 

* 
F{yt-d; 7, c) - (1 + exp{-T(y.-d - c)})"1 , 7 > 0 (5.2) 

or an exponential STAR (ESTAR) model 

F{yt-d; 7,c) = l - exp {-j{yt-d - c)2} , 7 > 0. (5.3) 

The ESTAR model is a generalization of the EAR model discussed in Section 2. 
Write (5.1) as 

yt = {<p + 0F)'wt + ut. (5.4) 

The model can be interpreted as an autoregressive model whose local dynamics 
depend on yt-d- The transition function (5.2) is a monotonically increasing function 
of yt-d, so that the "parameter vector" of (5.4) changes from <p to <p + 9 with this 
transition variable. For the ESTAR model the change is symmetric about c. The 
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parameter vector equals <p at yt-d — c and approaches <p + 9 for both low and high 
values of yt-d- The LSTAR and ESTAR models taken together are thus capable 
of characterizing rather different types of nonlinear behaviour. Note that in most 
applications the delay parameter d is unknown and has to be determined from the 
data. 

In the following I shall present a data-based modelling strategy for building STAR 
models. A more detailed exposition can be found in Terasvirta [26]. It consists of 
specification, estimation, and evaluation of a STAR model and thus is similar in 
character to the linear ARM A model building approach in Box and Jenkins [2]. I 
shall begin with the specification. It consists of three stages: 

(i) Specify a linear autoregressive model for {yt}-

(ii) Test linearity for different, values of d and if rejected determine d using the test 
results. 

(iii) Choose between LSTAR and ESTAR. 
Stage (i) forms the starting-point for testing linearity and is necessary because the 
lag length p is generally unknown. It can be carried-out by applying a suitable order 
selection criterion such as AIC. The second stage can be performed using another 
auxiliary regression 

yt = /3'wt + 6[wtyt-d + S'2wty2
i_d + 6'3wty^-d + ut (5.5) 

where the linearity hypothesis equals H'0 : 6\ = 62 = 63 = 0. Testing this hypothesis 
guarantees power against both LSTAR and ESTAR simultaneously. The motivation 
for including the fourth-order terms 6'3wtyf_d is given in Terasvirta [26]. The test 
is carried out for different values of d € D = { 1 , . . . , d0}. If the null is rejected, the 
d corresponding to the smallest p-value among the tests is selected. The reason for 
this is that if there is a correct d among the alternatives considered, the power of the 
test is maximized against it. The test may have power against other alternatives as 
well but is on the average less powerful against them. Proving the consistency of this 
selection procedure is difficult because the true alternative is nonlinear, but simu­
lations in Terasvirta [26] support the notion. They also show that the specification 
procedure as a whole works reasonably well. 

The third stage is based on (5.5) and the knowledge of 6j, j = 1, 2, 3, as functions 
of the parameters of the original STAR model. These vectors are different functions 
of <p, 9, 7 and c in the LSTAR case compared to the ESTAR model, and this fact can 
be used in selecting between the two families. The choice is based on the outcome 
of the following test sequence of nested hypotheses: 

# 0 3 :63 = 0 

H02 : 62 = 0|<53 = 0 

H01 : 6\ = 0\62 = 63 = 0. 

The decision rule is as follows. If the p-value for rejecting H02 is less than that of 
the two other tests, choose an ESTAR model. Otherwise choose an LSTAR model. 
The foundation of this decision rule is discussed in Terasvirta [26], where it is also 
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shown that the procedure works well already in small samples. Thus the auxiliary 
regression (5.5) which is a consequence of the Taylor expansion approach to linearity 
testing when the model is only identified under the alternative is also a useful tool 
in nonlinear STAR model specification. 

The same approach is also applicable at the evaluation stage after a STAR (either 
LSTAR or ESTAR) model has been estimated. An appropriate question to ask is 
whether the model has successfully captured all the nonlinear features in the data 
or not. The latter case calls for respecification of the model. A parametric test of 
no remaining nonlinearity is obtained as follows. Define an additive STAR model 

yt = <p'wt + (0'\ivt) F\(yt_d,y\,c.\) + (6'2wt) F2(yt-d2,y2,c2) + ut (5.6) 

where j \ , j 2 > 0 and F\ and F2 are either of LSTAR or ESTAR type. Assume that 
a single STAR model has been consistently estimated. To test the adequacy of the 
STAR model approximate F2 with a third-order Taylor expansion as above to cover 
both the LSTAR and ESTAR alternatives. The auxiliary regression for the test has 
the form 

u% = P'zt + 6\wtyt_da + 6'2wty
2-d3 + ^wtyf-d2 + uj (5.7) 

where zt = (dut/d<po, dut/dtp\,..., dut/dc\)', and ut is the residual consistently 
estimated under the assumption that (5.6) is an ordinary STAR model, i.e., that 
72 = 0. This null hypothesis is equivalent to H'0 : 8\ = 62 = #3 = 0 in (5.7). The 
standard asymptotic theory applied when the null model is stationary and ergodic 
and its parameters consistently estimated: the details are found in Eitrheim and 
Terasvirta [8]. The result is that the LM type statistic has an asymptotic x2(3p) 
distribution under H'0. 

6. APPLICATION 

In this section the above theory is applied to the well-known Wolf's sunspot numbers, 
1700-1979. At present there is no theory available for specifying the dynamics of 
the process generating the sunspots. As a result, various nonlinear models have 
been fitted to this series. Tong [30, Section 7.3] reviews these developments. I shall 
consider the square-root transformed data as in Ghaddar and Tong [10]. Let yt 

be the tth observation of the original series. Then the transformed observation is 
xt = 2 ((yt + 1) 1 / 2 — l) , i.e., the Box-Cox transformation of the original observation 
plus one with the transformation parameter A = 1/2. The transformed series is 
graphed in Figure 1. 

» ____________________________ů___\ 
1720 1760 1800 1840 1880 1920 1960 

Year 

Fig. 1. Transformed Wolf's sunspot numbers, 1700-1979. 
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I shall characterize the dynamics of the series by a STAR model. The exposition 
here follows Terasvirta (1993). To specify a STAR model the first step is to find a 
linear autoregressive model, and applying AIC yields an AR(9) model. Linearity is 
tested next using (5.5) with p = 9 in wt. The results are in Table 1. It is seen that 
the p-value is minimized for d = 2, and this value is selected as the delay. The test 
sequence of the third stage is carried out for d = 2, and by far the strongest rejection 
is that of Hoi- This leads to the selection of an LSTAR model. The model is usually 
reduced at the estimation stage by imposing exclusion restrictions and re-estimating 
the parameters, and that has also been done in this example. The final estimated 
model is 

Table 1. Obtained p-valued of tests of linearity for the transformed sunspot series and of 
no remaining nonlinearity in LSTAR model (6.1) for the transformed sunspot series. 

Delay 1 2 3 4 5 6 7 8 9 

(a) Lineaгity tests 
Null hypothesis 
HQ : 61=62 = 63=0 in (5.5) 0.059 2 x l 0 ~ 5 6XІ0~ 4 0.015 0.059 0.016 0.0026 0.0042 0.030 
Hoз : 63 = 0 0.41 
H02 : 52 = 0|<53=0 0.033 
Яoi : 6i=0\62 = 6з=0 зxio- 6 

(b) Tests of no гemaining 
nonbnearity 

Null hypothesis 

Ho :ői<52 = 5 3 = 0 i n (5.7) 0.30 0.091 0.098 0.075 0.13 0.34 0.53 0.42 0.18 
Hoз :<$з = 0 0.42 0.33 0.29 
H02 :62 = 0\6з~0 0.040 0.041 0.068 
#01 : <5i=0|£2 = <5з=0 0.44 0.57 0.32 

x ť = 1.55 x ť_i 
(0.080) 

0.82 x ť_2 + 0.27 x ť_ 7 

(0.15) (0.040) 

+ ( 2.58 - 0 . 6 9 x ť _ i + 0 . 8 2 x ť _ 2 - 0 . 3 1 x ť _ 3 - 0 . 2 7 x ť _ 7 - 0 . 1 2 x ť _ 8 

(0.79) (0.11) (0.15) (0.038) (0.040) (0.064) 
(6.1) 

+ 0.15x ť_9 + 0.16x ť _n)(l+exp{-4.7 x 0.178(xť_2 -7 .8 ) } ) _ 1 + t - . 
(0.084) (0.059) (2.2) (0.69) 

s =1.91, È " ? / T = 3.47. 
<=i 

Restrictions tp2 = —#2 and <p7 = — $7 have been suggested by the data and 
imposed. The figures below the parameter estimates are asymptotic standard devi­
ations based on the Hessian matrix, and s is the standard error of residuals. The 
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inverse of the sample s tandard deviation of xt appearing in (6.1) (l/a(x) = 0.178) 
is a scale factor with the purpose of making 7 scale independent. 

The dynamic properties of the estimated model are best seen through the roots 
p 

of the characteristic polynomial q(z) = zp — ]T) (<pj + 0j F) zp~3 at different values of 
i = i 

F. Two interesting values are F = 0 and F = 1, respectively, because they represent 
the two extreme regimes. In turns out tha t for F = 1, the dominant as well as all the 
other roots lie inside the unit circle indicating tha t the model is locally stationary for 
moderate and high values of transition variable i/t-2- I n fact, its local dynamics are 
close to those of the linear AR(9) model. On the other hand, for F = 0 there exists 
a complex pair of explosive roots which describe the behaviour of the process at 
the troughs and shortly thereafter. The number of sunspots after a trough seems to 
increase at a faster rate than it decreased, see Figure 1, and the local nonstationarity 
is there to characterize tha t phenomenon. 

At the evaluation stage the estimated model is subjected to a number of tests; see 
Terasvirta [25]. As this paper is focusing on parametric linearity tests, the results 
of the test of no remaining nonlinearity are of interest. They are found in Table 1. 
It is seen tha t (6.1) has captured most of the nonlinearity. There may be some 
ESTAR-type nonlinearity left as the p-values at delays 2,3 and 4 are between 0.05 
and 0.1, and each test sequence points at ESTAR. The p-values are not very small, 
however, so tha t tentatively accepting (6.1) is not an unreasonable thing to do. 

7. CONCLUSIONS 

This paper illustrates the role of parametric linearity tests in nonlinear model build­
ing. They can be used not only for testing linearity against parametr ic nonlinear 
alternatives but also as helpful tools in a t tempts of modelling the nonlinearity tha t 
may be discovered in the da ta when these tests are applied. To do the latter, however, 
the family of nonlinear models under consideration has to be rather restricted. Oth­
erwise the data-based specification techniques may easily fail or be inefficient. This 
may be considered a drawback, but another advantage of the Lagrange-multiplier 
type tests discussed here is tha t they usually work well already in short t ime se­
ries that are frequently encountered for instance in econometric applications. Tests 
against nonspecified alternatives such as the BDS or bispectrum test may have pow­
er against a wide range of alternatives, but the power tends to be less satisfactory 
in short series. 

(Received March 3, 1994.) 
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