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ON SOME ESTIMATION VARIANCES 
IN SPATIAL STATISTICS 

JOEL CHAD(EUF AND VlKTOR BENEŠ 

Several estimators have been developed to estimate the length intensity of fibre processes 
(see for example Ohser [5], Vedel-Jensen and Kieu [8]). Among them, estimators based on 
sections of the sample with random planes are popular because of their easy use. Recently, 
Benes et al [1] studied an estimator based on projections of the fibre process on hyperplanes. 
In the present paper the first and second order properties of these estimators will be recalled 
in the first part. The second part will contain the convergence of the estimator based on 
serial sections to the estimator based on projections. Two examples will be presented at 
the end of the paper. 

1. ESTIMATORS UNDER STUDY 

Let (R, B, v) be the rf-dimensional Euclidean space with Borel <r-algebra and Lebes-
gue measure v. The index d is often omitted in the text. Let (M, M) be the mea
surable space of one-dimensional subspaces in Rd, which is interpreted here as a 
hemisphere of axial orientations. 

Let P be a probability measure on M. Its Buffon transform Tp is the function 
on M: 

J F P ( / ) = / | c o s < ) ( / , m ) | P ( d m ) 
JM 

where <$(l, m) denotes the angle between / and m. 

For two probability measures P, Q on M, the Buffon constant is 

TPq = f TP(l)Q(àl) = TąP Jм 

Tpil) can be interpreted as the mean projection length of a unit segment in Rd 

of orientat ion / onto a random line with orientation distribution P. 

Let $ be a stat ionary random fibre process in Rd, see Stoyan et al [7] for a proper 

definition. Recall t h a t fibres are images of continuously differentiable curves. For 

B e Bd, the total fibre length in B, denoted $(B), is locally finite. 

A weighted fibre process ^ is derived from $ by joining to each point x of $ i ts 

tangent orientation m(x). There exists L (E R+ and a probability measure P on M 
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such that the intensity measure A of ^ can be written (cf. [7]): 

A(B X D) = E[*(B x D)] = Lu(B)P(D) BeB.DeM 

L is the length intensity of <1> and P its rose of directions. We assume in the following 
that the density p of P exists. 

Let B, C be measurable bounded sets of Rd, u(B) > 0, then (cf. [7]): 

E(Q(B)) = Lu(B) 

E(*(B)*(Q) = J J \B(x) \C(X + h)K(dh)dx 

var(4>(H)) = L2 f gB(x)(p(x) - \)dx 
JR<* 

where gB(x) = u(BC\B-x), B-x = {y — x; y e B}, K is the reduced second moment 
measure and p(x) is the pair correlation function of $. It holds K(dx) = p(x)dx, 
throughout the paper it is assumed that the pair correlation functions studied exist 
and are continuous in R2 — {0} (excluding the origin of coordinates). 

Then an unbiased estimator of L is 

_ * ( B ) 
L l - ^ ( B ) 

with variance 
L 2 f 

var(Lj) = " 7 ^ 2 J dgB(x)(p(x)-\)dx. 

Let (tI»)i<,<n be n (d — l)-dimensional hyperplanes with normal orientations 
(/,), Ai = Ud-\(Hi fl B) where Ud~\ is the Lebesgue measure in Rd_1, and denote 
Ni = ^o(^ H Hi fl H) the number of intersection points between $ and H, lying in 
B. Then (Kanatani [2]) E(Ni) = AiFp(li)L and an unbiased estimator of L is: 

1 n 

Aři 
n fy AiTP(li) 

with variance: 

var( 
1 Y ^ y ^ tov(Ni,Nj) 

Let / G M be a fixed orientation. A random measure <£/ can be defined where 
$/(C) is the sum of the orthogonal projection lengths of all fibres of $ in C onto / 
for every C € B (cf. [1]) whose intensity is L\ = L^>(/). More generally, let Q be a 
probability measure on M, a random measure $ Q is defined as, for C e B: 

ФQ(C) = í Фt(C)Q(dl). 
Jм 
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Its intensity LQ is LTpQ and its pair correlation function pQ(x) can be expressed 
in terms of characteristics of 4> (Benes et al [1]): 

P (*) = Ш-P(*) 
FpQ 

where IQ(X) = fM fM JrQ(m\)JrQ(m2)Wx:(d(m\, m 2)), WT is the two point distri
bution function of 4> (Schwandtke [6]), i.e. the joint distribution of fibre tangent 
orientations m\, m 2 in points x\,x2 such that x = X\ — x2 under the condition that 
these points belong to fibres. Then one gets 

cov (ФQ(A),ФQ(B)) = LQ í gA,в(x)(pQ(x)-ì)dx, (1) 
JRd 

where <ju,#(.c) = v(A D B-x) and an unbiased estimator of L is 

ФQ(B) 
3 ĄB)ГPť 

whose variance is 

L 2 f 
var(L3) = —f-^ / gB(x) (pQ(x) - \)dx. 

Explicit formulae are given in Section 3 for two fibre processes, namely the Poisson 
boolean segment process and the Poisson line process. 

2. CONVERGENCE OF THE SERIAL SECTION ESTIMATOR TO THE 
PROJECTION ESTIMATOR IN H2 

Let us denote u the vertical axis, x = (r, 6) the polar coordinates in R2, — IT < 0 < w, 
9 being the colatitude with respect to u, Va>y = [0,x y ] x [y,y-\-a] the rectangle with 
edge length a parallel to u. For fixed y G R, Xy is a real constant (see Figure 1). 
Let * a ( y ) = ^u(VQty) be the total projected fibre length in Va>y divided by a and 
Ny = uo(^ n Vb,y) be the number of intersections of <1> with the basis of Va>y. In fact 
due to stationarity assumptions, the distribution laws of these quantities depend of 
y through Xy only. 

D C 

Fig. 1. F^lar coordinates with respect to u and rectangle Va>y used is ^a(y) definition. 
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L e m m a 1. Let / ( r , 9) = -^-- be a continuous function on R2 — {0} with 

• c(6) ~ K+(ir/2 — 0)a+ when 9 —> 7r/2 for some real constants K+, cv+; cv+ > 0 

• c(9) ~ K-(9+ir/2)a- when 9 •—> — ir/2 for some real constants A'_, a_; cv_ > 0 

and let 6 —> 0, a —* 0 verifying 0 < a < 62 then, 

/ KV6,y n (Va,y)-X) f(x)dx = 6aXy f ' -^±-d9 + 6ao(l) (2) 
J_e«2 J-»/2 cos^j 

and , ,7r/2 /M 

/ "(H,y n (H,y)-*) f(x)dx = b2Xy / -A- i -d0 + 62o(l). 
Jx£R? J-7T/2 COS(tV) 

If there exist rn\ and m2 6 R+ such that 0 < nil < Xy < m2, these convergences 
are uniform in y. 

P r o o f . The first integral can be written as: 

/ u(Va,y n (Vh,y)-X) f(x)dx = Jl + J2) 
JxeR2 

where 

II = / / KV« )yn(H i y)_x)c(^)drd0 ) 
J-ir JrG/l 

h = / ' / "(Va,y n (V6iy)_x)c(0)drd0. 
JO JrGfi •GJ 

Let us denote 

0/ = arctan(Xy/6) = TT/2 - b/Xy + o(6) 

0; = arctan(Xy /(6 - a)) = TT/2 - (6 - a) /X y + 0(6 - a) 

0," = arctan(Xy /a) = TT/2 - a/Xy + o(a). 

These limits hold uniformly in Yy if 0 < mi < xy < m2 . 

Then e. g. 

J2 = / / ' ' a(Xy-rsin(9))c(0)drd9 
Jo Jo 

+ / / a (x y - r s in (0 ) )c (0 )d rd0 
Je'l Jo 

+ / / (6 - r cos(0))(;fy - r sin(0))c(0)drd0 
Jo I±^ 

c o i ( # ) 

+ / ' fi>Wi(b-rcos(9))(Xy -rsin(9))c(9)drd9 
Jo* J£fc 
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+ / / r\ cos(0)|(xj, - rsin(0))c(0)drd(9 
Jn/2 Jo 

+ /* r 
J-r-í," JO 

r\cos{$)\{Xy - rsin(0))c(0)drd0. 

Denote 

M«. «) = £_&<» M«.») = J - ^ d ( ' 
*>(«. ») = ft *£$& '<(«• b) = /» S^ggf.-, 

then integrating we obtain 

l . /2 = x„h(o,9',) -^xsh(e'l',e'l) + ±xvh(o,,<)',) + 

+ § / . ( « ; . T / 2 ) + J / , ( 9 , , 9 ; ) + °l=i_/3(0,9;) + 

similarly for J!. Now evaluating the limits using the assumptions (2) follows. Uni
form convergence is ensured by uniform convergence of 0;, 6\, $'/. • 

L e m m a 2. Let h{r,9) be a continuous function on R2, and let b —• 0 and a —• 0 
satisfying 0 < a < b2 then, 

+ ^»(V°,y n (V«.y)-.)) Hx)dx = o(l) 

(3) 

If there exist mi and m2 G R+ such that 0 < mi < Xy < m2 this convergence is 
uniform in y. 

P r o o f . Let x = (xi ,x2) G f i x f i , 

"(Vb,y n(n,y)-_) = sup(0,(Xy - |xi|))sup(0,(6- |x2|)) 

and 

with 

^(V6>y n (Va,y)-_) = SUP(0, {Xy - |x1|))flf6,a(x2) 

0 if x2 < - a 

a — |x2 | if —a < x2 < 0 

0&,a(x2) = { a if 0 < x 2 < 6 - a 

b — z2 if 6 — a < x2 < b 

0 if x2 > 6. 
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Let h\ be a continuous function on R+, then 

72 / v(Vb>yn(Vbíy)..x)h(x\)dx= [ (Xy-\x\\)h(X\)d 
0 J*e_R- Jxl=-xy 

X\ 

and 

so that 

7- / v(Vb,yn(Va,y)-x)h(x\)dx 

= TTn \ (Xy-\x\\)h(x\)dx\ 9b,a(x2)dx2 
ba Jrl=-xy Jx2em 
1 fXv ( rn fb-a 

= foij x (Xv-\xi\)h(*i)dxi H (a-\x2\)dx2+ ad 

+ / (a - \b - a - x2\)dx2) 

= / " (Xy-\x\\)h(x\)dx\, 
J X\— — Xy 

JC*. G ^ 0 4 * n {Vb'y)-x) ~ hu(yi*n {Va>y)-*] 

+ -^v(Va,yC\(Va,y)-x)\ h(x.\)dx = Q 

and 

dx < 4X2. i€/_- Wu{Vb'y n (***)-) " E^*4* n ( ^ J - ) + P^KK, n (Va>y).x) 

Let us consider H2 with cartesian coordinates. As a function on H2 h is a 
continuous function on every compact of H2. Then, it is uniformly continuous on 
D(0 ,x y ) (the disc of center 0 and radius Xy) so that h(x\,x2) = h(x\,Q) + o({) 
uniformly in x\ for every X\ € [0, Xy] and \x2\ < b. 

Finally 

|l^(r^n(^>-)-|''(H„n(v.,,)_.) 
+^(K.,„n(K,,!,)_-)) /,(_)d_ 

- |/ef i ! (^*fl** n W*)-) - ^KH„ n (!_,)_) 

+^"(V_,.n(l_,„)__)) /,(_,,o)d_ + 
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+ 
' ?Є 

JLR- \^u{Vb'y n {Vb'y)-x) • c 1 ^ * * n w-*)-) 
+ ^ ( K J ) y n ( V ( I , ! / ) - ; c ) daro(l) 

< 4X 2 o(l) 

uniformly in Vy due to the uniform continuity of h. O 

T h e o r e m 1. If the pair correlation function pu(x) on H2 — {0} of the projection 
measure <!>„ can be written as 

Pu(r,0)-\ = C-^- + h(e,r) (4) 
r 

where functions c and h satisfy conditions of Lemma 1 and 2, respectively, then, 

^a(y) —* Ny in quadratic mean for a —• 0. (5) 

Under the last condition of Lemma 2, this convergence is uniform in y. 

P roof, a) Let us suppose 0 < e < 62, then from equation (1), 

cov(<MV6,y),*u(V;>s,)) = L2T2

t(u) f v(Ve>yn((Vbry)„x)(pu(x)-~\)dx 

= L2T2

R(u) ( u(Veiyn(Vbiy).x)
C-^-dx 

JxtR* r 

+ L2T2

R(u) j v(Ve<yn(Vb,y)-x)h(x)dx 
JxeR2 

c(0) fulfills conditions of Lemma 1 and so 

A(b,e) = L2T2

R(u) í v(VЄtУП(Vb,y)-x)
C-^dx = 

Лєя- r 

ľҡl2 c( ) 
= L2F2

R(u)beXy / - L-dØ + 6eo(l) 
J-ҡ/2 COS(í/j 

and 

A(b,b) = L2F2
R(u) j u(Vb>yn(Vb!y)-x)

C^-dx = 

= L2TR(u)b2Xy r/2 ^Ld6 + b2o(\). 
J-TT/2 COS(^) 

The function h(x) verifies conditions of Lemma 2, using the definition of ^a(y), 
one gets 

var(tf 6(y) - * e(y)) = l^r(^(Vbty)) - 2^cov(^u(Vb>y), **&*)) + ^var(<MVe ) ! /)) 
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= ;rW(M)-2-^4(6, e) + i ,4(e,e) 
p* be e 

+L R>{&u{Vb* n (H'^-x) " VeV{Vb'y n M * ) - ) + ^ " ( ^ n W,»)-*)) W r)da: 
= o(l), 

the convergence being uniform in Yy. Vb(y) and ^e(y) having equal means Xy LFR(U), 

ll*.(y) - *e(y)|| = o(l) 

uniformly in Yy, \\U\\ = EU2 denoting the quadratic norm of a random variable U. 

b) Let a, 6 be two positive reals such that 0 < a < b 

ll**(v) - *«(v)ll < ll*«(v) - *«3(y)ll + ll*.(y) - *«3(y)ll < 2o(i) 

and the series (^a(y)) is Cauchy for all y. 
Moreover, the fibres being smooth and locally finite, \Pa(y) —* Ny almost surely, 

and then (Neveu [4]) ^ a (y) —* Ny in quadratic mean, and 

\\*a(y)-Ny\\ = o(l) (6) 

uniformly in Yy. D 

Lemma 3. Let f(x) = g(0) be a continuous function on R2 — {0} with 

• lim0_>,r/2 g(Q) exists (denoted g(n/2) in the following) 

• lim0_+_T/2y(0) exists (denoted g(-ir/2) in the following) 

and let 6 —• 0, a —> 0 verifying 0 < a < b2 then, 

/ HVa,y n (Vb,yU) f(x)dx = ^X2 (g(*/2) + g(-ir/2)) + ba o(\) (7) . 

and 

/ "(*.,* n (Vb,y)-X) f(x)dx = ^X2 (g(*/2) + g(~ir/2)) + 62o(l) (8) 

If there exist mi and m2 € R+ such that 0 < mi < Xy < m2, these convergences 
are uniform in Yy. 

P r o o f . It is similar to Lemma 1: Let f(x) = g(0), the first integral can be 
written as: 

/ v(Va,y П (Vb,y)-X) f(x)dx = h + h, 
Л є я 2 
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where 

Ji= f I v(Va,yn(Vb,y)-.x)g(6)rdrd6, 
J-ir Jr£R 

J2= f f u(Va,yn(Vb,y)-x)g(e)rdrde. 
JO Jr£R 

Let us denote 0/ — arctan(xy /6), $\ — arctan(xy /(6 — a)), 6" — arctan(Xy/a), 
then e. g. 

J2 _ / ' f7^ a(Xy-rsm(d))g(9)rdrd9 
Jo Jo 

+ / / a (x y - r s in (0) )a (0) rdrd0 
J$l Jo 

r°' fTzkeJ 
+ / / (6 - rcos (0 ) ) (x y - r s in (0 ) )a (0 ) rd rd0 

Jo J-_^r 
~»(•) 

0' Xy 

+ [ ' ['"" (6~rcos(0) ) (x y - r s in(0) )a(0) rdrd0 

•K—a" xy 

+ / / , i D ' r\ cos(0)|(Xy - rsin(0))a(0)rdrd0 
Jw/2 JO 

Denote 

+ Г / | C O , < в ) l r\ cos(0)|(xy - rsin(0))a(0)rdrd0. 
Л - 0 " Jo 

ЯW Ј đ r , _ Ł Ч _ lò^)sin(0)d^ '^=Lémie h(a'b)=l cos3(0) 

#W Ј đ , /„ n ł6^)cos(0) h(a,b)= f^Ærd I4(a,b)= f 
Ja SIПҶØ) Л sin2(0) v ' ' J, sin j(0) 

then we obtain 

dØ, 

- ] | ' ^ + ^ / 2 ( o , * ; ) + £ / . ( * - C ^ 

- S''«- *l2) + S/3(ff"";)" S W ' «> + iS '^ 2 ' ' " *> 
similarly for J\. Now evaluating the limits using the assumptions (7) follows and 
(8) for a — 6. Uniform convergence is ensured by uniform convergence of 0/, 9\, 6\f. 

D 
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Corollary 1 . Under the assumptions of Theorem 1, suppose Xy = Xz = X, 

cov(Ny,N2) = L2f2
P(u) f (X - \t\)(pu(t,y-z) - \)dt if y± z (9) 

J-x 

If moreover h(9, r) = g(9) verifies: 

• lime_n./2 g(9) exists (denoted g(ir[2) in the following) 

lim^__fl./2 g(9) exists (denoted </(—7r/2) in the following) • 

var(/Vy) = L2f2
P(u)(Xy f ' - ^ L l 0 + ^-(g(*/2) + g(-*/2))) (10) 

J-*/2 cos(9) 2 

P r o o f . The first equality is: 

cov(Ny, N2) - cov(Va(y), Vb(z)) = cov(Ny - # a(y) , N2) + cov(*a(y), Nz ~ *b(z)) 

Let e > 0, A such that var(Ny - ¥„(!/)) < 4Var(;v ) for 0 < a < A then, for 
0<a<A,Q<b<A, 

\cov(NyiN2)-cov(ya(y),*b(y))\<e 

and cov(Ny,N2) = l i n i a^o cov(tya(y), $b(z)). 

In particular, 

cov(Ny,Nz) = limcov(tfa(y), *<.(*)) 
a—•() . 

= L2T2
P(u) lim / ~v(Va,y H (Va>z).x))(Pu(x) - l)dz 

= L2T2
p(u)\\m — \{-X,X}(t)ky-z-a,y-z+a](v) 

a-*0J(t,v)€R* a 

(X - \t\)(a - \ y - z - v\)(pu(t,y-z + v)- \)dtdv 

and the result follows from the continuity of pu(x) for x ^ 0. 

The second equality is issued from var(Ny) = lim--2-var(4»u(Vftiy)) by applying 

Theorem 1 with h(x) = g(9). 

Moreover, as in Theorem 1, one obtains for 6 > 0, 6 —> 0, 

var(<MH,y)) = L2T2
P(u)f v(Vb,y D ((Vb,y).x)(pu(x) - \)dx 

= L2T2
P(U) f v(vb>vn(vb,y)-x)^dx 

Jx£R? r 

+ L2T2
P(u)\ u(Vb,yn(Vb>yU)g(9)dx. 
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Applying Lemma 1 and Lemma 3, one gets 

L2?l(u) [ u(VKy n W i f )_.)(3fi + g(0))d 
jx6«- r 

= L2rt (u)b2Xy Г
2 Æ-d$ + b2Џ(g(ҡ/2) + g(-ҡ/2)) + b2o(l) 

J-ж/2 ^os( ) 2 

and 

var(Ny) = l i m — var(Фц(V*)У)) 

= L2TІ {u)[XyL 2 ^šňá8+?«-/-)+»(--•/-)) I +"(')• 
1/2 «>s(0) 2 ; 

D 

Let Ho be a hyperplane with normal orientation u, (Hai)i£% = (Ho + iau)i£% a 
series of parallel hyperplanes and denote 

La(H) = a ^ *((Ho + iau) n H n 4») = £ aN ia(H), ( " ) 

where Nia(B) = i/((H0 + iau) n f l n $ ) is the number of intersection points between 
$ and Hai- inside B. 

Lemma 4 . Under the assumptions of Theorem l suppose that B is a compact 
convex set such that there exists a positive constant b for which either u(BC)Hai) > 
b > 0 or v(B n Hai) - 0 for all a, *, then for a -> 0, 

La(B) —» $W(H) in quadratic mean. 

Fig. 2. B compact convex set (in thick lines), serial sections with distance a between 
consecutive lines (horizontal lines) and Ba union of the rectangles built using the 

intersection of each line with B as basis and common height a. 
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P r o o f , a) Let Va,i be the rectangle of basis B n Hat and height a, Ba = UtVa)t, 
and 

sa(B) = J2 *«(Va,0 = £ *„(%,,) 

where Ka = [inf(t; Hta n B ^ I ) , surfs; Hta fl B 9. 0)]. 

Then, 
£(E a(B)) = £(<J»U( ( J Va,,)) - E(*U(B)). 

iEKa 

Moreover, 

var(Sa(B) - *U(B)) = var(*u (B\B a ) + 4>u(Ba\B))  

< var(4>u(B\Ba)) + var(4>u (Ba\B)) + 2 \ /var(^ u (B\Ba))var(^ u (B a \B)) , 

these variances being equal to 

var(<Du(Ba\B)) - L'ffcu) f gBa\B(x)(pu(x) - l)dx 
J*€fi2 

and 
var(4>u(B\Ba)) = L2T2

R(u) f gB\Ba(x)(Pu(x) - l)d*. 

The two functions gBa\B(x) and gB\Ba(x) 
• tend to 0 when a tends to 0, 

• are dominated by gc(x) where C is the dilation of B by the disc L>(0, 1) as 
soon as a < 1/2, 

• and L2T2
R(u) fx(.R2 gc(x)(pu(x) - \)dx = var(<f>u(C)) is finite, 

so that var($ u (B a \B)) and var(4>u(B\Ba)) tend to 0 as a tends to 0 by application 
of the theorem of dominated convergence. 

Finally 

||tfa(B) - S a(B)| | = (£ (<MB ) - Ea(B)))2 + var(Ea(B) - #„ (£) ) - 0 (12) 

when a tends to 0. 

b) Developing the expressions of S a(B) and La(B), one gets S a(B) — La(B) = 

« 5 Z (*-(««) - Nia). E(Ea(B) - La(B)) = 0 leads to 
i£Ka 

\\Ea(B) - La(B)\\ < a2 £ cov(Nia - *a(ia), (Nja - *a(ja))) 
i,jeK. 

< a2 J2 ^/var(N ta - *a(.a))var(N j a - *a(ja)) 
i,JEKa 

B satisfying the necessary conditions for Va(ia) to tend uniformly to Nta, then 

l|Ha(B) - La(B)|| - j 0 when a — 0 (13) 

and finally | |La(B) - 4>U(B)|| < | |La(B) - S a(B) | | + | |Sa(B) - <MB)|| tends to 0 
when a tends to 0. D 
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Theorem 2 . Under the assumptions of Theorem 1, suppose that B is a compact 
convex set then for a —> 0, 

La(B) —• $*(£) in quadratic mean. 

P r o o f . Let B be a convex compact set of R2. 
There exists a series Dn of squares with a horizontal face such that 

B = | J Dn U L>oo 
n 

with u(Doo) = 0. Let us denote Bn = U,<nLV 
Let n > 0, ||La(Bn) - <M#»)II = l l S U M A ) - • • ( A ) | | < __?_. HMD . ) -

4>u(Di)|| —* 0 when a —• 0, each Dj satisfying conditions of Theorem 2 and the sum 
being finite. 

Let B'n be the dilation of B by the horizontal vector of length 1/n. B'n fulfils 
conditions of Lemma 4 and 

BncBcB'n 

so that 
La(Bn) - *„(£?) < La(B) - *„(B) < La(Hi) - *„(£f). 

It is | |La(£n) - *«(B)| | < \\La(Bn) - *u(Bn)\\ + ||*_(.B„) - * , (B ) | | ; f (B \Bn) - 0 
so that ^>t.(-3n) —• $u(B ) in quadratic mean and there exists N such that \$U(BN) — 

<MB)I < <• 
LO(BN) —• $u(Hjv) in quadratic mean so that there exists A > 0 such that, if 
0 < a < A, 
\\La(Bn) - *u(Bn)\\ < t and | |La(Bn) - *„(fl)| | < 2c 

The same reasoning applied to | |L a(Bn) — $U(H)| | leads to the result. • 

Lemma 5. Suppose that B = [0, X] x [0, V] is a rectangle in R2 with edge length 
Y parallel to w. Suppose furthermore that pu(r, 0) — 1 = ---- +g(0) where c satisfies 
the conditions of Lemma 1 and g is continuous with 

• g(0) = D+(ir/2 - Of* when $ -> TT/2 

• g($) = D_(0 + x/Vf- when 6 — -TT/2 

for some real constants D+, D-, /?+,/?_ then, 

• if a+ > 0, «_ > 0, (3+ > 0, /?_ > 0, cov(Ny, Ny+Z) is contintious at z = 0 for 
any y, 

• if «+ > l, <*_ > 1, /?+ > 1, /?_ > 1, the derivative » c o v ( y r r - ) exists at 
2 = 0 for any y and is equal to 

i^(«)fxr/,-^d,_/?y,i__a__^ 
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P r o o f . Denote 9\ = arctan 4-. It holds 

cov(Ny,Ny+b) = L2F2
R(u)j_x(X-\x\)(pu(x^h)-i)dx 

2 2 f9i X-b\t<m(0)\ (0)COS(Q) 

and let 6 —> 0: 

where 

/ ' ' - Y - 6 | t a n ( g ) | cfflcosffl 
j 0 COS2(0) ( b + .W)Mt f = 

= 11 (6) +12(6) + 13(6) + 14 (*), 

/,(»)_•„ r . ^ , , ,w__*r___~i id # 
Jo cost? Jo cos20 

Jo cos-1? J0 cos3t9 dØ. 

Now using the assumptions of Lemma 1 we get that lirrift—o Ii(6) exists for 
n+ > 0, a_ > 0. Denoting I[(b) = --^-- it follows 

l i m ^ o 1{ (6) = K+x l imt-o }( f "" a r c t a n y ) ° = 0 for a > 1 

= oo for a < 1. 

For a = 1 it is limi_+o+ 1{(6) # lim4_»o_ 1[(6). 
Similarity the other integrals are treated to get the result. D 

Theorem 3. Under the conditions of Lemma 5, if B is a rectangle with one hori
zontal edge of length X, if Y is the length of the projection of B onto a, if a+ > 1, 
a_ > 1, /?+ > 1, /?_ > 1 then the speed of convergence of La(B) to $U(B) is given 
by: 

F ( ( L a ( B ) - $ _ ( B ) ) 2 ) = 

*v*i-__.>_v^ r / 2 -w __ r / 2 isin^w \ , ^ , , (14) 
6 V J-ж/2 cos2(0) J_~/2 cos2(6>) j 

P r o o f . It is derived from a Matheron [3] result: 

The estimation variance <r2 = var (y fy Nydy - -£-$_*€#.#*-) ls e q u i v a l e n t t o 

jy(P)]f- as soon as the covariogram of Ny defined as y(z) = var(No) — cov(No, Nz) 
is derivable around 0. 
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Then, 

E ((L_(B) - Ф„(H))2) = YVn = ^ 2 ^ 7 ' ( 0 ) 

and use 

and 

Y = аKа(\ + o(\)) 

_ ____(^__) = _i2 / rn ^ _ ,./»i___w,_,\ 
<?* V ^ z 2 c o s W ^ z 2 c o s (*) / 

from Lemma 5 to obtain (14). D 

3. EXAMPLES 

In the following two examples the variances of .the estimators Li, i = 1,2,3 of 
intensity L from Section 1 will be expressed. B C R2 is a rectangle with edge 
lengths X, Y, where X is parallel to ar-axis and Y to fixed direction u G M = (0,7r). 
Q is a projection measure on M. If necessary to integrate over M\ = (—7r,7r), 
we extend functions PQ,TQ to this domain being even in R2, e.g. pu(r, 7r — 0) = 
M r , - 0 ) , 0 G M . 

3.1. The Poisson line process 

The stationary isotropic Poisson line process in the plane is derived from the sta
tionary Poisson point process on the cylinder surface when lines are parametrized by 
their orientation and distance from the origin, see Stoyan et al [7]. For this special 
fibre process it holds 

J3(0)7r 
pQ(r, )=\ + ArL 

specially 

p(r) )=:l+-Lmdpu(r> ) = l+ҠO 

TrrL —--v.-/ 4 r L • 

For the estimators L,-, i = 1,2,3, of L defined in Section 1 we obtain 

v a r L l = ̂ ? W / »(B n B-(r,o))*rd9 (15) 
itv(By j(rfi) 

and 
varL3 = i r k / <B n BHrie))T2

Q(0)drde. (16) 

Let us suppose that H( C\ B, i = \, ...,n are parallel sections of B of length X 

with common normal u, then for varL2 the covariances cov(Ni, Nj) are desired. In 
the model (4) we have c(0) = ^ £ ( £ 2 a n d h(0, r) = 0. 
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Applying Corollary 1, one gets 

cov(N0,ЛГy) = ^ - / -^-^тàt = 
ъ Jo (ťЧr)^ ҡҳ/X2+y2 

var(No) = -XL. 
ҡ 

X-t .. 2LX 2 _ 
7 ~ ' 

(17) 

As a+ = a_ = 2 the covariance is derivable at 0 and La(B) in (11) converges in 
quadratic mean to <bu(B) with 

E(La(B) - *U(B))2 = IpL + o(a2), 

see Theorem 3, where a is the distance between two consecutive planes. 
For an anisotropic Poisson line process with probability density p of the rose of 

directions P we have similarily 

, „* . 2p(9)cos2$ . ,„ x 2p(0)cos26 

* < r ' 9 ) = l + - r _ w ' "e- c(fl)=JZA—• 
3.2. The Boolean segment process 

An anisotropic Boolean segment process in R2 is a union of lines segments S the 
centres of which form a stationary Poisson point process with intensity A. Let 
us suppose that the orientation distribution P of segments is independent of the 
distribution H of segment lengths, and suppose that these two distributions admit 
densities p and h. Let $ £ M and r G R+, then it holds (Benes et al [1]): 

• L = XH where H is the mean segment length, 

. - , < - , « ) = 1 + 3 ^ ^ , specially 

•l*r,D «!+_?-£-. 
where f(r) = -fc (/0

rx2dtf(z) + / ~ ( 2 x r - r 2 ) d / / ( x ) ) is the mean length of ,9 n 
D(0.r) under the condition that a random segment 5 hits the origin 0. Using 
2 # 1 = #/ r°'(--r)<lff(«)onegeto: 

PM) = l + Wr-fix-r)dH{x)' 
*••> - i*_a.r--*-«. 

so that 

var(L!(i?)) = ^J™JM9B(r,e)p(0)Jr°
O(x--r)dH(x)drde, 

var(L3(B)) = JJL—'f* I 9B(r,e)r2
Q(O),(0) f°° (x - r)dH(x)drd0. 

j-PQi/(try Jo JM Jr 
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Let Hi 0 B be parallel sections of B as above, then 

For simplicity assume that the length of segments is fixed and equal to q = H and 
j _ 
2*r 

the process is isotropic (i.e. p(6) = ^-, 0 € Mi). Then 

/ 
(æ — r) /i(.c)d.c = 0 foг r > q 

= q — r r < q. 

TW, / *A . * c o s 2 0 7T c o s 2 0 „ , „ « , 
We obtain pu(r, 0) = 1 -I — — for r < q, pu(r, 0) = 1 for r > q, I. e. 

4Lr 4Lg 
7TCOS 2 0 ,_. 7TCOS 2 0 „ 

c W = _ _ , ,(•) = - - - - - for r < , 

with o;+ = «_ = 0+ = /?_ = 2 in the model of Theorem 1 and Lemma 5. For r > q 
it is c(0) = g(9) = 0. Then 

M 2 L X 

varNy = , 
7T 

cov(N0,Ny) = 0 for y>q, 

2v 2L tmin(x'V/?2-y2) / i 
cov(yv„,ivs) = J ^ ^ ( X _ . ) ( _ _ 

J_ 
/2)3/2 g(ť2 + yž) 

for y < q, 

which enables us to evaluate varL2- Finally formula (14) yields 

E(U(B) - *„(*))' = ^ ( ~ + | ) + <*.'), 

when a —> 0. Strictly speaking a modification of Lemma 3 and 5 is necessary for 
these results, which considers function g of a more general type g(r,9) = g\(6)(l +-
o(l)), r - > 0 . 

This modification covers also e.g. the anisotropic case with exponentially dis
tributed segments (H(x) = 1 — e~~, x,q > 0), where 

, m , 2/>(0)cos2(0)e~? 

and put e~~ = 1 — •_• +• o(r). 
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