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CHI-SQUARED GOODNESS-OF-FIT T E S T 
F O R T H E FAMILY O F L O G I S T I C D I S T R I B U T I O N S 

N E I G E A G U I R R E AND M І K H A I L N І K U L I N 

Chi-squared goodness-of-fit test for the family of logistic distributions is proposed. Dif
ferent methods of estimation of the unknown parameters 6 of the family are compared. 
The problem of homogeneity is considered. 

1. INTRODUCTION 

Let X\,..., Xn be independent identically distributed random variables and suppose 
that according to the hypothesis Ho 

p{Xi<x} = F(x,e), e = (9\,...,es)
TeecRs, xeR\ (l) 

where 6 is an open set. We divide the real line into k intervals I\,..., Ik: 

hu...uik = 1 1 , U n/j = 0, i # j . 

We shall suppose that 

Pi(B) = P{X\ e Ii I Bo} > 0, i = 1,..., k. (2) 

Let is = (v\,..., vk)
T be the vector of frequencies arising as a result of grouping 

the random variables X\,.. .,Xn into the classes I\,..., Ik. We denote 

XU ) = XІ( )Xn{ ) = ± ^ ^ l , 
» = 1 

where 

npĄ ) 
(3) 

_ /i/i -npi(9) vt-npk{8)\ 

Following Cramer [5] we suppose that 

1. Pi(9)>c>0,i= ! , . . . , * ( * > « + 2); 
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o d2pA9) . , . 
2. nn ~. are continuous functions; 

00j oOt 

3. the information matrix of Fisher 

1 dPl(9)dpl(6) 
J = J(ø) = £ -тат 

£ r * w % M, JJX( 

exists, and rank J = s, where 

BҶØ)B(Ø) (5) 

B(0) = 
1 дpi( ) 

s/pЩ д J 
(6) 

- І Ь X -

In this case nJ is the information matrix of Fisher of the statistic is = (v\,..., ffc)T. 
Let 0 n be the minimum chi-squared estimator for 0, 

X2

n(~ n)= mmX2

n( ), 
ØЄ t) 

or an estimator asymptotically equivalent to it. 

(7) 

T h e o r e m (Fisher [11], Cramer [5]). If the regularity conditions of Cramer hold 
then 

lim P{X n (0 n ) >x\H0} = P{xl-s-l > x}. (8) 
n—•__ 

The limit distribution x\-s-\ can o i l i Y D e used if 0 n is the minimum chi-squared 
estimator or an asymptotically equivalent estimator. Thus, see Cramer [5], one can 
use the root of the system: 

Щ дPi( ) 
^npi( ) д š 

= 0, j=l,...,_. (9) 

The problem of finding the root of (9) is usually difficult, so as an approximation 
to the value of 0 one often uses the maximum likelihood estimator 0 n , calculated 
to the non-grouped data X\, X2,. •., Xn. It is important to remark that when 0 is 
unknown and we have to estimate it, the limit distribution of the Pearson's statistic 
Xn(9)n changes in accordance with asymptotical properties of an estimator 9n. 

For example, if 0* = 9n, then under certain regularity conditions we have the 
next 

Theorem (Chernoff and Lehmann [4]). 

Blim P{Xn(0n) >x\H0} = P{xU-l + J2X^ * *>' 
. =1 
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where x?-*- i . Ci. • • • >& are independent, ^ — JV(0,1) and A,- = At(0), 0 < At(0) < 
< 1, t = 1,2,..., s, are the roots of the equation 

| ( 1 - A ) I ( 0 ) - J ( 0 ) | = O , 

1(0) - the information matrix of Fisher, corresponding to one observation X(. 

Remark 1 . We note here that in continuous case i/ = (v\,..., i/k)T is not sufficient 
statistic, and hence the matrix 1(0) — J(0) is positively definite. 

Remark 2 . Let us consider the density family 

a 

f(x;6) = h(x)exp{J2^mXm + v(0)}, xeXC E1 , 
m = \ 

X is open in "ft1, X = {x : f(x;6) > 0}, 0 £ G. 
This family is very rich: it contains Poisson, normal distributions etc. It is evident 

that 

vn=(±xi,±x?,...,±xt) 
Vissl t= i »=l / 

is the complete minimal sufficient statistic for 0. 
We suppose that 
1. the support X does not depend on 0; 

2. the matrix of Hessen 

H„(0) = - * -w [dOidOj 

of the function v(B) is positively definite; 
3. the moments as(6) = EQX[ exist. 

In this case, using the results of Zacks [22], it is not difficult to show (see, for example, 
[7]-[10]) that the maximum likelihood estimator 0 n = 0 n (U n ) and the method of 
moments estimator 0n = 0 n (U n ) of 0 coincide, i.e. 0n = 0 n . Let 

a(0) = ( a 1 (0 ) , . . . , a , ( 0 ) ) T and T n = ^ U n . 

One can verify that 

<*)—&*), 

and hence the likelihood equation is T n = a(0), i.e. 0 n is a root of this equation. 
On the other hand we have E^Tn = a(0), and hence from the properties of the 
statistic U n it follows that T n is the MVUE of a(0), and 0n is the root of the same 
equation T n = a(0), which we used to find 0 n . Hence 0 n = 0 n . We remark that in 
general an estimator based on the method of moments is not asymptotically efficient, 
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and hence does not satisfy the Chernoff-Lehmann theorem. In "Handbook of the 
Logistic Distribution" (edited by N. Balakrishnan [2]), Chap. 13, it is reported that 
the Dahiya-Gurland [6] extension of the Chernoff-Lehmann theorem is applied by 
Massaro and d'Agostino to construct the chi-squared test of Pearson with random in
tervals for the family of the logistic distributions using 0n = (X n , sn)

T (the moment 
method estimator of 0 = (EXi, VarXi)T), as it was done by Dahiya and Gurland 
[6] for testing the normality (we note that in the normal case the method of mo
ments and the maximum likelihood method are equivalent). But 0n is not efficient 
and even not asymptotically efficient for the logistic family, since this family does 
not belong to the exponential family and ( X n , s n ) T is not sufficient statistic in this 
situation. Hence, the tables of critical points, proposed by Massaro et d'Agostino in 
Section 13.9 are not valid. For this reason it is necessary to have a statistic which 
limit distribution is well known when we apply the maximum likelihood estimator or 
anyone BAN estimator. In the papers of Nikulin [15,16,17] (see also, for example, 
Rao and Robson [20], Moore and Spruill [14]), is exposed how to construct a chi-
squared test for a continuous distribution, based on the statistic Yn(0*), we shall 
define it in Section 3. We note that the technique of chi-squared tests for the expo
nential family of distributions of rank one, s = 1, and some applications of MVUE's 
were exposed by Nikulin and Voinov [18], Voinov and Nikulin [21]. 

2. LOGISTIC DISTRIBUTION AND THE CHI-SQUARED GOODNESS-OF-
FIT TEST 

Let X = (X\,... ,Xn)
T be a random sample, i.e. X\,...,Xn are independent 

identically distributed random variables. In this section we consider the problem of 
testing the hypothesis Ho that the distribution function of X\ belongs to the family 
of logistic distributions G (^^--) depending on the shift parameter /x and the scale 
parameter cr: 

P { X l < g | W o } = G (^ ) = _ _ L _ _ , .-.,., (10) 

li = E{X\\H0}, | / i |<oo, <T2=Varx1 , <r > 0. 

Under H0 the density function of Xi is 

^(•Zl)mff(Vit)m + r - f o " ) „ „ . * . (11) 
^[1+«-p(-*ï5ă)] 

We point out that "Handbook of the Logistic Distribution" [1], was published 
recently about the theory, the methodology and some applications of the family of 
logistic distributions. 

We denote 0 = (/.,(x)T, and let 0n = (fin,<rn)
T be the maximum of likelihood 

estimator of 0. Since there is no any other sufficient statistic for 0 than the trivial 
one X = (X\,... ,Xn)

T, the maximum likelihood equation has no explicit root. 
Balakrishnan and Cohen [2] proposed an approximate solution of the maximum 
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likelihood equations based on a "type II censored sample" of Harter and Moore 
[12]. They proved that this approximate solution gives an asymptotically efficient 
estimator, i.e. asymptotically equivalent to 0n. 

Let 0n be such an estimator. The limit covariance matrix of the random vector 
y/n(0n-6) will be I " 1 , where 

7T2 0 

<72 L ' " J 2 x 2 - 9 ( T 2 

. + CW , 

0 7Г2 + 3 
(12) 

/

-too . . J 2 

.„ I'M] »(»»<»» = T' 
/22=£~^[^]%Wdx-i = ^±i, 

and since g(x) is symmetric 

/

+ ° ° r i i 2 

x m y(a,)dz = 0. 
-DO L J 

Let us fix the vector p = (pi,p2 , • • -,Pk)T of positive probabilities such that 

Pl = ... = Pk = [/k, (13) 

and let y0 = -oo , yk = +oo, 

yi=G-\Pl+... + Pi) = y^\nf^-1Y i=1 , . . . ,* - ! . (14) 
Further, let 1/ = (v\,..., vk)

T be the frequency vector arising from grouping X\,...tXn 

over the intervals with random ends 

(-oc,zi],(zuz2],...,(zk_u+oo), where z{ = Zi(On) = fin + <rnyt, (15) 

and let 
1 

a:b a = ( « i , . . . , a , ) T , b = ( 6 1 ) . . . , 6 , ) T , W T = ~ 

where for i = 1,2, ...,k 

«. = y ( y t ) - . ? ( y , _ 1 ) = p ^ ( ^ - 2 f + l ) , 

h = yi9(yi)~yi-ig(yi-i) = 

= ^[(i'l)(Ar-i + l ) l n ^ ^ - i ( A r - i ) l n ^ 

(iб) 

•м -D-П--J-
t = i 

Jb 

(к + l ) n - 2 ^ г V t 

t = i 

/3м = ^ E ^ = {É(^-^)^-olnM, 
»=i * І=I

 г 

A, = 1n-*£«? = .£ , A2 = / 2 2 - ^ Є 

(17) 

(18) 

(19) 
» = i i = l 
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Since g is symmetric we have a\ + 0-2 + . . . + a* = 61 + 62 + . . . + 6* = 0. Let 

B = D - p p T - W 7 . . - 1 W, (20) 

where D is the diagonal matrix with the elements \/k on the main diagonal. The 
matrix B does not depend on 9, and rankB = fc — 1, i.e. the matrix B is singular, 
while the matrix B, obtained as a result of deleting the last row and column in B, 
has an inverse 

B " 1 = A + A W T ( I - W A W T ) " 1 W A , (21) 

where A = D - 1 + llT/pk, D - 1 is a diagonal matrix with elements — , . . . , - 1 — 
on the main diagonal, 1 = ljt_i is the vector of dimension (k — 1), all elements of 
which are equal to 1, W is a matrix obtained from W by deleting the last column. 
Since the vector u = (u\,... ,iVjfc_i)T is asymptotically normally distributed with 
parameters 

Wfj = np + 0(y/nls) and E(£> - np)T(i> - np) = nB + 0(y/nlsxs), (22) 

where p = (p i , . . . ,pfc-i)T, we obtain the next result 

Theorem 1. The statistic 

Y* = I(. - -S)T_-.(* - „p) _ X̂  + ___±t^___) (23) 
n nAiA2 

has, as n —»• oo, chi-squared limit distribution with (k— 1) degrees of freedom, where 

i-i n p i - ыi 

R e m a r k . We consider the hypothesis Hv, according to which Xi follows G(~^-,n), 
where G(x, r;) is continuous, | x \< oo, n € H C R l , G(x, 0) = G(x), and n = 0 is a 
limit point of H. Let us assume also, that 

-^G(x,n) = g(x,n) and —g(x,n)\f1=o=ip(x) (25) 

exist, where g(x,0) = g(x) = G'(x). In this case if d fc^^ exists and is continuous 
for all x in the neighbourhood of the n = 0, then for 2,- = yt«r + /_ we have 

P{z t_! < Xt- < * | Hv} = Pi + Tja + 0(77), (26) 

where 

a= r *(x)d_, is-!,...,„, (27) 
•Iy.-i 
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and finally, in the limit, as n —* oo, the statistic Y 2 has noncentral chi-squared 
distribution with (k — 1) degrees of freedom and with non-centrality parameter A: 

lim P{Y2 > x | H,,} = P{x__,(A) > - } , (28) 
n—+oo 

where 

. y^c2 \2a
2(c) + \\(P(c) t 

X = )__— + -T~\ > c = ( c i , c 2 , . . . , c f c ) t , (29) 
fr[Pi AiA2 

p, «(c), /?(c), Ai, A2 are given by (13), (17), (18), (19) respectively. 

3. HOMOGENEITY TEST 

Let us consider the problem of homogeneity of two samples in the case of the family 
of logistic distributions, following the paper of Bolshev and Nikulin [3]. 

Let us suppose that X\ = (X\\,... , x i n . ) T and X2 = ( x 2 i , . . -,X2n2) such that 

?{Xu < x} = G ( f - ^ - " L ) and ?{X2i < x} = G (--—----V x£R\ (30) 

where | in |< oo, <r, > 0, /*.:, <r,- are unknown, i = 1,2; G (£^~-) is given by (35). We 
wish to test the hypothesis Ho according to which /.i\ = f.i2 and a\ = a2, i.e. under 
Ho 

Xij ~ G 

for some f.i and a. Under Ho we can find the maximum likelihood estimator #w = 
({iw,aN)T of 0 = (fi, a2)T obtained from all N = n\+n2 observations X\\,..., X\nj, 
X2\,... ,X2n2. 

Further, let p = ( p i , . . . , pk)
T, Pi = £, i = 1 , . . . , k and i/j = (viA,..., vik)

T be 
the vector of frequencies obtained by grouping the sample X,-, (i = 1 , 2 ) using the 
intervals [ZJ^\(0N), ZJ(9N)], as in (15), where ZQ = —oo, zk = +oo, Zj = a^yj +&N, 

yj = G~l (i) , and let t/ = v\+v2, a , b , W , B„ D A , cx(v), f3(v), \\, A2, £>, v\, 
i>2 )p, W a s in (12)-(22), 

B, = D - p p T - ^ W ^ - 1 W , Ai = -±=(£>i - n,p), • = 1,2. 
iv v n » 

Theorem 2. Under Ho the vector __ = (__T, _ - J ) T is asymptotically normally 
distributed when min(ni,n2) —• oo with E__ = 02s and covariance matrix 

U = èi ~-^pwтr1w 
- - Ş i w T p i W B 2 
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T h e o r e m 3 . Under H0 the statistic 

Y2
n = AT\J-lA = 

£ (,„ - n,W)' £ (.^-n.B)' 1 2 
£1 n i p * fei n 2 P i IvAiA2 

has, in the limit as min(7ii, 712) —* 00, a chi-squared distribution with 2(fc — 1) degrees 
of freedom: 

J i m P{Y2
n>x\H0} = P{xlik-l)>x}. 
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