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CONTROL TECHNIQUES 
FOR CHAOTIC DYNAMICAL SYSTEMS 

ROBERTO GENESIO AND ALBERTO TESI 

The recent interest in the area of the control of chaos is remarked and the various ap
proaches to this problem presented in the literature are briefly summarized. The Harmonic 
Balance (HB) technique for the approximate analysis of systems with complex behaviour 
is outlined and the general idea of using this technique for control problems is proposed. 
Two possible approaches are indicated to show the flexibility of the method, the clearness 
of the required conditions and the simplicity of the solutions to be expected. 

1. INTRODUCTION 

The study of nonlinear systems which exhibit complex dynamic phenomena as bi
furcations and chaos has produced in the last years a large number of contributions 
from all the areas of the nonlinear science. Most of the developed research has been 
essentially related to aspects of the analysis of such complex systems but recently 
a significant attention has been directed towards problems which are viewed and 
denoted as concerning the control of the chaos. In this framework the proposed 
approaches again come from various scientific fields and, apart from the specific 
techniques which are employed, they refer to different statements, goals and con
straints. The usual paradigm is that complex and chaotic behaviours have to be 
avoided by leading the controlled system to more regular regimes, even if some ideas 
have been formulated on the opportunity of synthesizing chaotic systems as expres
sion of healty dynamics, in biological as well as in engineering processes [13, 43]. A 
general view of reasons and applications of these theories is reported in [25]. 

The contributions generally concerning the suppression of the chaos may be di
vided into two main groups: in the first one specific chaotic systems are considered, 
while in the second one classes of systems, depending on parameters and presenting 
bifurcations and possibly chaotic regions, are the object of the study. The former 
approach states a quantitative goal in the state space - as an equilibrium point or 
a limit cycle or some given trajectory-and it tends to entrain the system to this 
dynamics by means of suitable controls. Of course, several solutions have been 
proposed having in mind different possible constraints which must hold. In particu
lar, there is a number of suggested methods which use low energy controls, without 
changing some main characteristics outside one or more restricted regions of interest. 
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This also agrees with the speculative idea offered by the chaotic systems of obtaining 
large results with small controls. Most of these methods are related to the algorithm 
proposed by Ott, Grebogi and Yorke [33, 38, 36], with some possible modifications 
[12], where a feedback variable structure controller is employed, switching in a suit
able state space region around the required solution and stabilizing it. Applications 
are presented in [11, 34, 40, 21, 37]. Other limited energy techniques use weak peri
odic forcing signals as open loop controls and they tame the chaos on the basis of a 
parametric resonance mechanism [27, 4]. In the methods of the first group, another 
open loop approach, actually a high energy method, is due to Hiibler and Jackson 
(see, for instance, [19, 23, 24] and [20]) which offers the possibility of transferring 
complex systems to and between a wide variety of dynamics. The first group can 
be completed by other high energy methods including more typical control theory 
solutions based on feedback structures and related to linear, optimal [45], stochastic 
[14], adaptive [41, 32] and nonlinear control [6, 7]. A wide survey concerning these 
approaches is presented in [7]. 

A smaller number of contributions can be considered as belonging to the sec
ond way of controlling chaos. In this case, the object under study is a class of 
dynamical systems, which depends on parameters and it is globally viewed in its 
state-parameter space, while the above considerations have been essentially directed 
towards state space behaviours. Now, the goal to reach is essentially qualitative, 
typically bifurcations appearing in the original system are delayed in order to in
crease the range of parameter values for which the system exhibits regular motions. 
In particular, Abed et al. ([26, 46, 1]) lead to this result by a linear dynamic feed
back controller (washout filter), without at the same time changing the set of the 
equilibrium points (see also [22] for a similar approach). Moreover, such papers use 
an additive nonlinear feedback controller in order to suitably stabilize the above 
bifurcation whenever it occurs. 

This presentation of previous works on chaos control (see also [2, 9, 42] for more 
theoretical aspects) is necessarily brief and does not enter in the details presented 
in the original papers, where the various features of the methods with respect to 
transient behaviour, robustness, effect of noise, etc., are considered as well as the 
modifications involved in considering systems described by difference or differential 
equations. On the other hand, the above approaches are illustrated by a number of 
applications to a wide variety of systems especially in physics and engineering (see, 
for example, [35, 10]), with numerical simulations and experimental results obtained 
on real processes. In particular, there is a growing interest on chaos synchronization 
(see, for example, [5]), while a large number of applications of different control 
techniques to the well-known Chua's circuit [8] is in [28, 29]. 

In such a framework the purpose of this paper is to present a new approach to 
the chaos control which can be used along several ways presented in the first part 
of this section. The approach follows from an analysis technique which has been 
recently proposed in [15, 16, 17], based on control system ideas and employing the 
frequency Harmonic Balance (HB) to study the system behaviour. This technique 
leads to formulate simple structural (non-numerical) conditions among the system 
parameters which approximately express the occurrence of complex dynamics phe-
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nomena (homoclinic orbits, onset of period doubling). The method is developed for 
a quite general class of systems, represented by a canonical input-output structure 
to which almost all the classical and more recent chaotic equations can be reduced. 

*- У 

Fig. 1. Canonical feedback structure. 

The global view derived for the system dynamics allows one to study as avoiding or 
delaying bifurcations and chaos by means of suitable modifications, possibly slight 
or simple to do, on the various part of the system. This can concern specific systems 
where parameters are given, as well as classes of systems depending on parameters. 
Therefore, the two main situations above evidenced can be taken into account, at 
least in principle. 

2. THE HB TECHNIQUE FOR ANALYSING COMPLEX SYSTEMS 

Assume that the dynamical system under study can be described in the form 

x = Ax — bn(x,z) 

z = M x + m(x) 
(1) 

(2) 

where x 6 Rp and z € Rq are state variables, n £ R and m 6 Rq are nonlinear 
functions, and A, b, M are constant matrices of appropriate dimensions. The system 
of eqs. (1) and (2) can be simply decomposed as in Figure 1 where a new scalar 
variable y, namely the output, has been introduced and two SISO subsystems, the 
former linear with state x denoted by £ and the latter nonlinear with state z denoted 
by Af, are connected in feedback configuration [16]. 

The linear block £ will be modeled by its transfer function L(s), where s denotes 
the complex variable. For q = 0 the block M often reduces to the nonlinear output 
function n(-): the structure of Figure 1 will be called Lur'e System (LS) referring to 
the classical problem of absolute stability [44, 31]. Otherwise, the whole system will 
be denoted as an Extended Lur'e System (ELS): the output of the block M retains 
an explicit expression in terms of y. In the scheme of Figure 1 the presence of 
constant and/or sinusoidal forcing terms, entering to the summing point or affecting 
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the nonlinear subsystem N, can also be included. The possibility of representing by 
these systems almost all the most famous and studied continuous chaotic equations 
(Duffing, Van der Pol, Lorenz, Rossler, Chua, etc.) has been recently shown [16, 17]. 

Now, some concepts are recalled and definitions are given concerning constant 
and periodic solutions of eqs. (1) and (2) and in particular of system of Figure 1. 
The tool for approximately investigating some of these elements is the well-known 
describing function method based on the HB of signals along this loop (see, for 
example, [39, 3, 30]). Once assumed for y the form 

y0(t) = A + Bcosut, B,u>0 (3) 

the nonlinear subsystem M is characterized in the corresponding steady state time 
output n0(t) by the bias gain 

N0(A,B,w)=^J n0(t)dujt, (A) 

and by the complex first harmonic gain 

N(A,B,UJ)=— J n0(t)e^dut . • (5) 

The following elements are put in evidence: 

• Equilibrium points (EPs): the constant output values ye corresponding to the 
equilibrium solutions of eqs. (1) and (2). They satisfy 

y + n(y)L(0) = 0 (6) 

where h(y) simbolically indicates the steady state output of the subsystem 
H when its input is the constant y. The stability features of the EPs can be 
studied by suitably linearising h. For LSs h reduces to the nonlinear function n. 

• Predicted Limit Cycles (PLCs): approximate periodic solutions of eqs. (1) 
and (2) derived by the describing function method. According to (3), (4), and 
(5) the conditions are [39, 3, 30] 

A[1 + N0(A,B,OJ)L(0)] = 0 (7) 

l + N1(A,B,u)L(jw) = 0. • (8) 

These eqs. follow by imposing the HB to the system of Figure 1, where the 
transfer function L has been evaluated at its steady state gains, and must be 
solved with respect to the parameters A, B and w (see (3)). The stability fea
tures of such solutions can also be evaluated [39, 3, 30]. They form limit cycles 
in the state space which are called predicted since they derive from a heuristic 
analysis and their shape and even existence are uncertain. The reliability of 
the prediction depends on the distortion along the loop (see below). 
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Distortion: concerning a PLC of frequency u it is the amount of the neglected 
higher harmonics. It can be expressed by 

Д = ,(<) - V, 
(9) 

where y0 represents the output of the open loop path of Figure 1 as shown in 
Figure 2. Small values of A indicate that the open loop system is an efficient 
low-pass filter and that the corresponding PLC solution is reliable [39, 3, 30]. 

Fig. 2. Open loop path for distortion definition. 

The above concepts are used in [15, 16, 17] to recognize by heuristic but structural 
(non-numerical) and simple conditions when eqs. (1) and (2) can give rise to complex 
behaviours. Essentially, two independent (and alternative for LSs) mechanisms have 
been put in evidence and verified: 

i) the period doubling. It happens when a stable PLC exists satisfying (7) and (8) 
and in addition the condition 

1 + N1/2L(ju>/2) = 0 (10) 

holds. Here, N1/2 is the incremental complex gain of the nonlinear subsystem 
Af around the PLC and it is defined by perturbing this solution by a small w/2 
frequency term and using the describing function approach [16]. N1/2 depends 
on the derivative of N0 and Ati with respect to their arguments [3]. In presence 
of a low value of A a true period doubling (flip) bifurcation is found out, while 
a medium value of A may indicate the proximity of chaotic behaviours, 

ii) for LSs, the interaction of a stable PLC and an unstable EP. It is defined by 
the condition 

y0(t) = A-\- Bcoswt = ye, for some t (11) 

where ye is an EP different from that to which y0(t) reduces when B tends to 
zero. This mechanism approximately reveals a homoclinic orbit [15, 16]. For 
low values of A a true limit cycle and an EP really exist, while medium values 
of A indicate chaos. 
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3. THE HB TECHNIQUE FOR THE CONTROL OF COMPLEX SYSTEMS 

Given the system of Figure 1 assume that some complex dynamics has been recog
nized via the above conditions on the basis of the HB techniques. Apart from the 
transfer function L(s) such conditions essentially involve N0, N\ in eqs. (7), (8), 
(11), and N1/2 in eq. (10), computed at A,B,w of the PLC y0(t), plus n at the 
EPs ye in eqs. (6) and (11). There are also inequalities to be satisfied for suitable 
derivatives of N0, Ni and h in the points of interest to predict the prescribed sta
bility features. Moreover, in order to guarantee that the distortion A belongs to a 
certain range of values some other constraints can be written, involving in general 
the frequency response of the subsystem M. 

Now, assume that a feedback controller Nc, generally nonlinear, is placed in 
parallel to the original system M as shown in Figure 3. 

Fig.3. The structure of the controlled system. 

The above conditions for complex dynamics can again be considered where the 
involved terms are those corresponding to the nonlinear subsystem N + Mc. 

The main idea to control chaos, in the general sense of Section 1, is to select Mc 

in such a way that the describing functions N0 + Noc, Ni + N\c, Ni/2 + Ni/2c, the 
function n + hc (the new symbols clearly refer to the controller) and the controlled 
system distortion A c no longer satisfy the conditions of Section 2 for the existence 
of complex phenomena. 

To illustrate this approach and to show its flexibility in taking into account d-
ifferent objectives and constraints, consider for example (see Figure 3) a controller 
formed by a polynomial nonlinearity of a suitable order, linear in the coefficients, as 

«c(y) = E ^ ť (12) 
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and by a linear filter of transfer function 

- * ) - ; £ - • 03) 

This last element, called a washout filter in [26, 46], has been introduced to preserve 
the EPs of the original system, as its main characteristics which must be usually 
untouched, and to have an almost constant gain in the interested bandwith at higher 
frequencies. The coefficients /% and a are unknown and must be determined to define 
the controller. 

Two possible controls of the chaos are. briefly outlined: 

1. Assume that for a LS a chaotic behaviour following the interaction mechsuiism 
ii) of Section 2 has been discovered. The stabilization of the fundamental limit 
cycle of parameters A, B,ui can be provided by the main conditions 

Noe(A,B,w) = 0, Nlc(A,B,u>) = 0 (14) 

and 

A c < f c < A . (15) 

In fact, eqs. (14) preserve the original PLC, while eq. (15) reduces under a 
sufficiently small positive k the amount of higher harmonics on the loop of 
Figure 1, by canceling those of the original system by the corresponding ones 
of the controller. So, the prediction of such a stable PLC is made reliable. 

2. Assume that for an ELS a period doubling has been recognized. This phe
nomenon (point i) of Section 2) can be avoided for the controlled system by 
imposing the inequality 

\N1/2cL(ju>/2)\ > h (16) 

where h is a suitable positive number. Again eqs. (14), and possibly some 
bounds on Ac similar to (15), will ensure to maintain the same periodic solu
tion of the original system. Eq. (16) is used to disagree the period doubling 
condition (10): by an appropriate selection of the subsystem Afc it can be 
expected of controlling the occurrence of this condition. 

Observe that problems 1. and 2. are two different questions which can be posed 
in controlling a chaotic system as seen in Section 1. In any case the proposed so
lutions determine low energy controls, due to Eqs. (14) and to the presence of the 
washout filter in the controller Nc. These and other situations can be faced by the 
HB technique since such methods approximately give separate structural conditions 
on the various complex behaviours. Finally, notice that for the controller structure 
specifically proposed, eqs. (14) result to be linear in the unknown parameters /%, 
while (15) and (16) are quadratic. Therefore, this approach can allows one to syn
thesize in a quite simple form a control which satisfies the required specifications. 
An application is in [18]. 
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4. C O N C L U S I O N 

T h e p a p e r h a s presented a general view of several p r o b l e m s t h a t are considered when 

complex or chaot ic behav iours have t o b e removed in a d y n a m i c a l sys tem. A n ap

p r o a c h t o these control p r o b l e m s can b e derived by t h e use of t h e H a r m o n i c Balance 

technique, a well-known a p p r o x i m a t e tool a l ready appl ied t o t h e analys is of chaot ic 

sys tems. T h e basic concepts a n d results of th i s m e t h o d are briefly recalled a n d t h e 

m a i n idea for control l ing chaos via a feedback c o m p e n s a t o r is presented. As an in

dicat ive appl icat ion a sui table nonl inear s t r u c t u r e is proposed a n d t h e condit ions t o 

come t o i ts synthesis are out l ined. 

(Received March 10, 1993.) 
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