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FREE END-POINT LINEAR-QUADRATIC CONTROL
SUBJECT TO IMPLICIT CONTINUOUS-TIME SYSTEMS:
NECESSARY AND SUFFICIENT CONDITIONS

FOR SOLVABILITY

ToN GEERTS!

For an implicit continuous-time system with arbitrary constant coefficients we derive
necessary and sufficient conditions for solvability of the associated free end-point linear-
quadratic optimal control problem. In particular, this problem turns out to be solvable
if and only if the underlying system is output stabilizable, as is the case for a standard
system.

1. INTRODUCTION AND PRELIMINARIES

Given the implicit continuous-time system X:

Ei(l) = Ax(t) + Bu(t), (1.1a)
y(t) = Cx(t) + Du(t), (1.1b)

with u(t) € R™,z(t) € R*,y(t) € R for all t € R* := [0,00). Let k denote
the number of equations in (1.1a) and let e = rank(E). All matrices involved are
real-valued and constant. We may, and hence will, assume that [EAB] is of full row
rank. If E is invertible, then the solutions of (1.1a) are

z(t) = exp(E~ 1 Al)zo + j ‘ exp(E~1A(t — 7))E~! Bu(r)dr (1.2)

(zo € R" arbitrary) and hence every z, is consistent, i.e., for every zg, (1.1a) has
a solution z with £(0%) = 2. If E is not invertible, however, this need not be the
case and inconsistent initial conditions may give rise to impulsive solutions of (1.1a),
see e.g. [12], [2]. The most natural way to deal with such phenomena is the use of
distributions [11], as was done earlier in e.g. [2]. Instead of (1.1), we will consider
its distributionfﬂ interpretation:
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E6M) x 2 = Az + Bu+ Ezo6, (1.3a)
y=Cz+ Du, (1.3b)

where 6, 6(1) denote the Dirac distribution and its distributional derivative, re-
spectively, * stands for convolution of distributions, o € IR”, arbitrary. More-
over, u € I, the m-vector version of Ciyp, the commutative algebra (over IR)
of impulsive-smooth distributions {10, Def. 3.1}, [9]. A distribution is impulsive-
smooth if it can be decomposed (uniquely) in an impulse (any linear combination of
6 and its derivatives §(),i > 1) and a smooth distribution. A distribution is called
smooth if it corresponds to a function that is smooth on IR* and zero elsewhere. Let
Csm denote the subalgebra of smooth distributions. The distributional derivative of
u € Com,u) = 61 % u, equals & + u(0%)d, where & € Com denotes the ordinary
derivative of u on R*. Example: Let u € Csm correspond to 2exp(t) on IRY. Then
u() = 4 4+ 28. For more details on Cimp, see [9]-[10], also [6]-[8]; because of its nice
properties we can keep our treatment fully algebraic. It can be readily shown that,
for every real-valued square matrix H, (16(1) — H§) is invertible (w.r. t. convolution);
its inverse corresponds to exp(Ht) on IR¥. Hence the solutions of (1.3a) reduce to
the ordinary ones ((1.2)) if E is invertible and v &€ CI% ; for every pair (o, u), (1.3a)
has exactly one solution. Also, note that (1.3a) reduces to (l.1a) if u and z are
smooth. In general, however, the solution set

S(zo,u) = {:c € o[BS — A%z = Bu + Ezo6} ) (1.4)

may be empty or contain infinitely many elements, see [6]. We are ready for the
definition of the free end-point linear-quadratic control problem subject to (1.3).

(LQCP)~: For all zg, determine
00
I (20) = inf{/ vy dtue Cmoz e S(ro,u)r\C;‘m} , (15)
0

and if, for every zg,J (o) < 00, then compute (if possible) optimal controls & & C[%,
and associated optimal state trajectories & € S(zo,%). The problem (LQCP)~ is
solvable if both requirements are met.

In the sequel we will need several subspaces of interest. Let

Sy = {zo € R"3u e 3z € S(xo,u)NChy, :tl_i'rgj [ ;8; ] = 0} -

Ve(E) = {xo € R*3u e Ch Iz € S(wo, v) NCh, 1y = 0,2(0%) = 2o},

0() = {20 € R"Bu € (3w € S(a0, ) NCh, : im () =0} (L6)
and let Sp(X), Op(X) denote those subspaces of $(Z) and O(E), for which u and

x in the respective definitions are of the Bohl type (a Bohl function is any linear
combination of functions ¢* exp(At), k > 0). For V¢ (X) we have the following result.
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Proposition 1.1. (7, Prop. 3.5, Theorem 3.6]. V(%) is the largest subspace
£ C R for which there exists a matrix F € R™*"® gych that (A + BF)L C
EL, (C+ DF)L =0.

If, moreover,
V(T) := {zo € R*"Fu e (R 3z € S(zo,u)NCE, : y =0}, 1.7)
then [7, Prop. 3.4] tells us that
V() = Ve() + ker(E). (1.8)

In [10],[7] a point 2o € V(X) is called weakly unobservable; we establish that all
points in V¢ (X) are also consistent. Let, for any subspace T' and 7 any complex row
vector of compatible size, 4T stand for {nt|t € T'}. The next result is stated in [3].

Proposition 1.2. Let E be invertible. Then S(X) + V(Z) = O(E) = {z0 €
R*|J~(=0) < oo}, 0B(E) = O(X),S(X) = S(X) and O(T) = R" if and only if,
for all A € C with Re(A) > 0, ’

7[AE -~ A,—B] =0 and nEV(E) =0 onlyif 5=0. (1.9)
If in Proposition 1.2, C = I and D = 0, then V(¥) = 0 and we reobtain the well-
known statement that S(X) = IR" if and only if T is (state) stabilizable. We will
say that ¥ is output stabilizable if O(X) = R".
Now, we consider ¥ with arbitrary E. From [6, Theorem 4.5] we borrow
Proposition 1.3.

Vzo € R*Ju € €, Iz € S(zo, u) N CE, =
(1.10)
im(E) + im(B) + A(ker(E)) = R*.

2. MAIN RESULTS

Without loss of generality, we may rewrite X in the form
0]y, |z j_| An A 21 B, I0 Zo1
[0 o]" *loa |7 a0 Ase | Lo [T B2 [*Fl0 0] | 202 |

y=1C ?z] [ :}] +Du @1)
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Assume that (1.10) is satisfied, i.e., that [A32 Bs) is of full tow rank. Let T =
[ g:; ] € R(m=eyx(n+m=k) ¢ a1l column rank, be such that [A2z Ba]T = 0. Set
N := AgyAby + BoBy > 0, L:=T'T > 0. Then

’ -1
Q:= [ gzz ;; } is invertible, Q7! = [ (1)" L_? ]Q’. (2.2)

If £ denotes the standard system

8 % 2 = Az 4 Bu + 26, (2.3a)

w=Cz+ Dv, (2.3b)

with A
A= Ay — [Alz B]] [ BZ2 ] N—lAzly B:= [A12 BI]T:

(2.3c)
7
€:=C - [C: D] [ B ] N-144,,D = [C; DIT,

then it turns out that all solutions for (1.3) can be expressed in solutions for (2.3)

and vice versa.

Theorem 2.1. Let [ o1 ] eR"ue Ci’,"np and [ 1 ] €S ([ o1 ] ,u). Then
To2 2 To2

’

z1 = z(zo1,v), [ 22 ] = [ BZZ ] N=Y(=An)(2(zo1,v)) + Tv with v = L~ T{zs +

wu) € C{::;,'"'k, Moreover, y = w(zo1,v). Conversely, let 20 € R®, v € (™%,

and z = 2(zp,v). Then u = —ByN~1Ay 24 Thv € C{,"“P and, for all zos, [ z; ] €

To2
w(zo, v).

S([ £ ] ,u) with z; = z and 29 = —AjN~14s12 + Tiv. In addition, y =

Proof. First half. If in (2.3a) with zo = zo; we insert v as prescribed, then
-1 -
§Wuz=Az+[A12 B1]Q N —(1) Q 24 Anzy +znb=Az+
0 L u 0

[A12 Bi] Zz + (A1 — A)zy + 2018 = Az + (60 % 21 — Az ~ 2016) + (A —

A)z1+2016 = 6D xgy + A(2—21), by (2.1)-(2.2). Hence [L6) — A6]%(z—2,) =0
I’

and z — 21 = 0. Since [ T2 | = @@t [ T2 ] = [ A?Z N-1(~Agz;) + Tv, the
u u By

rest is clear. The second half is now trivial.
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Observe that if in (2.1), e = k (i.e., E is of full row rank), then T is invertible
and A = Ay, C = Cj in (2.3). Here is our first main result.

Theorem 2.2, If the system (1.3) satisfies (1.10), then S(E) + V(E) = O(Z) =
{zo € R*|J™(z9) < o0},S6(E) = S(E) and Op(E) = O(X). Moreover, (1.3) is
output stabilizable if and only if (1.9)—(1.10) are satisfied.

An —Aiz -B ] =0
An —An —B;

if and only if g[Al, — A,—B] = 0 and 7, equals —m[A;2 Bi] gzz N-1, for

Proof. Consider (2.1)~ (2.3). Then [ 73] [ M B

every A € C. Since ker(E) is contained in all subspaces involved, both claims follows

immediately from Propositions 1.2, 1.3 and Theorem 2.1. [m}

Now, let us consider (LQCP)~. By Theorem 2.2, it is obvious that output stabi-
lizability is necessary for solvability. Output stabilizability turns out to be sufficient

for solvability as well.

Theorem 2.3. For every zo € IR”,J~(20) < oo if and only if the system (1.3)
is output stabilizable. Assume this to be the case. Then there exists a unique real
symmetric matrix P~ > 0, with ker(E) C ker(P~), such that, for all 2o, J~(20) =
zo P o, If

ker ([ oY ]) A[A B lim(E) = 0, (2.4)

then for every z, there exists a unique optimal control @ and a unique optimal state
trajectory & € S(zg, ), both of the Bohl type. If (2.4) is not satisfied, then for every
xq there exist u € C, and x € S(zo, u) such that y € CJ,, and J~(zo) = [~ ¢'ydt.

imp

Proof. Assume that ¥ is output stabilizable. Consider the subsystem £ (2.3),
and let J~(2) := inf{ [;° w'wdtjv € CAF™F}. 1t follows from Theorem 2.1 that,
for every 20 € IR, J™(2) < oo if and only if, for every zo € R*,J™(zg) < oo.
Hence, by Theorem 2.2,  is output stabilizable. Then there exists a unique P~ > 0
such that, for all zo € R®, J™(20) = 2z5P~ 2 [3]-[4]. Hence there exists a unique
P~ >0, with ker(E) C ker(P~), such that, for every zo € R*, J~(20) = z{ P~ zo.
Next, for every zo there exist a unique input v and (thus) a unique resulting state
trajectory z, both of the Bohl type, such that zy P~z = [~ w'wdt, if ker(D) = 0,
i.e., if the LQCP without stability subject to ¥ is regular [4]. If ker(D) # 0, i.e.,
if this LQCP is singular, then for every zo there exist v € Ci'::;)'"_k and z € Cfyp
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such that 2JP~z = [;° w'wdt [13], [5]; however, in general these optimal controls
and optimal state trajectories have nonzero impulsive components. Observe that,
in terms of (2.1)~(2.3), ker(D) = 0 if and only if ker ([ é:z gz

clear that the latter condition is equivalent to (2.4). The proof is now completed by

=0,and it is
application of Theorem 2.1.

The condition (2.4) can be interpreted as a system property for . In [8, Theorem
3.2] it is proven that (2.4) holds if and only if

YEChy <= u€CT, z € S(zo,u) NCT. (2.5)

In other words, (2.4) stands for the property that outputs for £ are functions only
if the output generating controls and state trajectories are functions as well. There-
fore (LQCP)~ is called regular in [8] if (2.5) is satisfied; note that (2.4) reduces
to ker(D) = 0 if E is invertible. The linear-quadratic control problems consid-

ered in [1] - [2] are regular in the sense of (2.4), since it is assumed there that

ki = 0. An example of a regular linear-quadratic problem for which

er C D
ker([g OD])¢0is given in [8). ‘

Observe that Theorem 2.3 states the existence of the matrix P~; an explicit charac-
terization of P~ generalizing results in [4] -[5], will be given elsewhere. To the best
of our knowledge, Theorem 2.3 contains the first general statements on (possibly)
singular linear-quadratic control subject to implicit systems. Also, unlike in [1]-[2],
we allow the state trajectories to diverge.

We will conclude this short paper with a by-result on uniqueness of optimal
controls and optimal state trajectories for (LQCP)~. 7

If X is output stabilizable and (2.4) is not satisfied, then we may still assume

E 0
[ A B | to be of full column rank. Let this be the case. Now the distributional
Cc D

optimal controls and state trajectories for (LQCP)~ (see Theorem 2.3) are in general

not unique. This follows from Theorem 2.1, since it is proven in [5] that optimal
controls and state trajectories for (LQCP)~ subject to a standard system ¥ are
unique if and only if ¥ is left invertible [10, Theorem 3.26], i.e., if in (1.3) with £
invertible, y = 0 and z¢ = 0 imply that u = 0 (and hence also £ = 0). Moreover,
the smooth parts of these unique optimal controls and state trajectories are of the
Bohl type.
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Two different concepts for left-invertibility for implicit systems are given in [7].
There, a system (1.3) is defined left invertible in the strong sense if o = 0 and
y = 0 imply that w = 0 and Ez = 0 (and left invertible in the weak sense if merely
u = 0), see [7, Defs. 4.1, 4.10). Under the above-mentioned rank condition, it is
proven in {7, Corollary 4.15] that X is left invertible in the strong sense if and only
if 2o = 0,y = 0 imply that u = 0,2 = 0. Hence, again by Theorem 2.1, ¥ is left

invertible in the strong sense if and only if (2.3) is left invertible in the sense of [10]

and thus
E 0

Corollary 2.4. Let X be output stabilizable and ker A B = 0. Then
C D

for every zq there exists exactly one (possibly distributional) # and exactly one
(possibly distributional) Z such that § € €, and [[*~ #§dt = J~(zo) if and only if
¥ is left invertible in the strong sense. Moreover, if @y, Z2 denote the smooth parts

of @ and Z, then @ and Z, are of the Bohl type.
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