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SOME REMARKS 
ON THE BRUNOVSKY CANONICAL FORM 

VIlCllEL FLIESS 

The Brunovsky canonical form is obtained via a module-theoretic approach which covers 
the time-varying case. 

INTRODUCTION 

Among the various canonical forms which were proposed for constant linear systems, 
the one due to Brunovsky [1] certainly is the most profound. It characterizes a dy­
namics modulo the group of static state feedbacks by a finite set of pure integrators. 
Its proof, which is quite computational, has been improved in various ways, and can 
be found in several textbooks (see, e.g., [12, 13, 20, 21] and the references therein) 
We here attempt to give a more algebraic and, hopefully, more intrinsic approach 
It covers the time-varying case, which seems until now to have been left untouched 

We employ our module-theoretic framework [5], the corresponding ftitrations [3, 4 
and their connections with feedbacks. The uniqueness of the controllabity indices 
follows at once from some associated graduation. 

A first draft of this result has already been presented [8]. 

1. THE BASIC FORMALISM 

The ground field k is differential with respect to d/dt ="'" [14]. Denote by k[d/dt] 
the set of linear differential operators of the type X^finite

 a « 373" • This ring, which is 
in general noncommutative1, nevertheless enjoys the property of being a principal 
ideal ring (see, e.g., [2]). The main properties of left k[d / dt]-modu\es mimic those 
of modules over commutative principal ideal rings [2]. 

Notation. The left k[d/dt]-modu\e spanned by a set w = {iu,|i G /} is written 

A linear system [5, 6] is a finitely generated left k[d/dt]-modu\e. A linear dynamics 
D [5] is a linear system which contains a finite set u = ( u . , . . . , um), such that the 

1lt is commutative if, and only if, A: is a field of constants: 
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quotient module D/[u] is torsion. This dynamics can be given a Kalman state-
variable representation [5]: 

*CH:M:) -
where 

- the dimension n of the (Kalman) state x = ( x j , . . . , xn) is equal to the dimen­
sion of D/[u] as a A;-vector space; 

- the matrices A and B have their entries in k and are of appropriate sizes. 

A linear system is said to be controllable [5, 6] if, and only if, the associated 
module is free. A linear dynamics is controllable if, and only if, the corresponding 
linear system is controllable. 

Assume for the sake of simplicity that the input u is independent, i.e., that the 
module [u] is free. Formula (1) determines two filtrations2 of the module D: 

- The (Kalman) input-state filtration T = {Tv\v = 0, ± 1 , ±2 , . . . } is an increas­
ing sequence of fc-vector spaces T„ such that 

{ 0, if v < - 2 
span t(x), if v = — 1 
spani.(x, u,..., I T " ' ) , if v > 0 

where spanfc(x, u,..., i»W) is the fe-vector space spanned by the components 
of x, u and by the derivatives up to order v of the components of u. 

- The (Kalman) state filtration X = {Xp\p = 0, 1, 2, . . .} is a decreasing se­
quence of submodules 

X„ = [««]. 

The two filtrations T and X are obviously independent of the choice of the Kalman 
state x. 

A (regular) static state-feedback [3] of the dynamics D is defined by a finite set 
v = (vi,..., vm) of elements in D, which plays the role of a new input, such that the 
filtration Q = {Qv\v = 0, ± 1 , ± 2 , . . . } , where 

0, if v< - 2 
spanfc(x), if v = - 1 
spanfc(x, v,..., »W), if v > 0 

coincides with T, i.e., for any v, fp = Qv. 
One easily recovers the classic formulas: 

(2) 

^Filtrations and the associated graduations are common algebraic tools [16, 18]. 



Some Remarks on the Brunovsky Canonical Form 419 

CHIH1) -
where 

- x = (x\,..., xn) is another Kalman state, 

- P, F and G are matrices over k of appropriate sizes, 

- P and G are invertible. 
It follows at once from the above definition that there exists a regular static state 
feedback between two dynamics D and D, with input-state filtrations T and T, if, 
and only if, the two filtered modules D and D are isomorphic. 

Remark . Let us relate the above notion of feedback to the concept of automor­
phism. First notice that D may be viewed as a ^-vector space with filtration T. 
The quotient D/T-\ is a &-vector space which is canonically isomorphic to [«], also 
considered as a ^-vector space: We will not distinguish those two vector spaces. To 
T corresponds a filtration T of [«] defined by 

J 0, if v £ 0 
" ~ \ s p a n t ( « , . . . , « M ) , if iv > 0 

A (regular) static state feedback is a ^-linear filtered automorphism ^> of D, i.e., a k-
linear automorphism which leaves the filtration T invariant, such that the induced 
mapping on the graded fc-vector space gr^[w] is an automorphism of the graded 
module gr^r[u] over the graded ring gvk[d/dt]. This abstract definition of the group 
of static state feedbacks (compare, e.g., with [21]) permits to recover (2) and (3). 
If k is a field of constants, the above definition may be slightly simplified: A static 
state feedback is a fc-linear filtered automorphism of D, such that its restriction to 
[u] is a k[d/dt]-lmea,T automorphism which preserves T. 

2. WELL FORMED DYNAMICS 

The next result interprets in our formalism the classic condition stating that the 
rank of the matrix B in (1) is m. 

Theorem 1. The following three conditions are equivalent: 
(i) Xo = D; 
(ii) rk Xo = m; 
(iii) rk B = m. 

Proof , (i) => (ii), (iii) =» (i) and (iii) => (ii) are obvious, 
(i) =J- (iii): There exists a A:-vector space U C spa,nk(u), dim U = rk B = m! < m, 
such that any element of U belongs to spani(a:, x). Straightforward calculations 
demonstrate the existence of a k-vector space U\, such that 
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- dim Ell = m - m ' 
- spank(u) = U®Ui, 

- [ / i n [*] = {0}. 

D/[u] and [#]/[#] are isomorphic torsion modules. Thus, rk B = ra implies [x] = D. 
D 

A dynamics D, which satisfies one of those equivalent conditions, is said to be 
well formed. 

Remark . Assume that D is not well formed, i.e., that m! •£. ra. The above proof 
demonstrates the existence of another basis v — (v\,..., vm) of spanfc(u), such that 
( « ! , . . . , vmi) is a basis of U and ( tw+ i , • • •, vm) a basis of Ui. The dynamics [x] with 
input (t>i,.. •, vmi) is a well formed dynamics associated to D. Such an associated 
well formed dynamics is unique up to an obvious isomorphism. Notice that the 
correspondence between u and v is a trivial static state feedback. 

3. THE BRUNOVSKY CANONICAL FORM 

Take a controllable and well formed dynamics D with input u = ( u i , . . . , um). As­
sociate to the state filtration X of D the graded module gr^D = ® Xp/Xp+\ over 
the graded ring gr k[d/dt]. 

Lemma 1. The module g r^D is graded-free3. For any p > 0, Xp/Xp+1 is an 
ra-dimensional ^-vector space. 

P r o o f . For any p > 8, the derivation d/dt induces a ^-linear mapping dp : 
Xp/Xp+i —* Xp+i/Xp+2, which is obviously surjective. Assume that dp is not in-
jective. The existence of a non-zero element in ker dp implies the existence of z in 
Xp, z ^ 0, such that i = 0, which contradicts the freeness of D. The dp's thus are 
isomorphisms. The conclusions follow at once. Q 

Denote by g r ^ the canonical image in gvxD of an element £ in D. There exists 
a finite binary sequence S = [ya, Sa) of strictly positive integers, such that 

dim(gr^span,j.(w) n XVa/XUa+i) = 8a. 

The above lemma indicates that the dynamics D can be brought by a static state 
feedback to a set of pure integrators 

*&a ) = v*. (4) 

where 

- the g r ^ z ^ ' s are a basis of the fe-vector space XQ/X\; 

- the Vfia 's are the new control variables. 

The preceding constructions yield the 
3 See [16, 18] for a definition of graded-free, or free-graded, modules 



Some Remarks on tiie Brunovsky Canonicai Form 421 

L e m m a 2. The sequence S is unique and ]P Sa — m, ^2 Sava = n. 
5 is the Brunovsky sequence of the dynamics D. The vas are the controllability, or 
Kronecker, indices; they correspond to pure integrators (4) of orders va which are 
repeated 6a times. 

Formula (4) defines the Brunovsky canonical form associated to D. Lemmas 1 
and 2 yield the 

T h e o r e m 2. The Brunovsky sequence (resp. canonical form) constitutes a com­
plete set of invariants with respect to the action of the group of static state feedbacks 
on a controllable and well formed dynamics. 

Remark . Consider a dynamics D which is not necessarily controllable or well 
formed. Let T be the torsion submodule of D and 9 : D —» D/T be the canonical 
epimorphism. The dynamics D = D/T, with input u = (tii = Bu\,.. .,um = 9um), 
is controllable. The Brunovsky canonical form or the Brunovsky sequence of D, by 
definition, are those of the well formed dynamics associated to D (see the remark of 
Section 2). 

Example . Take a controllable and well formed dynamics D with a single input u, 
i.e., m = 1. Choose a basis 6 of D. Notice that any other basis 6 is related to 6 
by 6 = -cab, where w € k, w ^ 0. If n = dim D/[u], u is a fc-linear combination of 
6,6,.. .,&("). Set x\ = b,...,xn = 6^n-1). It yields the controller form (see, e.g., 
[10]) 

i i = x2 

Xn-1 = xn 

xn = a ix„ + . . . + anxi + /?w 

where a i , . . . , a n , / 9 € fc,/3 ^ 0. The Brunovsky canonical form is obtained by a 
straightforward static state feedback 

Xn-i — ж* 

4. CONCLUSION 

The Brunovsky canonical form can easily been obtained for nonlinear dynamics 
which are linearizable by static state feedbacks [11, 17]. It has been further extended 
by Rudolph [19] to nonlinear dynamics which are flat [9] and well formed by means 
of quasi-static state feedbacks [3]. His result also is new for controllable and well 
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formed l inear dynamics as any basis of t he corresponding free modu le can now serve 
for ob ta in ing the Brunovsky form via a quasi -s ta t ic feedback. 

Our approach applies to cons tan t [15] and t ime-varying discre te- t ime sys tems via 
the tools developed in [7]. 

(Received February 16, 1993.) • 
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