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TRACKING PERFORMANCE 
OF V INTEGRAL-PLUS-TIME 
CONSTANT PLANTS WITH 'ONE' CONTROLLER 

I. VAKILZADEH AND H. UNBEHAUEN 

In a unique and most easily comprehensible and applicable way, it will be shown how 
the outputs of n identical integral-plus-time constant plants: G(s) = -rj-hrj, with different 
output initial conditions, can be brought to track a reference, or command, input r(t) 
through commissioning of only one controller H(s). A three-part example, used in computer 
simulation, shall, most vividly, support the theoretical results. 

1. INTRODUCTION 

In many technical applications synchronizing control problems occur, see e.g. [1,2]. 
Very often a technical process includes a number of identical units or plants which 
have to be controlled in parallel in order to track a common command signal. Prob
lems of this kind are usually connected to multi-motor drives or positioning systems 
using either hydraulic or electric devices. These synchronizing control applications 
can be found in many production processes, as e. g. paper mills, textile industry, 
sheet rolling train, rolling mills, printing machines, cylinder presses for metal and 
fibre plastic parts forming, robotic manipulators, and many others. 

The state of art for technically solving these problems usually consists in the 
application of n identical controllers [H(s)} for controlling n such identical plants 
[G(s)]. This procedure will be defined in this contribution as the classical one-
plant/one-controller philosophy. However, in this paper it will be shown how the 
outputs of n identical plants [G(s)] can be made to track a common command input 
r(t) with the use of just one controller [H(s)]. The dynamic behaviour of these 
plants to be synchronized can very often be described by a linear integral-plus-time 
constant one having the transfer function G(s) = K/s(s + A), which, for instance, 
corresponds to an armature-controlled dc-motor [3]. 

The paper is organized as follows: Sections 2 and 3 give a short overview of the 
classical solution of the above stated problem. Section 4 deals with the new technique 
of the multi-plant/one-controller philosophy, where this approach is introduced in 
single steps, starting from a simple 2-plant configuration. Section 5 presents the 
choice (optimization) of controller parameters. Examples for synchronization and 
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tracking using computer simulation are considered in Section 6. The main results 
are finally summarized in Section 7. 

2. CLASSICAL FEEDBACK SYSTEMS 

Consider the classical feedback control system shown in Fig. 1. The system is com
prised of an integral-plus-time constant plant: G(s) = s,^s.X)' controller H(s) and 
a unity feedback. The transfer function of plant G(s) is, say, that of an armature-
controlled dc-motor with negligible armature inductance — with or without viscous 
friction damping [3]. As seen, we have been rather unorthodox in portraying also 
the output initial conditions: y(0) = a, y(0) = 0. It is a matter of course that 
once stability of a linear closed-loop system is ascertained, then all the output initial 
conditions asymptotically tend to zero: the reason of being completely discarded. 
However, since throughout this work we shall show output initial conditions, then it 
would seem pertinent and plausible that right from the start they will be displayed. 
Referring to Fig. 1, we have 

y(0)-a y(C. .(J 

1 1 
r ( t ) e(t) 

H(s) 
q ( t ) к y(t). 

H(s) 
s(s+X) 

c ontroüe plant 

Fig. 1. Block diagram of classical feedback control system. 

Taking Laplace transform from both sides of Eq. (1), we get 

s2 Y(s) + s .,(0) - 2/(0) + \sY(s) - Ay(0) = K Q(s) 

where 

(1) 

(2) 

2/(0) = a (3.1) 

2/(0) = 0 (3.2) 

Q(s) = C[q(t)] = H(s) [R(s) - Y(s)]. (3.3) 

Upon substitution of Eqs. (3.1) to (3.3) in Eq. (2) and simplifying, we obtain 

KH(s) „ , x , s + \ 1 
Y(s) = 

s2 + \s + K H(s) 
R(s) + a + ß- (4) 

Let 

s2 + \s + KH(s) s2+\s + KH(s) 

e(t) = r(t)-y(t) (5.1) 
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or 

E(s) = R(s) - Y(s) (5.2) 

hence, from Eqs. (4) and (5.2), we get 

P M - _ _ _ _ _ L p ^ [s + X}a + p 
E{S) ~ s* + Xs + KH(s) R{S) ~ s* + Xs + KH(sy ( 6 ) 

The task of the controller H(s) is to make the steady-state error equal to zero: 

e ( . ) | ^ „ = 0 => y(OI*-.oo = r{t). 

Two important points can be deduced from Eq. (6): 

(i) System of Fig. 1 is stable iff all the roots of equation 

s2 + As + K H(s) = 0 (7) 

lie in the left-half of the s-plane. 

(ii) 
[No. of pôles R(s) at the origin of the s-plane] — 

[No. of pôles H(s) at the origin of the s-plane] = 1. 
(8) 

Equation (8) implies that if r(t) is the general polynomial 

9 

r(t) = r0 + nt + r2t
2 + ••• + rqt

q = £ rvt
v (9.1) 

u=0 

01 l1 2' o1 ./^ vs 

R(s) = r0- + r l ^ + r2-^ + ... + r q - ^ = Y,rv-^i C9-2) 
«=o 

then H(s) must be of the form 

H(s) - A0 + „ ! - + A2 1 + • • • + Aq 1 - ^ -4* i - (10) 

Note: In Eq. (9.1), some or aii the coefficients of r(t) except the last one rq may be 
zero; while in Eq. (10) all the parameters of H(s), namely A0,A\,A2,..., Aq, must 
be present and all be greater than zero. Symbolically: 

A0,Ai,A2,...,Aq > 0. 
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2.1. S tep Response [r(0 = r0] 

Let 

R(s) = r0 - (step input, q = 0) (11) 

H(s) = A0 (P-controller). (12) 

Substituting Eq. (12) in Eq. (7), we have 

s2 + Xs + K Ao=0 (13) 

both roots of Eq. (13) lie in the left-half of the s-plane Vv4o > 0. So, configuration 
of Fig. 1 is stable where the controller H(s) is of P-type: H(s) = A0, A0 > 0. Upon 
substitution of Eqs. (11) and (12) in Eq. (6), we get 

, . _ + A] r0 _ _ + A] a + (3 
U s2 + Xs + K A0 s2 + Xs + K A0 

hence 
e(0lt-.oo = lim s E(s) = 0 = > 

y(0|t-.oo = r (0 = r0 . 

2.2. S t ep -P lus -Ramp Response [r(t) = r0 + r\t] 

Let 

R(s) = r0 - + n — (step-plus-ramp input, q = 1), r\ -̂  0 (14) 
s s^ 

H(s) = Ao + A\ - (PJ-controller). (15) 

Substituting Eq. (15) in Eq. (6) and simplifying, we get the characteristic equation 

s3 + As2 + A' A0s + K A\ = 0. (16) 

The three roots of Eq. (16) would lie in the left-half of the s-plane, if A0, A\ > 0 
and 

£<> <") 
which is thoroughly studied in [3,4]. Again, if Ao, A\ > 0 and inequality (17) is also 
satisfied, then the structure of Fig. 1 would be stable. Through substitution of Eqs. 
(14) and (15) in Eq.(6), one obtains 

E( )= ^S + >^ ^°S + ^ [s + X]a + s(3 
[S) s3 + Xs2 + KA0s+KAi s3 + Xs2 + KA0s + KAi 

hence 

e(0h-,oo = lim sE(s) = 0 

y(0|t-»oo =r(t) = r0 + nt 
and so on and so forth. Inevitable and pertinent question: what should be the values 
of A0 for the P-controller, and J40, AI for the PPcontroller? We shall deal with this 
important question after we have studied our proposed system in Section 4. 
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3. n-PLANT/n-CONTROLLER SYSTEM 

Suppose that we have a fleet of n such identical integral-plus-time constant plants: 
G(s) = 777TX), with, generally speaking, different output initial condition, but 
a common command input r(t). The block structure of the system is shown in 
Fig. 2. To appreciate the practical application of Fig. 2: suppose one has n identical 
armature-controlled dc-motors with negligible armature inductances, without vis
cous friction damping or identical viscous friction damping. Furthermore, suppose 
the inertias on these identical dc-motors be also identical. So the transfer function 
of each one of these identical plants is given by [3] 

-[ныL-
ł 1 

") *2 -[ныL- 0 ( S ) 
к У 2 I t ) -[ныL- 0 ( S ) ~ s | s * Л ) 

-[ныL-
(2) 

Fig. 2. Block diagram of n identical feedback system with a common input r(t). 

Yt(s) _ K 
G(s) = 

R(s) s(s + A) 
i = l ,2, . . . ,т i (18) 

where, for this particular example, R(s) is the transform of common armature volt
age and Y{(s) beeing the transform of angular displacement of motor shaft. Of 
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R(s) s(s + A) 

is meaningful if output initial conditions are zero: a. = /?,• = 0, i = 1,2,..., n. If, 
however, both a; and /% are not zero, then Y(s), i = 1,2,..., n must be represented 
as in Eq. (4). Consequently, as seen by Figs. 1 and 2, on the block diagrams inputs 
and outputs must be written as r(t), yi(t) and not as R(s), Y{(s), i = 1,2, ...,n. 

From Fig. 2, it is observed that we have n isolated unity feed back systems, with 
a common command input r(t). So, as in the case of one single unity feedback 
system discussed in Section 2, if r(t) is a step one, then the n controllers H(s) must 
be of P-type: r(t) = ro => H(s) = Ao, A0 > 0; while if r(t) is a step-plus-ramp 
one, then the n controllers H(s) must be of Pi-type: r(t) = ro + r\t, r\ 7= 0 =*> 
H(s) = AQ + A\ j , A0, A\ > 0 and jj-» < A. It goes without saying that these P- or 
P/-controllers need not be identical. All that the configuration of Fig. 2 tells us is 
this that if r(t) = r0 and H(s) = A0, where for each one of the n feedback systems 
AQ could have different positive values, then 

Vi(.)l.-~ = r(t) = r0 Va,-,ft t = l , 2 , . . . , n . 

Similarly, if r(t) = r0 + r\t and H(s) = ^0 + ^1 7, where, again, A0 and A\ could 
assume different positive values for each one of then controllers H(s) as long as 

W(0l.-*oo = r(t) = r0 + r\t V«,-, A * = 1, 2 , . . . , n. 

As before, we do not want to involve ourselves at this stage as how one chooses values 
of J40 for P-controllers: H(s) = A0 and A0, A\ for P/-controllers: H(s) = A0+A\ 7. 

So the structure of Fig. 2, which is, so to speak, the enlargement of Fig. 1, com
mands, in the most general sense, that tracking action of outputs of n plants can be 
achieved if n appropriate controllers H(s) are commissioned. However, the question 
is justified whether we can have only ONE P-controller: H(s) = A0 for the step 
input: r(t) =s ro and ONE P/-controller: H(s) = A0 + A\ 7 for the step-plus-ramp 
input: r(t) = ro + r\t. To generalize, if the command input is of polynomial type 
given by Eq. (9.1): 

r(0 = X>." 

then can we do with ONE controller given by Eq. (10): 

ft=o s 

The answer is YES. The attraction of the proposed scheme being that in practical 
applications this means tremendous saving in material cost. 

To make the matter as plausible and comprehensible as possible, we shall first 
study the proposed technique for a '2-plant' system, then for a '3-plant' one. Armed 
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with the technique and results obtained, the 'n-plant' case will be presented. A 
'3-part' example, which, most vividly, translates the theoretical results, will bring 
our study to a close. 

4. THE NEW MULTI-PLANT/ONE-CONTROLLER PHILOSOPHY 

4.1. 2-Plant/One-Control ler System 

Let us consider Fig. 3, which is comprised of 2 identical integral-plus-time constant 
plants: G(s) = jr^nfi, with output initial conditions of (a\,j3\), (a2,/32). The 
common input x(t) is any function of time. The error signal formed between the 
two outputs: e\(t) = y\(t) — y2(t) is subtracted from input x(t) of plant (1) and 
added to input x(t) of plant (2). If aii the output initial conditions are zero: a\ = 
Pi = Q>2 = Ih — 0, or a\ = a2 and fi\ = P2, then e\(t) = 0 Vi > 0 — see Eqs. 
(25.1) to (26.2). The formation of error signal i\(t) is to baiance out the possible 
non-identical output initial conditions and/or to eliminate the possible deterministic 
disturbances at the outputs y\(t) and y2(t). So, if y\(t) = y2(t) =>• e\(t) = 0: the 
feedback is redundant or inactive. 

x{t) 

тQ G(s)= 
K 

s í s + Л) (1) 

•1-V1-V2 

r^Ą 
i 

*м-ш£т. (2) 

Yilt) 

-0 

y 2 ( ť 

Fig. 3. Block diagram for interconnection of 2 identical plants: G(s) — -^ 

Now, from Fig. 3, we have 

m(t) + Xy\(t) = K[x(t)-e\(t)] 

y2(t) + \y2(t) = K[x(i) + e\(t)] 

where 
ei(t) = y\(t)-y2(t). 

Substituting Eq. (20) in Eqs. (19.1) and (19.2), we get 

y\(t) + Ajh(0 + Kn{t) - Ky2(t) = K x(t) 
y2(t) + \y2(t) + Ky2(t)-Ky\(t) = Kx(t). 

(19-1) 
(19.2) 

(20) 

(21.1) 
(21.2) 
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Taking Laplace transform from both sides of Eqs. (21.1) and (21.2), and inserting 
the output initial conditions: yi(0) = a; and yt(0) = ft, i = 1,2, we obtain 

[s2 + A s + K] Yl(s) - K Y2(s) = K X(s) + [s + A] a i + ft (22.1) 

[s2 + As + K] Y2(s) - K Yi(s) = KX(s) + [s + A] a2 + ft. (22.2) 

Solving the simultaneous equations (22.1) and (22.2), we get 

where 

2 

Al(s) = a j s 2 + aiAs +A" _)T a m (24.1) 
m = l 

2 

A-(«) = «2«2 + «2As + A' J ~ a m (24.2) 
m = l 

2 

£i(s) = fts2 + ftAs + A ^ f t „ (24.3) 
52(s) = fts2 + ftAs+ # £ / ? , „ (24.4) 

ro=l 

£>(») = s2 + As + 2A. (24.5) 

It is obvious from Eqs. (24.1) to (24.5) that if: (i) a i = a2 = ft = ft = 0, then 

Y^ = sV+-T)X^ <25J) 
Y^ = s^hr)x^ <25-2) 

==> 2/i(0 = 2/2(0 V < > 0 . 

(ii) a i = a2 = a and ft = ft = ft then 

s(s + A) s s(s + A) 

r2(s) = T4 - rY^ s ) + 7a+T-V-Y l5 (26-2) 
s(s + A) s s(s + A) 

=-=> 2/i(0 = 2/2(0 V<>0 . 

Being either case, this implies that e i (0 = 2/i(0 ~ 2/2 = 0 V< > 0. That is, the 
feedback path formed for e i (0 is, as was mentioned before, redundant or inactive. 
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In other words, either case (i) happening or case (ii), we now have two isolated 
plants: G(s) = JTJTJ ,with a common input x(t)—without any feedback action. 

Now let us study Fig. 4, which is the same as Fig. 3 as far as common input x(t) 
and outputs yi(t), 2/2(0 are concerned. The only difference between the two figures 
is that in Fig. 3, as was mentioned before, x(t) is just any function of time; while in 
Fig. 4, x(t) is the result of operation of controller H(s) upon the difference between 
a known command input r(t) and the output y\(t): 

r(t) " 

yitt) 

c o n t r o l 1er 

o 
Є1 H ( s ) 

x(t) 

o 

o-

G (s) = 
Ҝ 

s(s+X) 

(!) 
e,= У Г У2 

(2) 

G ( s ) = 
K 

s ( s + X) 

Уl(t) 

o 

yjiï~ 

Fig. 4. Block diagram for tracking action of 2 identical plants: G(s) = , ;V. with ONE 
controller H(s). 

and 

e,(t) = r(t) - Уl(t) 

эr 

E^t) = R(s) - Yi(s), 

X(s) = Eг(s)H(S) 

ад = [ д ( s ) - y 1 ( s ) ] я ( « ) . 

(27.1) 

(27.2) 

(28.1) 

(28.2) 

What we have done is simply this: the output yi(t) has been fed back to be subtract
ed from the known command input r(t), forming an error signal e\(t) = r(t) — y\(t). 
As seen, common input x(t) is not just any function of time, as for Fig. 3, but the 
result of operation of controller H(s) on this error signal e\(t) — as expressed by 
Eqs. (28.1) or (28.2). Of course, we could have as well taken the other output y^(t), 
but, as the final result would show, the end result would be the same. Throughout 
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the rest of this paper, we assume that the 1st output yi(t) is always taken to be 
subtracted from the common input r(t). After all, there was no particular reason 
whatsoever as why we called one plant as plant (1) and the other as plant (2). So, 
always, that plant whose output is taken to be subtracted from r(t) shall be labelled 
as plant (1) and the remaining n — 1 plants, in any way one wishes, as plant (2), 
plant (3), . . . , plant (n). 

We shall now see how with this one controller H(s) the steady-state outputs: 
[j/i(0, 2/2(0] c a n be brought to tracJc the known command input r(t). Substituting 
Eq. (28.2) in Eqs. (23.1) and (23.2) and solving the arising simultaneous equations, 
we find Yx(s) and Y2(s) in relation to now the command input R(s): 

y.w-,.f?(:)_-MH- [s+AMl(s) 
s 2 + Лs + K H(s) w [s2 + Лs + K H(s)} D(s) 

-ЗД 

*'>-.*réfWM + 
[s2 + \s + K H(s)] D(s) 

_ _ * ) R(s) 

s2 + \s + K H(s) l ' 
[s + A] A2(s) + K H(s) [s + A] [a 2 - a i ] 

[s2 + \s + K H(s)} D(s) 
B2(s) + KH(s)[l32-^} 
[s2 + \s + K H(s)] D(s) ' 

(29.1) 

(29.2) 

where the expressions for A\(s), A2(s), Bi(s), B2(s), D(s) are those given by Eqs. 
(24.1) to (24.5), respectively. 

Now, let 

Ei(s) = R(s)-Y1(s), (30.1) 

E2(s) = R(s)-Y2(s), (30.2) 

therefore, from Eqs. (29.1) and (29.2), we have 

-.(«)• , . ^ « . « w - [°+x]Ms) 

s2 + \s + KH(s) w [s2 + \s + KH(s)]D(s) 

Bi(s) 
[s2 + \s + K H(s)] D(s)' 

(31.1) 

s[s + A] [s + A] A2(s) + K H(s)[s + \] [a 2 - «i] 
s2 + \s+KH(s) w [ s 2 + A s + X7/(s)]o(s) 

ď 2(s) + J ť i ¥ ( s ) [ / ? 2 - A ] 
[s2 + As + tf ď(s)] D(s) ' 

(31.2) 

Ato<e; 
Comparing Eqs. (29.1) and (29.2) with Eq. (4), it is observed that the first term 
on the right-hand side of equality sign, namely [KH(s)/s2 + As + KH(s)] R(s), is 
exactly the same. Consequently, comparison of Eqs. (31.1) and (31.2) with Eq. (6) 
shows that the first term on the right-hand of equality sign, that is {s[s + \]/s2 + 
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As + KH(s)} R(s), is completeiy identicai. It has been seen that for configuration 
of Fig. 1 iff all the roots of Eq. (7): s2 + Xs + KH(s) = 0 would lie in the left-hand of 
the s-plane, then the steady-state values of both terms on the right-hand of Eq. (6) 
would be zero. Hence, e(i)|t_>00 = 0 ==> y(£)|t-*oo = r(t). The denominators of 
second and third terms of Eqs. (31+) and (31.2) on the right-hand side of equality 
sign have also the term D(s), which is given by Eq. (24.5): D(s) = s2 + As + 2K. 
Since Xk.K > 0, hence both roots of D(s) = 0 always lie in the left-hand of the 
s-plane: no stability concern with regard to D(s). So we must concern ourselves 
only with the first term on the right-hand side of Eqs. (31.1) and (31.2) for tracking 
action, that is 

S t s + A] R(s) 
s2 + Xs + KH(s) ( ' 

and the roots of its denominator for stability, namely 

s2+As + t f t f ( s ) = 0. (32) 

Now, as was stated above, since the first term on the right-hand side of Eqs. (31.1) 
and (31.2) is exactly the same as that of Eq. (6), hence, as of structure of Fig. 1, if 
in Fig.4 the command input r(t) is of polynomial type given by Eq. (9.1): 

K0 = I>*" 
v=0 

then the one controller H(s) of Fig. 4 must have the transfer function given by Eq. 
(10): 

II(*) = X > i -
h=o s 

So, as we saw before for Fig. 1, if command input r(t) is a step one: r(t) = r0, 
then controller tf (s) of Fig. 4 must be of P-type: H(s) = A0. Upon substitution of 
H(s) = A0 in Eq. (32), which is the same as Eq. (7), we get 

s2 + As + K A0 = 0. 

Both roots of the above quadratic equation lie in the left-hand of the s-plane, 
VMo > 0. Hence, from Eqs. (31.1) and (31.2), we have 

ei(0|t-,oo = e 2 ( t ) | t - c»=0==> 

yi(t)\t-+oo = 2/2(Olt-oo = r(t) = r0. 

Likewise, if the command input r(t) is step-plus-ramp one: r(t) = ro+ri t, r i^O, then 
the controller tf (s) of Fig. 4 should be of e/-type: tf (s) = A0 + A\ -. Substituting 
this new tf (s) in Eq. (32), we obtain the characteristic equation: 

s3 + A s2 + K A0s + K Ax = 0. 
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All the three roots of the above equation lie in the left-half of the s-plane, if 

A0, Ai>0 and -± < X. 
A0 

Being so, again from Eqs. (31.1) and (31.2), we get 

e i ( 0 l t - » = e 2 ( 0 | t - > o o = 0 = > 

yi(0lt-oo = y2(0l*-oo = r(t) = r0 + rxt. 

These results resemble exactly that of Fig. 1. So, one P-controller: H(s) = A0 for 
r(t) = r0 or one PI-controller: H(s) = A0 + A\ ~ for r(t) = r0 + r\t would bring 
the steady-state outputs y\(i) and y2(<) to track the command input r(t). 

4.2. 3-Plant/One-Controller Sys tem 

We now combine Figs. 3 and 4 in a single Figure for a '3-plant' system, which is 
shown in Fig. 5. 

У,1U 

\ 

t = 0 

" ' t 

ţ i 
y,tt) X " ' t G « S " 7 Í5TX Ì 
y,tt) 

(w) + C 3 - G « S " 7 Í5TX Ì Пì 

У?l« \ , 4%-ь 

+ C 3 -

ê,=y, -y2 

У?l« \ , 4%-ь 

+ C 

^ f 

У?l« \ , 4%-ь 

+ C 

G | s ' = s ( s K . X , 
У?l« \ , 4%-ь 

G | s ' = s ( s K . X , {2) 

ï Уз(t) 

ê3=y2-Уз ï Уз(t) + 

a э| |P: 

i ł ï Уз(t) + 
ß | s l =^x ì 

ï Уз(t) ß | s l =^x ì (3) 

Fig. 5. Block diagram for tracking action of 3 identical plants: G(s) = , ^^ - with ONE 
controller H(s). 

If switch (w) is open, then the common input x(t) is any function of time, as in 
Fig. 3; while if it is closed, then x(t) is the result of operation of controller H(s) upon 
the difference between the known command input r(t) and the output yi(t), as in 
Fig. 4. Reader's special attention is invoked upon in observering how the 3 plants are 
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interconnected, which is very important for both stability requirement and tracking 
behaviour: Each one of the outputs yi(t), y2(t), 2/3(0 is compared with the other 
two outputs to form the following three possible error signals: 

ii(t) = yi(t)-y2(t) (33+) 

B2(t) = yi(t)-y3(t) (33.2) 

e3(0 = » ( 0 ~ 3/3(0- (33.3) 

These error signals are then added to or subtracted from inputs x(t) of the three 
plants in the manner clearly shown in Fig. 5, which is of the same principle as for the 
simplest case shown in Fig. 3. Everything said in Section 4.1 regarding the presence 
or non-presence of the error signal i\(t) is also true now for the three error signals 

ei(0, «*(-). h{t). 
Now, suppose for the present that in Fig. 5 the switch (w) is open and the common 

input x(t) is just any function of time. Similar to Eqs. (19.1) and (19.2), we get 

y\(t) + \yi(t) = K[x(t) - h(t) - h(t)] (34.1) 

y2(t) + Xy2(t) = K[x(t) + h(t) - e3(0] (34.2) 

tfe(0 + W ) = KMO + MO + «3(*)]- (34-3) 

Substituting Eqs. (33.1) to (33.3) in Eqs. (34.1) to (34.3), we get 

j / i (0 + Ayi(0 + 2/< 2/i(0 - K y2(t) - K y3(t) = K x(t) (35.1) 

272(0 + Xy2(t) + 2Ky2(t) - K m(t) - Ky3(t) = K x(t) (35.2) 

2/3(0 + Xy3(t) + 2K y3(t) - Km(t) - K y2(t) = K x(t). (35.3) 

Taking Laplace transform from both sides of Eqs. (35.1) to (35.3), and inserting the 
output initial conditions: 2/i(0) = «i and yi(0) = /? i = 1,2,3, we have as in Eqs. 
(22.1) and (22.2): 

[s2 + \s + 2K] Yi(s) - K Y2(s) - K Y3(s) = K X(s) + [s + A] a, + A (36.1) 

[s2 + \s + 2K] Y2(s) - K Yx(s) - K Y3(s) = K X(s) + [s + A] a2 + fa (36.2) 

[s2 + \s + 2K] Y3(s) - K n ( s ) - K Y2(s) = K X(s) + [s + A] a3 + /?3-(36.3) 

Solving the simultaneous equations (36.1) to (36.3), we get as in Eqs. (23.1) and 
(23.2): 

^ ' ^ ^ ^ l ^ + T W (37+) 

^ ^ ^ i r H + O T w (372) 

w-^U^+^iiM^ (373) 
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where, similar to Eqs. (24.1) to (24.5): 

3 

Ai(s) = a . s 2 + atXs + K ] T am i = 1,2,3 (38.1) 
m = l 

3 

Bi(s) = 0is2 + fcXs + K^2j3m . = 1,2,3 (38.2) 
m = l 

D(s) = s2+Xs + ZK. (38.3) 

Let us now return to Fig. 5 again. Suppose that at time t = 0: (i) a known command 
input r(t) has been applied to the system, (ii) simultaneously, i.e. at time t = 0, 
the switch (w) has been closed. As seen by Fig. 5, similar to Fig. 4, x(t) is not now 
just any function of time, but the result of operation of controller H(s) upon the 
difference between the command input r(t) and the output yi(t). So similar to Eqs. 
(28.1) and (28.2), we have 

X(x) = E^s) H(s) 

X(s) = [R(s)-Y1(s)]H(s). 

Substituting the second of the above two equations in Eqs. (37.1) to (37.3), and 
solving the arising simultaneous equations, we get 

„ w = , , І " W вд+ [M4Л.C.) 
s2 + Xs + K H(s) v ' [«- + As + K H(s)} D(s) 

Bi(s) 
[s2 + Xs + KH(s)]D(s) 

(39.1) 

y 2 ( s ) - ^ Я ( s ) R(ş) | [s + MЛ2(s) + KH(s)[s + X]W2-«i] 
s2 + Xs + K H(s) w [s2 + Äs + K H(s)] D(s) 

B2(s) + K H(s) [ß2 - ßj] 

[s2 + Xs + K H(s)] D(s) 
(39.2) 

K H(s) [s + X] A3(s) + K H(s) [s + X] [q3 - ai] 

*3{> ~ s* + Xs + KH(s)"{ >+ [si + Xs + KH(s)]D(s) 

BsW + KHWUh-Pi] ,,fl ... 
+ [S2 + Xs + K H(s)} D(s) ^ • > 

where the expressions for Ai(s), A2(s), A3(s) are obtained from Eq. (38.1), for Bi(s), 
B2(s), B3(s) from Eq. (38.2) and Eq.(38.3) provides us^with D(s). 

As in the 2-plant case, let 

Et(s) = R(s)-Yl(s) (40A) 

E2(s) = R(s)-Y2(s) (40.2) 

E3(s) = R(s)-Y3(s). (40.3) 
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Therefore, from Eqs. (39.1) to (39.3), we get 

-.(., „ J a l «.,- b±MAw 
s2 + д s + к ҖĄ v / [s2 + A s + # Я ( s ) ] £)(s) 

__f) 
[s2 + A s + A Я ( s ) ] D ( s ) 

(41.1) 

- M _ _£___ „ , * [« + A]i4a(*) + JC/.'(*)[* + A][oa-o1] 
s2 + As + K H(s) w [s2 + As + K H(s)] D(s) 

ď2(s) + A ' Я ( s ) [ / ? 2 - A ] 

[s2 + Xs + K H(s)] D(s) 
(41.2) 

„ / л _ _ _ _ _ p , . ч [в + A]>lз(*) + /<:Я( в )[ S + A ] [ a з - a i ] 
ß з(s ) - , , г- | „ =т-ч IЧS) -s2 + As + A ff(s) w [s2 + As + A F(s)] _>(«) 

J?3(s) + A//(s)[/3 3-/?i] 
[s2 + As + A #(«)] D(s) ' 

(41.3) 

Again, as in the 2-plant case, it is observed that the first term on the right-hand 
side of Eqs. (39.1) to (39.3), that is [A H(s)/s7 + As + A H(s)\ R(s), is the same 
as that of Eq. (4): similarly, the first term on the right-hand side of Eqs. (41.1) to 
(41.3), namely {s[s + A]/s2 + As+7i H(s)} R(s), is identical with that of Eq. (6). The 
denominators of the second and third terms on the right-hand side of Eqs. (414) to 
(41.3) contain the term D(s), which is given by Eq.(38.3): D(s) = s 2 + As + 3A. 
Since A & A > 0, hence, as before, both roots of D(s) = 0 always lie in the left-half 
of the s-plane. So, as in the 2-plant case, one must concern oneself only with the 
first term on the right-hand side of Eqs. (41.1) to (41.3) for tracking action, namely 

S^S + X^ R(s) 
s 2 + As + A H(s) 

and the roots of its denominator for stability, that is 

s 2 + A s + A/7(s) = 0. 

As was stated for the '2-plant' case, if the common input r(t) is of polynomial type 
given by Eq. (9.1): 

i 

r(t) = Y,rvt\ 
v=0 

then the one controller H(s) of Fig. 5 must have the transfer function given by Eq. 
(10): 

w = !>?>• 
7i=0 

(i) r(t) = r0 => H(s) = A0 

«i(0Lco = «.(0Loo = «3(0Loo = ° => 
tfi(OI.-eo = W-Wli-oo = !te(*)l.-oo = r(t) = r0, if 
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A0 > 0 . 

(ii) r(t) = r0 + rrf => H(s) = ^0 + ^ 1 -

eiWUoo = ^(Ol.-oo = e3(0Uoo = ° =-> 
K l W L c , = W-(0U«, = J/3(0Uoo = Kl) = ro + nt, if 

J40 , J4I > 0 and -±- < \. 
A0 

Therefore, the arrangement of Fig. 5 for a '3-plant' system with one controller H(s) 
will make the three steady-state outputs to tract the command input r(t), H(s) = 
A0 for r(t) = 1*0 and H(s) = A0 + A\ ^ for r(t) = r0 + r± t; while configuration of 
Fig. 2, with n = 3, would have required three such P- or P/-controllers. Now we 
shall use the results of '2- and 3-plant' system for the general 'n-plant' case. 

4.3. n-Plant /One-Control ler Sys tem 

As in the case of '2- and 3-plant' systems, tracking action of an 'n-plant' system can 
be achieved in two stages: 

(i) Interconnection of n plants, as in Fig. 3 to 5. 

(ii) Taking any one of the outputs, say the 1st one, to be compared with the 
command input r(t), as shown in Figs. 4 and 5. 

The block diagram of the system is shown in Fig. 6. Let us elaborate on stage (i): 
For the interconnection of the n plants, as clearly seen in Figs. 3 to 5, two important 
rules must be strictly observed: 

(a) Formation of all W possible error signals (e"i, e2, • • •, 6/v) from the 'n ' plant 
outputs. 

(b) Feeding back each one of these lN' error signals for addition to or subtraction 
from the inputs x(t) of the two plants which have produced this error signal. 

The rules for addition to or subtraction from the inputs x(t) of the two plants are 
of great significance, as far as the stability of the whole system is concerned, which 
is clearly seen in Figs. 3 to 5. For instance, in Fig. 5 since 83 = 3/2 — 2/3, then S3 must 
be subtracted from input x(t) of plant (2) and added to input x(t) of plant (3). Of 
course we could have made £3 = 3/3 — 3/2, thereupon 63 must now be added to input 
x(t) of plant (2) and subtracted from input x(t) of plant (3). 

The relation between the total number of error signals 'AT', which can and must 
be formed, and the 'n ' outputs of the plants has been proved before [5] and is given 
by 

iV=in(n- l ) . 
For example, n = 5 ==> N = 10. The 'N = 10' error signals which can and must be 
formed are: 

e i = 2 / i - 2 / 2 , e2 = 3/i-2/3, e3 = 3/1 - 3/4, 64 = 3/1-3/5, e5 = 2/2 - 2/3, 

e6 = 2/2-2/4, 67 = 3/2-3/5, e8 = 2/3-3/4, 69=3/3-3/5, eio = 3/4 - 2/5-
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So, 

input to each plant is: x(t) and ±4 error signals. 

H(s). 

Hence in Fig. 6, if, for instance, n = 5 = > At = 10, then 

input to plant (1) is: x(t) — ei(<) — &2(t) — £3(2) — e4(t) 
input to plant (2) is: x(t) + ii(t) - e5(t) - e6(t) - e7(t) 

input to plant (5) is: x(t) + e4(t) + e7(t) + es(t) + eio(<) 

Still more insight to the interconnection of the plants can be cited in [5,6,7]. 

Let us return to Fig. 6, assuming for the present that the switch (w) is open and 
the common input x(t) is any function of time. Hence, similar to Eqs. (19.1), (19.2) 
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and (34+) to (34.3), we can write 

yi(i) + \yi(t) = K[x(t) - h(t)...] (42.1) 

lh(t) + W ) = K[x(t) + h(t) • • •} (42.2) 

j/„-i(<) + \yn-i(t) = K[x(t) •••- eN(t)] (42.n-l) 

Vn(i) + \yn(t) = K[x(t) ••• + eN(t)] (42.n) 
where, as in the '2- and 3-plant' case 

h(t) = yi(t) - y2(t) (43.1) 

iN(t)=yn-i(t)-yn(t) (43.n) 

Referring to Eqs. (19.1), (19.2) and (34.1) to (34.3), it is easily deduced that inside 
each one of the square brackets in Eqs. (42.1) to (42. n) there are: x(t)±ln — 1' error 
signals. So, similar to Eqs. (21.1), (21.2) and (35.1) to (35.3), upon substitution of 
Eqs. (43.1) to (43.n) in Eqs. (42.1) to (42.n), we have 

h(t) + Xyi(t) + (n - 1) Kyi(t) - Ky2(t) - Ky3(t) Kyn(t) = Kx(t) (44.1) 

2/2(0 + A?)2(0 + (n - 1) Ky2(t) - Km(t) - Ky3(t) Kyn(t) = Kx(t) (44.2) 

yn(t) + \yn(t) + (n-\)Kyn(t)-Kyx(t)-Ky2(t) Kyn-i(t) = Kx(t).(44.n) 

Taking Laplace transform from both sides of Eqs. (44.1) to (44.n), and inserting the 
output initial conditions: 

W(0) = «i 
i = l , 2 , . . . , n 

2/i(0) = A 

we get 

[s2+A.s(n - l)K]Yi(s)-KY2(s)-KY3(s) AT„(s) = A'X(s)+[s+A]ai+/?1(45.1) 

[s2+Xs(n-l)K]Y2(s)-KYl(s)-KY3(s) KYn(s) = KX(s)+[s+X]a2+l32(45.2) 

[s2+\s(n-l)K]Y„(s)-KYl(s)-KY2(s) AT^i(s) = A'X(s)+[s+A]an+/?„(45.n) 

Now, it is all-too-clear that Eqs. (22.1), (22.2) and (36.1) to (36.3) are special cases 
of Eqs. (45.1) to (45.n): n = 2 and n = 3, respectively. 

It should be remembered, as in the previous two cases, that X(s) in Eqs. (45.1) to 
(45.n) is the transform of any function of time x(i). 
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From now on, matrix algebra can be commissioned, as in [5,7], to finally get expres
sions relating outputs Yi(s), Y2(s),... ,Y„(s) to command input R(s)—which, of 
course, is our final goal. However, scrutiny of results for the '2- and 3-plant' system 
would enable us to write down, stage-by-stage, all the results we require: 
Referring to Eqs. (23.1), (23.2) and (37.1) to (37.3), we can write 

*(«) = slTW] X(s) + 71^) + sjMk) (4 6 1) 

*-(•) = Tpfi) *M + iW) + w i f e (46-2) 

M*) = spfe x(s) + £$) + ipfxfifc) (46'n) 

From Eqs. (24.1), (24.2) and (38.1): 

Ai(s) = aiS
2 + aiXs + K J2 am i=l,2,...,n (47.1) 

m=l 

and from Eqs. (24.3), (24.4) and (38.2): 

Bi(s) = frs2 + fcXs + K j ^ / ? m i=l,2,...,n (47.2) 
m=l 

finally, from Eqs. (24.5) and (38.3): 

D(s) = s2 + Xs + n K. (47.3) 

Returning to Fig. 6 once more, assume, as for the '3-plant' case shown in Fig. 5, 
that at time t = 0 the command input r(t) has been applied to the system and, 
simultaneously, the switch (w) has been closed. So, as in the previous two cases 

f X(s) = Ei(s)H(s) 
or < 

i X(s) = [R(s)-Yl(s)]H(s). 

Upon substitution of the second of the above two equations in Eqs. (46.1) to (46.n), 
and solving the arising n simultaneous equations, one obtains Yi(s), Y2(s), • • •, Yn(s) 
in terms of the command input R(s): 

Y (r\- KH(S) p, v \>+MiM i B'(*) ras n 
Yl{S)-,2+\s+VH(s)K(S) + [s'+\s+KH(,)]D(,) + [s'+\s+KH(s)]D(s) (4tU) 

Y,(s)= ^ ^ R(s) + [^]A2(s)+KH(s)[,+\][a2-ai] B2(s)+KH(s)[02-Pi] ( 4 g ^ 
*2\s) — s2+\s+KH(s)nyS> + [,»+\,+KH(,)]D(,) + [,* + \,+KH(,)]D(>) \*°-z) 

Y M - KB{*} M*\ 4- U+^]An(,)+KH(s)[s+\][an-a1] Bn(s)+KB(s)[0n-0i] (,Q \ 
Yn{s)-S2+Xs+KH(S)

H(S) + [,' + \,+KH(,)]D(.) + [,' + X, + KH(,)]D(S) (48'n) 
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where the expressions for Ai(s), A2(s),..., An(s) are obtained from Eq. (47.1), for 
Bi(s), B2(s),..., Bn(s) from Eq. (47.2) and Eq. (47.3) furnishes us with D(s). 

As in the '2- and 3-plant' case, let 

El(s) = R(s)-Y1(s) (49.1) 

E2(s) = R(s) - Y2(s) (49.2) 

En(s) = R(s) - Yn(s) (49'.n) 

Therefore, from Eqs. (48.1) to (48.n), we have 

-M-)= . . + a + f A ( . ) ^ ) - [.-+l-+A/-g&U) - r̂ +A»+9x(H)(»))0(») (5o.i) 
p <•«..- «[»+A] p / - ^ [»+A]A2(»)+KH(»)[»+A]fa2-«1] B j ^ + K J ^ t f a - ^ i l fW. 9^ 
- 4 - W - , - + A i + K H ( » ) / e W - [»-+A»+gH(»))D(») ~ [s*+\,+KH(l)]D(,) l 5 0 " 2 ) 

P (c\- ife+i] P ' - l [»+A]A-(»)+iYH(»)[»+A][an-ai] B . ( . )+yf l ( . ) [ | ! . -Di ]^ i ;n ' . \ ' 
M * ) - .-+X.+g'H(,)IgW [»-+A»+gH(»))g(,) ~ [»VA»+KH(,)]D(»)H50-n) 

So, as in the previous two cases: n = 2 and n = 3, the first term on the right-hand 
side of Eqs. (48.1) to (48.n), namely [K H(s)/s2 + Xs + K H(s)] R(s), is the same 
as that of Eq. (4). Also, the first term on the right-hand side of Eqs. (50.1) to 
(50.n), that is {s[s + X]/s2 + Xs + K H(s)} R(s), is identical with that of Eq.(6). 
The denominators of the second and third term on the right-hand side of Eqs. (50.1) 
to (50.n) contain the term D(s), which is geiven by Eq. (47.3): D(s) = s2 + Xs + nK. 
Since Xk,K > 0, hence, as in previous two cases, both roots of D(s) = 0 always lie 
in the left-half of the s-plane. Again, we must concern ourselves only with the first 
term on the right-hand side of Eqs. (50.1) to (50.n) for tracking action, namely 

S[S + X] — R(s) 
s2 + Xs + K H(s) 

and the roots of its denominable for stability, that is 

s2 + Xs + K H(s) = 0. 

So, as in the previous two cases: n = 2 und n = 3, if the command input r(t) is of 
polynomial type given by Eq. (9.1): 

v=0 

then the one controller H(s) of Fig. 6 must have the transfer function given by Eq. 
(10): 

H(s)=£Ak£. 
h=o 
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(i) r ( 0 = r0 = > H(s) = A0 

e i ( 0 U o o = e 2 (0Uoo = • • • = e„(0Uoo = 0 =-> 

2/l(0Uoo = » ( 0 l . - o o = ' • ' = J/»(0lt_oo = KO = n>, if 

^lo > 0. 

(ii) r(0 = r0 + nt => //(s) = A0+Al7 

ei(OI._oo = e 2 (0Uoo = ' •' = e„(OUoo = 0 ==* 

» i (0Uoo = 2/2(OUoo = •"" = ! / n ( 0 L M = r (0 = ro + n i , if 

A0, Ai > 0 and ^ - < A. 

Therefore, the architecture of Fig. 6 for an '?i-plant' system with one controller H(s) 
will make the n steady-steady outputs to track the command input r (0 , H(s) = A0 

for r (0 = ro and H(s) = Ao + Ai j for r (0 = ro + fi t; while the classical, and 
generally accepted, arrangement of Fig. 2 would have required n such P- or PI-
controllers . . . 

5. CHOICE OF CONTROLLER PARAMETERS (A0,AU...) 

Stability and optimality are, in hierarchical order, the two most celebrated problems 
associated with control theory and design. Considering again the classical linear 
feedback control system shown in Fig. 1, once, as we have clearly seen, it has been 
decided what the transfer function of an appropriate controller H(s) should be, in 
order that the steady-state output y(t) would track the command input r(t), then, 
naturally, this question arises: what values the parameters (A0,Ai,...) of controller 
H(s) should assume in order that a certain cost function, or performance criterion, J 
is minimized. Among many options [3], there has always been a particular attention 
and interest towards minimization of integral square-error: 

'I J = / e2(t)dt. (51) 
jo 

As was shown in Eq. (6), the transform E(s) of the error signal e(t) for the unity 
feed back system of Fig. 1 with G(s) = jrjiry;, is given by 

E ( Q ) -
 S[S + X] R(c) [s + ^ + l (Q) 

--W - S2 + Xs + K H{s)
 KW S2 + Xs+ K H(s) [b> 

where R(s) is the transform of command input r (0 , a = 2/(0) and (3 = 2/(0). Let us, 
for the sake of simplicity and explicity, assume that both output initial conditions 
be zero: a = /? = 0. Let us also assume that the command input be a step function: 
r(t) = r0, or R(s) = r0 -, Hence, according to Eq. (10), controller of Fig. 1 must 
be of P-type: H(s) = A0. So, with R(s) = r0J, H(s) = A0 and a = /? = 0, from 
Eq. (6) we get: 

«w=--m* <-» 
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where 

ci = r0 (53.1) 

c0 = r0A (53.2) 

d2 = 1 (53.3) 

rli = A (53.4) 

d0 = KA0. (53.5) 

Now by Parseval's theorem, Eq. (51) can also be written as 

J.CX3 . r+j°° 

J = / e2(t)dt+—- E(s)E(-s)ds. (54) 
Jo 4*3 J-j°° 

Considering the general expression for E(s), as given by Eq. (52), and using the 
well-known table of Parseval's integral [8], we get 

_ cjrfp + Cgrf2 
J~ 2d0dtd2 • ( 5 5 j 

Substituting values of c i , c 0 , . . . , rf0 from Eqs. (53.1) to (53.5), we get 

= / ; e2(')<" = s"» + ̂  <56> 
As seen from Eq. (56), no absolute optimal value for AQ exists which would minimize 
J: the larger the value of A0, the smaller the value of integral square-error J . 

So, with command input being a step function: r(t) = r0, then in order to minimize 
the integral square-error J , the P-controller of Fig. 1 must be a high-gain amplifier, 
and 

J(min) = JUo-oo = ^ r j . (57) 

Let us now consider the configuration of Fig. 2. Again, suppose that the common 
command input: r(t) = r0 or R(s) = r0 j => all the n controllers must be of P-
type: H(s) = A0. Also, as before, assume, that all the output initial coditions are 
zero: a,- — /?,• = 0, j = 1,2,.. . , n. As just has been established, in order to minimize 
the integral square-error for eacii one of the n unity-feedback systems, then eac.2 one 
of the n controllers must be a high-gain amplifier: H(s) = A0, A0 —* oo. 

Let Ji, i = 1,2,.. . , n be the integral square-error of the ' tth' unity-feedback system 
of Fig. 2, and assume that Jy be the total integral square-error of the whole of Fig. 2. 
From Eq. (56): 

*•£*=•[&+&!;]• <58> 
As shown by Eq. (57): 

J.(min) = J ; |A 0 -OO = -^rl ѓ = l ,2 , . . . , ř i (59) 
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hence, the minimum of total integral square-error JT(min) is given by 

JT(min) = E f (min) = ^ r 0
2 (60) 

Now let us consider the arrangement of Fig. 6, which employs only one controller 
H(s). Again, we assume that the command input being step function: r(t) = ro, 
or R(s) = ro - => H(s) = AQ. AS in Fig. 2, we assume that a,- = /?,- = 0 , i = 
1,2,... ,n. This implies that the second and third terms on the right-hand of Eqs. 
(50.1) to (50.n) are zero: 

* < • > • . » + _ + « _ M R " > i = l-* '• ( 6 1 » 

Substituting R(s) = r0 - and H(s) = Ao in Eq. (61), we get 

Ei(S)= 2 ; ° : + ; ° A
4 i=i,2,...,n. (62) 

s2 + As + A Ao 

It is noted that Eq. (62) is exactly the same as Eq.(52). Assuming that JT(min) 
be the total integral square-error for configuration of Fig. 6, then since Eq. (62) is 
the same as Eq. (52), hence the same line of approach as for Fig. 2 will bring us to 
exactly the same result as Eq. (60): 

JT(mm) = ^rl (63) 

So one high-gain amplifier for Fig. 6 gives the same minimum of total integral square-
error 

f _ n 2 
JT(min) — jTT r0 

as n of such amplifiers for Fig. 2. 

If, however, the output initial conditions were not all zero, again we would arrive 
at the same result that all the n controllers of Fig. 2 must be high-again amplifiers: 
H(s) = AQ, A0 —» oo; as well as the one controller of Fig.6. The only difference 
being that the minimum total integral square-error for Fig. 2, that is Jr(min). would 
be different to that of Fig. 6, namely </T(min): 

•IT(min) ?- IT(min)-

References [6,7] deal with the minimization of total integral square-error with non
zero output initial conditions. 

To be sure, in Fig. 2 if we were interested only in bringing the n steady-state outputs 
of the system to follow, or track, the command step input: r(t) = ro, or R(s) = 
ro j , t ha t is no minimization of a cost function, or performance criterion, then all the 
n controllers in that figure could be taken as unity: H(s) = 1. In other words, in 
the forward path of each one of the unity-feedback systems of Fig. 2 we would have 
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only the plant: G(s) = j ^ j y - Using Eq. (6) with R(s) = r0 \ and H(s) = 1, we 

would have for the n error signals of Fig. 2: 

v<\ S + X [s + X}ai+0i 
Ei{s)=s* + Xs + Kr°- s* + Xs + K ( 6 4 ) 

where 

Hence 

EІ(S) = R(S)-YІ(S) í = l , 2 , . . . , n . (64.1) 

e,(«)|t-oo = lim sEi(s) = 0 ==> 

Vi(t)\t-*oo = r(t) = r0 V output initial conditions. 

£ = l , 2 , . . . , n . 

Of course, r(t) = r0 and H(s) = 1 is also valid for Fig. 6. All the aforesaid really 
means is this that if r(t) = r0, then we could arrange a unity feedback around 
each plant and need not to resort to the plant interconnection as in Fig. 6, if no 
minimization of a certain performance criterion is in mind. On the contrary, if the 
command input is a step-plus-ramp one: r(t) = r0 + r\t, r\ ^ 0, then, as we have 
seen, we would definitely need n P/-controllers: H(s) = A0 + A\ j for Fig. 2 as one 
for Fig. 6. The same goes with n P772-controllers: H(s) = A0 + A\ ~ + Ai j \ , when 
r(t) = r0 + r\t + r2<2, for Fig.2 as one for Fig.6, and so on. As was seen for the 
P-controller: H(s) = A0, the parameters of PZ-controller, i.e. A0 and A\, in Fig.6 
can be selected such that, again, a certain performance criterion is minimized; the 
same with the parameters of Pi72-controller, namely A0, A\ and Ai-

6. SYNCHRONIZATION AND TRACKING 

Referring to Fig. 6, since we are dealing with n plants with, generally speaking, 
different output initial conditions and we wish the n steady-state outputs to tract 
the command input r(t), then the presentation of the following two definitions are 
most imperative: 

SYNCHRON IZATION: With command input r(t), the one controller H(s) and 
different output initial conditions, by synchronization it is meant that the n steady-
state outputs be identical. 

TRACK ING: With command input r(t), the one controller H(s) and different 
output initial conditions, by tracking it is meant that the n steady-state outputs be 
identical and, moreover, these identical steady-state outputs also track the command 
input r(t). As the ensuring example will show, it may well happen, due to improper 
choice of the one controller H(s) in Fig. 6, that the n steady-state outputs are 
identical: Synchronization, but these identical steady-state outputs iagthe command 
input r(t): No tracking. 
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Example . In Fig.5, let 

K = 1, A = 1, (<*i = 0, A = 0), (a- = - 1 , /?2 = 0), (a 3 = 4, /?3 = 0). 

That is, we have three identical integral-plus-time constant plants: G(s) = 777x77, 
with output initial conditions as shown above. As of Fig. 5, the output of plant (1) 
has been nominated to be subtracted from command input r(i). As was mentioned 
before, any one of the other two outputs could have also been chosen for this task. 
Subsequently, we would have named that plant as plant (1), and the other two plants 
as plants (2) and (3). Figures 7 to 9 show, respectively, the result of computer 
simulation for 

(i) r(t) = 1 «— step input, H(s) = 1 «— (P-controller, A0 = I) 

(ii) r(t) = 0A2t <—ramp input, H(s) = 1 

(iii) r(.) = 0.42f , H(s) = 1 + 0.2 i <-
(Pi-controller, A0 = 1, Ar = 0.2) 

Discussion 
(i) As seen in Fig. 7, the three identical steady-state outputs follow the command 

input r(t) = 1: 
SjJiciirojjj'zatioj] and Tracking. 

(ii) In this case, shown in Fig. 8, the three steady-state outputs are identical ramp 
function of slope = 0.42, as the input, but, however, these three identical 
steady-state outputs lag the command input r(t) = 0.421 by a fixed amount: 

Synchronization without Tracking. 

Let 0 be this fixed amount of error between the three synchronized outputs 
and the command input r(t). The value of 9 is obtained from the first term 
on the right-hand side of Eqs. (41.1) to (41.3): 

6 = lime.(0|t-oo = HmsEi(s) i= 1,2,3 

.. s[s + X] I 
= lims -s r TT, ; R(s)\ 

,_o s2 + Xs + K H(s) w | fl(.)=o.42-k 
X=K = 1 

JV(S)=1 
,. 0.42 [s + l] 

= lim = L / = 0.42 
s — 0 S2 + S + 1 

This fixed amount of error: 6 = 0.42 between the three steady-state outputs 
and the command input: r(t) = 0.421 is clearly observed in Fig. 8. 

(iii) Portrayed in Fig. 9, the three steady-state outputs are identical and aiso iden
tical to the command input r(t) = 0.421: 

Synchronization and Tracking. 



374 I. VAKILZADEH AND H. UNBEHAUEN 

f t Ч . У l 2 л l . 

H ( s ) = 1 

Уз(t) 

V ' \ г t t)= 1 

/ 

/ 
s y , ( t ) 

Л У . tö 

) - 8 Isecl Ю ' 

Fig . 7. Computer response of Fig. 5, with: [r(t) = 1, H(s) = 1], K = 1, A = 

1, (cv, = 0, /?, = 0), (cv2 = - 1 . 37 = 0), (a3 = 4. fh = 0). 

Fig . 8. Computer response of Fig. 5, with: [r(t) — 0.421, H(s) = 1], K = 

1, A = 1, (cvi = 0 , /?, = 0 ) , ( « 2 = - 1 , Pi = 0), ( a 3 = 4, Pi = 0 ) . 
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Fig. 9. Computer response of Fig. 5, with: [r(t) = 1, H(s) = 1+0.2 i], K = 
1, A = 1, (cvi = 0, fix = 0), («2 = - 1 , /?2 = 0), (a3 = 4, /?3 = 0). 

It goes without saying that if optimization technique, as discussed for the P-controller: 
H(s) = J4O, w e r e brought into this example, then, more likely than not, all round 
better results could have been obtained. 

7. CONCLUSION 

In this paper, the tracking action of n identical integral-plus-time constant plants: 
G(s) = sd+x) through commissioning of only orje controller H(s) was studied. It 
was observed that if originally the plants are directly interconnected, in the manner 
fully discussed in the text, then upon operation of an appropriate controller H(s) 
on the difference between the command input r(t) and any one of the n outputs 
this goal can be achieved. A three-part example, being simulated on computer, 
most impressively illuminated the theoretical results. Obviously, the technique can 
easily be translated to discete-time systems: use of one digital controller. A most 
interesting observation was experieced where the parameters (K, X) of the three 
identical plants, in the example given, were perturbed within the range of ±30 % 
and still tracking behaviour, as portrayed in Figs. 7 and 9, was observed — with the 
same P-controller: H(s) = 1 and P/-controller: H(s) = l + 0 .2 j . However, the 
mathematical exposition of this observation, i.e. robustness of the system, is indeed 
beyond the scope of this work. 

(Received September 2, 1991.) 
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