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A UNIFIED OPTIMALITY CONDITION 
FOR EIGENVALUE PROBLEMS 

W . B . Liu AND J . E . RUBIO 

An optimality condition is derived for the problem of maximization of the first eigenvalue 
of an abstract elliptic differential operator in a Hilbert space. This condition unifies some 
known criteria in optimal design and gives some new ones as well. The result is obtained 
by using some techniques of nonsmooth optimization. 

1. INTRODUCTION 

In structural optimization eigenvalue problems (we mean those of maximization 
of the first eigenvalue of a differential operator over admissible design) are very 
important, see for example, [4], [5], [8] and [12]. One of the main difficulties is 
to obtain useful necessary conditions for the optimal design. The work on such 
problems in optimal design began long time ago (see [13]). Some of the early results, 
however, proved wrong because the possible presentation of the multiple eigenvalues 
was neglected (see [13]). It was not until 1977 that Olhoff and Rasmussen, in the 
study of the Lagrange problem, realized that the first eigenvalue does not vary 
smoothly with design parameters at the points where its multiplicity exceeds one 
and therefore the formal differentiation in the early work would be hard to justify. It 
turns out that simple eigenvalues are Gateaux differentiable with respect to design 
but repeated eigenvalues can only be expected to be directionally differentiable in 
general (see [8]). Although design sensitivity analysis of eigenvalue variations and 
explicit directional derivatives of repeated eigenvalues were present in eighty's (see 
[8] and [14] for example), they do not directly give useful optimality conditions for 
the optimal design if repeated eigenvalues appear. For example, it does not seems 
easy at all from them to derive the optimality condition which was proposed by [1] 
and [11] for the problem of maximization of a column's Euler buckling load under the 
clamped-champed boundary conditions (see also [5]), and is useful in optimal design. 
The main reason seems that in general, directional derivatives of repeated eigenvalues 
are not linear functional in direction arguments. Recently this condition has been 
rigorously justified in [5] by the method of explicitly calculating the generalized 
gradient of Clarke for some related functionals. A similar work can also be found in 
[2]. It is of interests to derive some optimality conditions for an abstract eigenvalue 
problem which includes as many as possible concrete problems and then to unify 
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some known conditions. It should be noted that the approaches used in [2] and [5] 
do not seem suitable for this purpose though they could apparently be applied to 
many concrete problems in optimal design. 

It is the purpose of this paper to obtain some optimality condition for an abstract 
eigenvalue problem. We achieve this by exploring the well known formula of semi-
derivative of the first eigenvalues. Our result includes some known results in [2] and 
[5]. Our approach seems applicable to a wide range of problems including nonlinear 
ones. 

Let H and V be two Hilbert spaces such that V C H and the imbedding operator 
is continuous and compact. Let Uad be a closed and bounded convex set in U, another 
Banach space. 

We assume that the function a(u, •, •) is a continuous bilinear form on V x V for 
any u £ Uad and that a(u, z,z)> c \\z\\v for any z E.V, where c is independent of u. 
Further we assume that the functional (u,z,y) —> a(u,z,y) £ C1 (Uad x V x V). 
We will suppose that there is a Banach space W such that U = W*, and that for 
any (u, z) £ U x V the linear functional v —»• a'u(u, z, z) (v) is in W. 

Let b(-,-) be a symmetric bilinear and continuous form on H x H. We further 
suppose that b(h, h) > 0 if h ^ 0. We are in the position of considering the following 
abstract first eigenvalues problem: 

sup inf a(u,z, z), (AEP) 
ueUadnGKz,*)=hzev 

where G = {u £ U : f(u) = 0 and g(u) < 0} with / , g £ Cl(U) and we will always 
suppose that Uad C\ G is nonempty. 

For existence of optimal controls of (AEP) one can refer to [5]. We here only 
try to find optimality conditions for it. In other words we would like to find some 
necessary conditions for an optimal control u* satisfying that 

sup inf a(u,z,z)= inf a(u*,z,z). 
u&Uai^GKz,z)=\,z^V b{z,z)=\,z£V 

In the next section we will present our optimality condition for (AEP). 

2. THE OPTIMALITY CONDITION 

Before giving our main result let us recall a result in convex function theory (see 
[7]), which will be used later. 

Lemma 2.1 . Let E be a compact convex set in a locally convex space D and let 
{ft} (t £ T) be a class of convex and lower semicontinuous functionals on E. If the 
inequality system: 

/ . ( e ) < 0 , t€T 

has no solutions in E, then there is a sequence of finite numbers {A,} (1 < t < m) 
m 

such that A,- > 0 (1 < i < m) and ^ A. = 1, and a sequence of indexes {<,•} in 
«=i 
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T (1 < i < m) such that 

X I A ' fu(e) > 0, for any e £ E. 
i=\ 

If T is finite, then the condition that E is compact can be further removed. 

Let u £ Uad and let W(u) = {z £ V : b(z,z)=l, a(u, z,z)} = 'mfb(yiy)=i a(u, y, y). 
From the compactness of the imbedding operator from V to H and the continuity 
of b on II x H, the set {z £ V : b(z, z) = 1} is weakly closed. Therefore W(u) is a 
nonempty closed set for any u £ Uad- We are now in the position to give our main 
result: 

Theo rem 2 .1 . Let u* be an optimal control of (AEP). Assume that the eigenfunc-
tion space correspondent to the first eigenvalue A* = X(u*) = infj(z ,)= i a(u*, z, z,) is 
ri-dimensional. Then there are n elements z\,z2,.. ,,z„ (normalized eigenfunctions, 

3 n 
see below) in W(u*), 0X > 0, £ 0? > 0, £ 4 = 1 and dudjj > & (1 < i, j < n), 

i=i i=i 
such that for any u £ Uad 

0\ £ daa'u(u*, zuZj) (u - u*) < (02 V/(u*) + 03 Vff(u*)) (u - «*). (2.1) 
>j=l 

If further u* is not a boundary points of Uad, and V / and V<7 are linearly indepen
dent, then 

n 

^ V i . ( u * , - , , - , ) = 02 V/(«*) + 03 Vff(u*). (2.2) 
«.i=l 

P r o o f . The idea is that instead of using the well known necessary conditions 
in [3] for optimization problems we apply those in [9] in terms of some directional 
derivatives other than the Clarke's, which seem to give sharper conditions here, 
and then linearize the conditions obtained by Lemma 2.L Let u* be a solution of 
(AEP) and F(u) = infi,(Ziz)=i a(u,z,z), which is locally Lipschitz from [5]. Then F 
achieves its maximum at u* over Uaa- D G. By the Ioffe's necessary conditions in [9] 
(cf. Theorem 3), there are Bu 02 and 03 such that 9\ > 0, 02 > 0, VJ?=1 0j > 0 and 

0 E NUa,(u*) + 0i dtfi(0) + 02 ̂ 2 ( 0 ) + 03 Vf(u*), (2.3) 

where Nuad(u*) is the normal cone of Uad at u*, ip\ and xp2 are two convex first order 
approximation of H(u) = sup t(, z ) = 1 -a(u, z, z) = -F(u) and g(u) at u* (see [9]) and 
dtyi (i = 1,2) is the subgradient of ip{ in convex analysis. Select V;2(h) = Vg(u*)h 
or <9V>2(0) -= {V(/(u*)}. From (2.3) there is £ £ S^i(0) such that for any u £ Uai, 

0\i(u - « * ) > - [02 V(jr(«*) + 03 V/(u*)] (u - u*). (2.4) 
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We now apply Theorem 4.3 in [10] to prove that 

Jim [F(u + tu)-F(u)]/t > inf a'Ju,z,z)(v). (WS) 
t -o - zew(u) "v v 

To see this one only needs to show that the weak stability condition in [10] holds for 
every u G Uad here and this can be seen by choosing the element XQ in W(u) and 
curve x [0, 8) —* V in the weak stability condition of [10] as XQ being any element 
in W(u) and x(t) =_. x0 since F and a(-,z,z) (for any z G V) are Lipschitz. It 
follows from (WS) that the convex and continuous function H'(u*, •) is a first order 
approximation of H at u* (as it is a convex lower semicontinuous function with finite 
values, see below), where H'(u*,v) is defined by 

H'(u*,v)= sup -a'u(u*,z,z)(v). (2.5) 

»€W(_») 

Consequently for any u G £/<._, 

01 H'(U*, U-U*)> 0! V>(_ - - * ) > - [02 Vfl(-*) + 03 V/(-*)] (- - _*). 
Note that 6 ( . , . ) > 0 if. ^ 0. Thus one can find {z.} (i = 1,2 n) in W(u*) such 
that they are linearly independent and 6(_., Zj) = 8ij (1 < i, j < n), where 8{j = 1 if 
i = 1 and 8ij = 0 if _ -_ j . Then W*(u*) = {£«• . - . ( ! < * ' < ™) with £ ? _ . a? = l } . 
From (2.4) and (2.5) one infers that for any u G Uad there is a z(u) = ^a , (u )z , -
with J_"=i <*? = 1 s u c h that 

0! <(_*, *(ti). .(it)) (« - _*) < [02 Vff(u*) + 03 V/(w*)] (u - «*). (2.6) 

Now note that the bounded closed convex set £/a_ is U* weakly compact (U is the 
dual space of W and thus one can define the weak star (<r(V, W)) topology on U) 
and the functional v —• a'u(u, z, z) (v) is U* weakly continuous. Thus one can apply 
Lemma 2+ to this case. Therefore for any e > 0 there are {/<j(-)} (j = 1,2,.. . , m(e)) 
such that Hj(e) > 0, J2T=i /*j(e) = 1 a n ( l 

01 f ; L(e)a'u \u*,J2aiZi,J2a\zA (u - u*)j < 

< [02 Vff(_*) + 03 V/(«*)] (ll - « * ) + -

for any u G Uad- Thus for any u G Uad, 

E ( E (w(£) «*«") <«z^ z>) (u - u*n < 
= I , Í = I \ „ = i / i = i , i = i \ifc=i 

< [02 Vt/(«*) + 03 V/(«*)] (« - u*) + e. 

Note that |VJ™=1 /ifc(e)a*o*| < VJ™-! /'„(-) |afn | | < 1- Let e -+ 0 and suppose that 
(VJ^l

=1/tfc(-)afaA/) —> djj (possibly a subsequence) as e —>• 0. From the Holder 
inequality - . , - j j > df_ (1 < i, j < n) so that one obtains (2.1). If u* is not a 
boundary point of [/__, then the set {(v — _*), v G Uad} contains zero point as its 
interior point so that (2.1) is equivalent with (2.2). Note that V / and V</ are 
independent and one concludes that 0i ^ 0. O 
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Remark 2 .1 . It follows from the proof of Theorem 2.1 that the condition that Uad 
is bounded can be removed. To see this, let us consider (AEP) with F(u) replaced by 
F(u) — R\\u — UQ\\IJ, where UQ is a solution of (AEP), and Uad replaced by Uad<~\Bft, 
where BR = {u £ U : \\u\\ < R + ||u||o}- With some large R one will find that the 
problem has the same solution «o and therefore one has (2.1) with Uad replaced by 
Uad H BR. This prove our conclusion. Thus if Uad ~ U, (2.2) will hold. If we replace 
the vector u — u* in (2.1) by an element of a suitable tangent cone of Uad at u*, then 
we can even manage to remove the convexity condition of Uad-

R e m a r k 2.2. The condition that there is a Banach space W such that U = W* 
can naturally be replaced by some others that can ensure that Uad is a weakly 
precompact set in U. In this cases the condition that a[ E W can be removed. 

It is frequently occurred in optimal design that 6 depends also on u. It is very 
interesting to know some similar conditions in such case (see [2]). The ideas used in 
this paper seem possible to generalize to such case. For example, suppose that 
6 depends on u and the problem: F(u) = inh(u,y,y)=i a(u,y>y) is weakly sta
ble in the sense given in [10]. Then one has that lim(_.0+[E(u + tv) — F(u)] > 
inf2eVV(u)au(M.^I-

2:)(';) - Ku)K(u>ziz)(v) (see [10] and [14]). Therefore one can 
choose tpi(h) = —mfz€W^u^a'u(u*,z,z)(v) — \(u*)b'u(u*,z,z)(v) and then obtains 
(2.2) but with a'u(u*, Zi,Zj)(u - u*) being replaced by a'u(u*, Zi,Zj) (u - u*) - \(u*) 
b'u(u*, Zi,Zj) (u - «*). For example it is known from [8] that this inequality (actually 
is an equality in those cases) is true for all the problems given in [2] and [8] (note it 
is given in another equivalent form). Therefore all the results in [2] can be viewed 
as special cases of these results. We will study this problem in another paper. From 
the proof of Theorem 2.1 it can also be seen that one can prove the theorem directly 
from (2.4) by calculating 3^i(0) using Lemma 2.1, The proof is very much similar 
to that of Theorem 2.1. 

In the following section we will give some applications of this abstract result just 
to show that it can indeed unify some known results. 

3. SOME APPLICATIONS 

Throughout this section we adopt the standard notation Wm'p(Cl) (p > 1) for 
Sobolev spaces on fi with norm || • ||n/m,P(n). We denote W2,2(Q) by H2(Q) and 
WQ'2(Q) by H2(Q). We will assume that fi is a bounded open set in Rl with a 
Lipschitz boundary dil. 

First let n = (0,1), V = tf0
2(0,1), H = H%(0,\),U = L°°(0,1), and Uad = 

{a G U : 0 < a < a < (3} where a and /? are constants. Then we take a(a,z,y) = 
/„* apz"y"dx with p > 0, 6(/i, t) = /„' h't'dx, g = 0 and f(u) = f* udx-l. In this 
case (AEP) will be the following eigenvalue problem: (see [2] and [8]) 

sup A(er), ( A E P ) C B C 
°tvad 
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where A(<r) is t h e first eigenvalue of t h e following p r o b l e m : 

/ cr"z"y"dx = A / y'z'dx, for any y G // 0
2 (0, 1). 

jo jo 

T h i s problem is n o t h i n g b u t t h a t of opt imal design of columns against buckling 
under t h e c lamped-c lamped b o u n d a r y condit ions . Note t h a t the well-known fact 
t h a t \(a) = inh(z,z)=\ a((T,z,z) so t h a t T h e o r e m 2.1 can be applied here since all 
t h e condi t ions required in i t hold. From T h e o r e m 2.1 one h a s t h e following well 
known result (see [5]): 

P r o p o s i t i o n 3 . 1 . Let <r be a solut ion of ( A E P ) C B C - Suppose t h a t the eigenfunc-
tion space correspondent to the first eigenvalue A(<r) is 2-dimensional. T h e n there 
are two e lements z\ a n d z^ (normal ized eigenfunctions) in VV((r) such t h a t for any 
V G Uad 

ľ 
Jo 

\\ Ę ^ - э д ) -1 (r; - <т) dx < 0, (3.1) 

where 0\ > 0, c/,j = dij and dadjj > dfj (1 < i, j < 2) . If further <r is n o t a 

b o u n d a r y point of Uad, t h e n 

0i £ rf«-i*p~1*./*j' = -• 
ij=\ 

(3.2) 

P r o o f . All the condi t ions required in T h e o r e m 2.1 can be easily confirmed here. 

From a physical considerat ion (see [5]) 9\02 ^ 0. By the well known procedure we 

can ob ta in a pointwise form of (3.1), which leads to (3.2) . D 

One can see from Section 2 t h a t Theo rem 2.1 can be easily used to other p rob lems 

in op t imal design. 

(Received May 7, 1992.) 
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