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PROBABILISTIC DATABASES AND DECISION 
PROBLEMS: RESULTS AND A CONJECTURE 

MICHAEL PITTARELLI 

An algebra applicable to recently introduced probabilistic models of data and which 
resembles the relational algebra is presented. It is shown to support various strategies for 
decision-making with information in the form of a probabilistic database. A conjecture is 
stated which, if true, could be exploited to reduce, without loss of information, the cost ol 
solving decision problems involving databases with large numbers of attributes. 

1. INTRODUCTION 

Recently, a number of closely related probabilistic data models have been introduced 
[2,6,29]. These models include the standard relational model [22] as a special case 
while permitting the representation of uncertainty regarding the entities being mod
elled and their interaction in terms of classical probability (vs. non-probabilistic 
fuzzy measures, in terms of which some extensions of the relational model have been 
characterized [30]). 

One advantage of a probabilistic treatment of database imprecision and uncer
tainty is that it supports a standard Rayesian approach to decision analysis. In 
this paper, methods for decision-making with information in the form of a prob
abilistic database are developed. A conjecture is presented which, if true, could be 
exploited to greatly reduce the cost of solving decision problems when the available 
data involve large numbers of irrelevant attributes. 

2. BASIC DEFINITIONS AND CONCEPTS 

Mathematically, a relational database instance is a (finite) collection of relations on 
finite domains; i.e., a set of subsets of Cartesian products of finite sets. Each of 
these finite sets is the domain of an attribute (or variable). Let dom (M) denote 
the domain of attribute M. The set of attributes V; on which an element r, of a 
database R = {ri,...,rm} is defined is its scheme, denoted s(ri). For relation r. 
with scheme V,, 

n C X dom(M) = dom(Vi) = dom(s(r,)) 



150 M. PITTARELLI 

In what follows, a relation r; will be replaced with its characteristic function. It 
is a short step from this notion of a relational database to that of a probabilistic 
database. Instead of a collection R = {r\,.. .,rm} with r,- : dom(s(r;)) —• {0, 1}, 
one has a collection K = {p\,... ,pm} with p,- : dom(s(pi)) —• [0,1] and J2t Pi(t) = 

1. (A probabilistic database corresponds to a knowledge store in Perez and Jirousek's 
INES model [26] and to a structure system in reconstructability analysis [16].) 

Let Ry and Py denote, respectively, the set of all non-empty relations and 
all probability distributions definable on the scheme V (i.e., on the set of atoms 
dom(V)). It is shown in [6] that the mapping trp : Ry —• Py, where 

trr(r)(t)=r(t) Y^rЏ), 

preserves standard relational data dependencies (functional, join, etc.) in prob
abilistic form (characterized in terms of conditional and relative entropy). In [29] it 
is shown that the left inverse 

t (vm-I L ifP(0>0, 
br{P)W - I 0 ) otherwise 

of trp is a homoinorphisin from various probabilistic to relational systems defined 
in terms of standard relational operators and probabilistic analogues. Only three 
probabilistic operators are discussed in this paper: projection, extension, and join. 
(For additional operators, see [29].) 

For a scheme V, the tuples t £ dorn(V) are viewed as mutually exclusive and 
exhaustive elementary events. Thus, probabilities p(S), S C (V), are computed as 

p(s) = £K0-
tes 

The database operation of projection is a special case. 

Definition. Let A C s(p). Then TCA(P) denotes the projection of distribution p 
onto A, 

*A(P)(X)= Y, P(0. 
t€dom (.(-)), .[.4]-.-

where, for tuples w G dom(VV) and b e dom(S), B C W, w[B] = b iff w and 6 
agree on all attributes in scheme B. 

The term 'projection', rather than 'marginalization', is used for consistency with 
relational database terminology, since 

*-A(tpr(p)) = tpr(irA(p)), 

where 
•KA(r)(x)= max r(t). 

Ay M ; t6dom(5(r)),t[A]=s V ; 
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For a set D of distributions, iry(D) denotes the image of D under the mapping 
Tv- Thus, for any family (D,),g/ of sets, 

*v[\jD-\=\jMDi) (1) 
Kiel / t e / 

and 

^(r|A)cp|MA). (2) 
W / i€I 

Definition. A model of a scheme V is a set X = {V\,... ,Vm} such that Vj C V 
and V; jt Vj for all i, jf € {1, • • •, " i } . (X will sometimes be referred to as a model of 
a distribution with scheme V.) 

If X is also a cover of V, i.e., V = [j Vj, then X satisfies the definition of a 
3=1 

reduced hypergraph over V [3]. Normally, attention is restricted to reduced hyper-
graph models of a given scheme V. 

If X is the set of schemes for the elements of a database K, then K is said to be 
defined over X, or to have structure X. Let s(K) denote the structure of K: 

s(K) = {s(p)\pei<}. 

Unless stated otherwise, the structure of a database K will always be taken in this 
paper to be a model, in the above sense, of |J Vt. However, structures that are 

v.e.(jr) 
not models are sometimes useful, for example, when a projection TTA(P{) for some 
Pi £ K is to be accessed frequently. 

A distribution p with scheme V may be projected onto a model X = {V\,..., Vm} 
of V to form a probabilistic database K = {p\,... ,pm}, where 

K = irx(p) = {*v, (p),--., *vm (p)} • 

A database K formed in this way is guaranteed to exhibit various forms of consis
tency; e.g., for any pi and pj in K, 

*A(P>) = *A(PJ), 

for all A C s(pt)r\s(pj). 

Definition. A model X is a refinement of model Y (and Y is an aggregate or 
coarsening of X), denoted X < Y, iff for each Vx € X there exists a Vy € Y such 
that Vm C Vv [5,9]. 
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Example. {{A}, {B, C}} is a refinement of {{A, B}, {B,C}, {D}}. 
{{A}, {B, C}} is not a refinement of {{B, C}, {D, E}}. 

The set of all models over V together with the refinement ordering is a lattice [4]. 
Any pair of models has a greatest lower bound equal to their least refined common 
refinement and a least upper bound equal to the most refined structure of which 
they are both refinements. The universal upper bound of the lattice of models over 
V is {V}; the lower bound is {0}. The reduced hypergraphs also form a lattice, with 
universal lower bound {{v} | v £ V}. 

A database K may be projected onto a refinement X of s(K) in the obvious way 
to form a database 

wx(K) = {irVi(p) | V. € X, Vk e s(K), VxCVk,pe K, PePVk}. 

The function symbol V is thus quite overloaded (as it is also in relational database 
theory). Its precise meaning in any context depends on its parameterization and its 
argument; but in all cases, marginal probabilities are produced from given joint 
probabilities. 

Definition. The extension of a distribution p with scheme A to the scheme V, 
A C V, is the set of all preimages p' with scheme V of p under the mapping irA: 

Ev(p) = {p'ePv\irA(p') = p}. 

The extension of a database K is the intersection of the extensions of its elements: 

EV(K)= f]Ev(p). 
p£K 

Thus, Ev(itx(p)) is the set of all preimages of the database irx(p) under the mapping 
TVX] any model X of V partitions Pv into classes Ev (irx(p)) equivalent with respect 
to projections onto X. Any Ev (p) or Ev (K) is a convex polyhedron, the set of 
solutions to the system of linear equations determined by the projection conditions. 
(If s(K) is a cover of V, then Ev (K) may be abbreviated E(K).) 

Example . The database below represents partial information regarding the con
tents of a box of wooden blocks. 

Color pi(t) Shape p^(t) 
Black 0\7 Sphere 0.6 
White 0.3 Cube 0.4 

Its extension to {Color, Shape} is the set of solutions p to the system 

p(Black, Sphere) + p(Black, Cube) = 0.7 
p(White, Sphere) + p(White, Cube) = 0.3 
p(Black, Sphere) + p(White, Sphere) = 0.6 
p(Black, Cube) + p(White, Cube) = 0.4 
p(t) > 0. 
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(The equations imply that J2t K ' ) = !•) From just the information given, it cannot 
be determined which of the infinitely many members of E(K) is the actual joint 
distribution over {Color,Shape}. 

The smaller the set E(itx(p)), the more information regarding p is embodied 
in its projections onto X. At the extreme, E(itx(p)) — {p}, and p is said to be 
identifiable from X. 

Definition. The join of a database K = {p\, •.., pm} is the element J(K) of E(K) 
with maximum entropy: 

J(K) = arg max - ] T p(t) • \n(p(t)). 
peE(K) -—' 

Since E(K) is convex, J(K) is unique [14]. For a set Q with unique maximum 
entropy element, let J(Q) denote that element. Determination of J(Q) for arbitrary 
constraints defining Q is usually a difficult optimization problem. However, this 
is not the case when the constraints are in the form of a probabilistic database. 
Projection (i.e., addition), multiplication and division are sufficient. 

Definition. Let K = {pi,p2}, with structure {V, V2}. The pairwise join of K is 
the probability distribution PJ(K) G E(K) whose components are calculated as 

PJ(K)(t) = p\(x)-p2(y) Y, P*(z)> 
I z\z[V1r\V2\=y[V1rtV2\ 

where x = t[V\] and y = t[V2}. (The denominator of the above expression equals 1 
if V\ n V2 = 0.) 

For sets of variables V\, V2, and V3, V\ is conditionally independent of V2., given 
V3, iff p(t\2\t3) = p(t\\h) x p(t2\t3), for all tl2 G dom(V U V2) and t3 G dom(V3), 
where t\ = t\2[V\] and t2 = i^tVj]- It follows immediately that for a model {V\, V2} 
of p with scheme V\ U V2, p = PJ(K{VUV2)(P)) iff V - (V\ n V2) and V2 - (V n V2) 
are conditionally independent, given V\ C\V2. 

Let K = {p\,... ,pm}. The result of a sequence of applications 

PJ(... (PJ(PJ(Pa(l) • Pa(2)), P,(3)), • • •), P„(m)) 

of the pairwise join procedure, where a is a permutation of { 1 , . . . , in}, is a product 
extension of A' iff it is an element of E(I\). If p is a product extension of K, then 
P = J(K) [19]. 

If E(K) is nonempty and s(K) is o>acyclic [10], then a (unique) product extension 
of K may be computed with a corresponding to the reverse of any order in which 
elements of s(K) are eliminated by Graham's algorithm [17]. Graham's algorithm 
[10] is a polynomial-time test for a-acyclicity of a model X. 
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1. W := X. Apply in any order until neither is applicable: 

2. If v is an element appearing in only one V 6 W, 
then W := (W - {V}) U {V - {v}}. 

3. If V C V,- for any V,, VJ ef f , i -S j , then W := V7 - {VI}. 

X is a-acyclic iff the algorithm terminates with W = {0}. 

Example . {{A, B}, {B, C}} is cv-acyclic: 

{{A, B}, {B, C}} - 1 . {{5}, {S, C}} J H . {{S}, {5}} -1> {{B}} -i-> {0}. 

{{A, B}, {B,C}, { J 4 , C } } is cv-cyclic; neither step 2 nor step 3 is applicable. 

For a-cyclic structures, an iterative proportional fitting algorithm (again, requir
ing only addition, multiplication and division) converges to J(K) [7,16]. 

A distribution p is reconstructable from a model X iff p = J(^x(p))- If P is 
identifiable from X, then it is reconstructable from X, but not conversely. 

In the context of reconstructability analysis [16], the problem of determining from 
a consistent database irx(p) as much as possible regarding the unknown distribution 
p is referred to as the identification problem. It is almost always the case that the 
system of projection equations (with unknowns p(t)) is underdetermined. So all that 
can be inferred deductively is that p G E(irx(p))- This may be sufficient for decision 
making (Section 4) or if bounds (determinable by linear programming) on particular 
p(t) are all that is required. 

The problem of identifying p from itx(p) is a type of inverse problem, in which 
data are generated via some non-injective mapping from a set of potential sources. 
The problem is to identify, using some reasonable criterion, a best representative 
element from the usually infinite set of preimages for the given data (in this case, a 
probabilistic database instance). In all published applications of reconstructability 
analysis, the solution has been to maximize entropy within E(K); i.e., to select 
J(E(K)). The primary reason given is that this is the information-theoretically 
least bold inference that can be made from the data. Appeal is also made to Jaynes' 
concentration theorem, which has been interpreted as stating that the distribution 
J(E(K)) is the most likely to arise from observations satisfying the marginal con
straints implied by K and that this likelihood decreases with increasing distance 
from J(E(K)) [13]. 

The maximum entropy approach is criticized in [21] and [32]. Interestingly, se
lection of the centroid of a set of distributions is advocated in [21]. The centroid, 
C(E(K)), minimizes the expected squared-error when it is selected as a solution to 
the identification problem. But C(E(K)) is more difficult to calculate than J(E(K)) 
[27]. When X = {V} or X = {0}, J(E(K)) = C(E(K)); and in experiments in
volving approximately 8,000 randomly generated databases with non-trivial struc
tures, the ratio of the squared-error distance between J(E(K)) and C(E(K)) to the 
squared-error diameter of E(K) was found to be approximately 0.09 [28]. So, when 
selection of a single representative element of E(K) is called for, J(E(K)) is not an 
unreasonable choice. 
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Perez [25] has explored the selection of the b&iycentei of a set of distributions S, 
the element of a set of distributions T minimizing the maximum distance d from it 
to any element of S. As a special case, when Q = S = T, a barycenter of a set Q of 
distributions is a b 6 Q such that 

min max d(p,p') = maxd(b,p'). 
P€QP '6Q * ' P'£Q K ' y ' 

When Q is a convex polyhedron, for example, E(Q) or nA(E(Q)), and d is convex 
on Q, 

min max d(p, p') = min max d(p,p'), 
P€QP'€Q v ^ ' peQp'eL u " ; ' 

where L is the set of vertices of Q [28]. Algorithms for determining such barycenters 
have been developed for various measures d by researchers in location tlieoiy [8]. 

3. ALGEBRAIC RESULTS 

A number of results are presented now that are utilized in Section 4 to devise methods 
for decision-making with the information in a probabilistic database. Most of them 
are simple consequences of the definitions of Section 2. 

Lemma 1. TXV (p) = p, if V = s(p). 

Lemma 2. AC B implies wA(irB(p)) = KA(P)-

Lemma 3. If V = s(p) and V C W C S, then irw(Es(p)) = Ew(p). 

Lemma 4. If s(K) is a cover of V, then V CS implies irv(E
s(K)) C E(K). 

irv(E
s(K)) = irv(f)E

s(p)) [Def. Extension] 
\P£K ) 

C PI MES{p)) [Eq. (2)] 
P6A" 

= p) Ev(p) [Lemma 3] 
p£K 

= EV(K) [Def. Extension] • 

Theorem 5. X < Y implies S v (ny(p)) C ^ ( x j f ( p ) ) . 

P r o o f [6]. £ ,v(7rx(p)) is the set of all solutions to the linear system determined 
by the projection of p onto the model X. If X < Y, then each equation determined 
by the projection of p onto X is a linear combination of equations in the system 
determined by the projection of p onto Y; thus, all solutions to the latter system are 
also solutions to the first. D 

Theorem 5 has many useful consequences. For example, X < Y implies 
H(J(irY(p))) < H(J(wx(p))), where H denotes entropy; thus, any refinement X of 
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a model Y of p embodies less information (quantified as negative entropy) about p 
than does Y. This is the basis for a number of model search procedures (in which 
the connectivity of a model reflects the dependency relations among the variables of 
the scheme for p) [9,16]. 

Lemma 6. If V0 C U V> t h e n *v0(p) € irVo(E(K)), for any p G E(K). 
ve>(K) 

Where Vo is the set of variables of actual concern (e. g., for a decision problem), it 
is not guaranteed, for arbitrary p G E(K), that irVo(p) is contained in any sets smaller 
than 7rv0(E(K)) that can be constructed by means of the algebra, for example, 
irVo(E(7rY(p'))), for Y > s(K) and p' G E(K). 

Theorem 7. Suppose Y < X = s(K), and Y is a cover of V, where V0 C V C 
V= U Vi.ThmTrVo(E(K))CTTVo(E(TrY(K))). 

V,£X 

P r o o f . If E(K) = 0, then Tr^E^A')) = 0. If not, then K = irx(p) for any 
p G £ ( # ) , and 

7rv„(^(7rx(p))) = *Va(*v(Ev(-KX(p)))) [Lemma 2] 

C 7rv0(7rv/'(Ev(7ry(p)))) [Theorem 5] 

C 7TVo(^'(Ty(p))) [Lemma 4] 

= irVo(E
v'(irY(irx(p)))) [Lemma 2] 

-= TrVo(E(irY(K))). O 

Corollary 8. For Z a cover of V D V0, and Z < Y < s(K), 

*v0(E(K)) C 7rVo(E(irY(K))) C 7rVo(E(wz(K))). 

4. DECISION PROBLEMS 

Arguably, the only reason to obtain or store probabilities is to base decisions on 
them. If probabilistic databases are to be useful (as relational databases are useful for 
problems of inventory, scheduling, etc.), it should be possible to devise algorithms for 
decision making from the information contained in them. The algebra of the previous 
section yields methods (of varying degrees of computational efficiency) supporting a 
variety of approaches to decision analysis. 

Attention is restricted to decision problems consisting of a set A = {a\,..., am} of 
mutually exclusive actions, a set S = {» i , . . . , sn} of mutually exclusive states, and 
a utility function u : A x S —* R. The set S will be constructible in some manner 
from the set dom(Vi U • • -U Vk) for a given probabilistic database K = {pi,.. • ,Pk}-
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Example . Let 
A = {stay home, go swimming}, 

S = {(rain, evening trains run), (rain, no trains), (no rain, trains), (no rain, no trains)5 

The utility function is given by the table 

stay home go swimming 
(rain, train) 3/4 1/2 
(rain, no train) 7/8 0 
(no rain, train) 1/8 1 
(no rain, no train) 1/2 5/8 

Probabilities are available in the form of a database including a variable for temper
ature and a variable indicating whether or not telephones are operating: 

Rain No Phones V\ No-Phones Tempeгature V2 Temperature Trains PЗ 
yes true 3/8 true high 1/3 high yes 1/8 

yes false 1/16 true m e d 5/36 high n o 3/8 

n o tгue 1/8 true low 1/36 m e d yes 5/18 
n o false 7/16 false high 1/6 m e d n o 5/36 

false m e d 5/18 low yes 5/72 
false low 1/18 low n o 1/72 

Here, 

B u t 

S = dom (s (7T{Raini Trains} (<I({Pl, P2, Ps})))) = 

= dom(s(7T { R a i n i T r a i n s } (J({p i ,p 3 })))) = 

= dom (s (J ({7r { R a i n } (pi), 7r { T r a i n s } (p 3 )}))) 

7T{Rain, Trains} (•! ({Pi , P2, Ps})) ^ ""{Rain, Trains} ( I ({Pi , P3})) 

# J ({7T{Rain}(Pl), ^{Trains} (Ps)}) • 

Which of these probabilities should be used to calculate expected utilities? Should 
instead a set of probabilities be used? Which set? 

There are several unproblematic cases in which probabilities p over S are obtained 
directly. If S = dom(Vi) for some V, G {Vu...,Vk}, then p(sj) = Pi(sj). If 
S = dom(j4) for A C Vi, p(sj) = nA(pt) (SJ). Similarly, if 5 is a partition of 
dom(V.) or dom(j4), 

P(« i )=EM0, 

P(sj) = $3 ^(Pi) W-

In each case, the expected utility associated with an action a* is calculated as 

]CP(SJ)-W(ЯІ,SІ) 
І=I 
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and an action maximizing expected utility is selected. (Of course, the sensitivity of 
the decision to slight variations in the originating Pi should be examined.) 

In all other cases to be considered, S = dom(Vo), where Vb C V\ U • • • U Vj, = V 
but there is no V. such that VQ C V.. (Extension to related cases is straightforward.) 

A distribution over dom(Vb) may always be computed from a consistent K, as 
TTVO(J(K)). If K = 7TA'(p) and it is known that p = J(K), then this is the appropriate 
distribution. As discussed by Perez [24], this may be appropriate even when it is 
known that p ~ J(K), e.g., when 

d(p, J(K)) < e, 

for some e, where d is directed divergence (/-divergence, relative entropy): 

d(p,q) = *£p(t)-\n(p(t)/q(t)). 
t 

(Significant reductions in storage or transmission costs are possible if a small amount 
of error in reconstruction can be tolerated. In the extreme case, for a distribution p 
with a scheme V consisting of n k-valued attributes, representation of p requires kn 

numbers vs. kn numbers for nx(p), where X = {{v} \ v 6 V}.) 
Similarly, one may wish to compute the centroid or the barycenter of E(K) and 

project onto Vb; the optimal action may be quite insensitive both to the choice of 
estimate and to perturbations of the estimate chosen. (Note that, in general, for 
fA : 2P* —* PA, nVo(fv(E(K))) -. fVo(*v0(E(K))).) 

On the other hand, the structure of a database might not be determined by 
known relations of conditional independence which would allow confidence in the 
reconstruction (or approximate reconstruction) of a unique distribution. It might 
be impossible to obtain probabilities over the full set of variables of interest simul
taneously, making it necessary to settle for a collection of distributions over various 
subsets. To give a fanciful example, imagine a study in which probabilities of occu
pation of the elements of a 3-dimensional grid are to be estimated for an object that 
can detect other objects only in the vertical ({X, Y}) plane. So as not to disrupt 
the normal pattern of movement, frequencies are recorded for the {Y, Z} and {X,Z} 
planes only. However, there is no reason to believe that location along the X coor
dinate is independent of location along Y, given the location along Z, and therefore 
no reason to believe that p over {A', Y, Z} coincides with J({TT{Y,Z}(P), *'{x,Z}(p)})• 

Assuming correctness of the distributions p,- € K, any element of the set 
TTVO(E(K)) may be the actual distribution over Vb; i.e., the distribution relative 
to which, if it were known, one would choose an action with maximum expected 
utility. There are several methods of decision-making under partial uncertainty 
(i.e., when a probability distribution over S cannot be determined precisely) that 
may be adapted to this problem and that would not involve computing an estimate 
of this unknown distribution. That irVo(E(K)) is a convex polyhedron makes their 
application particularly feasible. 

One method [18] retains for further consideration only actions for which there 
exists some p £ irVo(E(K)) relative to which it maximizes expected utility. Such 
actions are referred to as E-admissible actions, or Bayes actions. If there are multiple 
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Bayes actions, then non-probabilistic criteria (e.g., maximin) are applied to decide 
among them. 

Let K = {p\,-..,Pk} with Vo C V ~ V\ U . . . U Vfc. An action a,- is ^-admissible 
iff the linear system with 

(i) |dom(V)| + |dom(Vo)| unknowns: p(x\),... ,p(#|dom(V)|) and 
P(j/l),---,P(y|dom(V0)|); 

k 

(ii) Y^ |dom(Vf)| equations: J2 p(x) = Pi(t)\ 
i = \ *:*[V,]=t 

(iii) |dom(Vo)| equations: ]T P(x) ~ p(Vh) — 0; and 

x:x[V0) = yh 

(iv) m - 1 inequalities: 

|dom(V„)| |dom(V„)| 

Y p(yh)-u(aityh)~ Y p(yh)-u(ai>yh)>0; 
h=\ h=\ 

has a feasible solution. 

For any p G TTVO(E(K)), let 

eP(a) = Y,p(y)"u(a'y)-
y 

Since wv0(E(K)) is convex, the set 

U(a) = {e„(a)\peirv0(E(K))} 

is an interval. Its endpoints are calculated from the linear system consisting of (i), 
(ii) and (iii), above, and the objective function ep(a). 

A less stringent elimination criterion than E-admissibility is based on the ordering 

a. > aj iff min U(a.) > maxU(aj). 

Only the maximal elements of A under this ordering (i.e., actions a, such that there 
is no aj for which aj > a.) are retained as admissible [20]. (If a is E-admissible, 
then it is maximal under ' >' , but not conversely.) 

More radical criteria utilizing intervals U(a) include a generalized (or gamma-) 
maximin criterion [11], 

choose argmaxminU(a); 
a£A 

and generalized Hurwicz criterion [12], 

choose argmaxcvminU(a) + (1 - a) max (/(a), 0 < a < 1. 
a£A 
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The linear system above is also the basis for application to such problems of the 
domain criterion [31]. The domain of a G A is the set 

D(o) = {p£ TTVO(E(K)) | ep(a) > ep(a') for all a' G A} . 

(Note that D(a) = 0 iff a is not inadmissible.) Assuming uniform probability of 
"correctness" over E(K), the ratio of the volume of D(a) to the volume of irVo(E(K)) 
may be interpreted as the probability that action a maximizes expected utility rela
tive to the actual but unknown distribution nva(p)- Selecting the action with largest 
domain is then selection of the action that is likeliest to maximize expected utility. 

Application of any of these criteria to the full system of linear inequalities may be 
needlessly expensive. It may be possible to obtain the same result with a refinement 
7Ty(A') of the initially given database K for which the size of the components (i) and 
(ii) of the linear system is reduced. Consider the E-admissibility criterion with fixed 
Vo, K, A, and u. Suppose there exists a uniquely E-admissible action relative to 
the information in K. By Theorem 7, if there exists a uniquely E-admissible action 
with the substitution of ITY(K) for K, where Y is a cover of V D Vo, then the two 
actions coincide. (Similarly for the utility interval dominance criterion.) 

This suggests the following strategy: Starting with W = {{v} | v G Vo}, the most 
refined model that is a cover of some V D Vo, repeatedly aggregate W until there is 
a single admissible action relative to Trva(E(itw(K))), or irVo(E(irw(K))) happens 
to contain only one distribution, or W = s(K), whichever comes first. However, if 
models are replaced by immediate aggregation, very little progress toward sufficient 
reduction of the set TTVO(E(TVW(K))) is likely to be made at each step. Also, there 
will not be a unique immediate aggregate at each step. A reasonable alternative is 
the sequence of models [29]: 

({{v}\veV0}, {VinV0\Vi£s(K), Vi DVo £<&}, {Vi\ViGs(K), VinVo^Q}, s{K)). 

Following this strategy, suppose that a single admissible action is identified with 
W = {{u} | ^ G Vo}. Then linear programs with only |dom(Vo)| unknowns and 
m — 1 inequalities are sufficient. (Compare with (i)-(iii) above.) The set |dom(V)| 
can be arbitrarily large, and many (or all) of the variables in V — Vo may be irrelevant 
to the given problem. 

If the conjecture below is correct, then there exists a polynomial-time algorithm 
for eliminating irrelevant attributes from a connected a-acyclic database. 

For s(K) a cover of V D Vo, define a bipartite graph B with node set V U s(K) 
and edge set 

{{v, x} | v G V, x G s(K), v G x}. 

Let 

R -_• {v £ V1v G Vo or v is on an acyclic path in B between two elements of Vo} • 

Let 

Z •= {Vi fl JS| Vi E s(K) and Vi n R g. Vj n R, for all Vj G s(K), i £ j} . 
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Conjecture: wVo(E(irz(K))) = nVo(E(K)). 

If s(K) is connected and a-acyclic, then the following polynomial-time algorithm 
will produce the reduced structure Z [23]: 

1. Z :=s(K). 

2. Repeat in any order until neither has any effect on the current value of Z: 

a. If a variable v (£ Vo appears in only one element of Z, remove v from that 
element. 

b. If Z contains elements V, and Vj such that V; C Vj, then Z := Z — {Vi}. 

For the inadmissibility and utility interval dominance criteria, the truth of the 
conjecture would permit substitution of Z for s(K) in the sequence of aggregates 
above. Or Z may be refined enough that it is reasonable to work directly with 
nv0(E(irz(K))). Methods in which expected utility is to be maximized relative to an 
element fv0(^v0(E(K))) would also gain in efficiency if -Kv0(E(K)) = •KV0(E(TTZ(K))) 
by reduction of the number of unknowns in the linear system characterizing the set 
from which the element is to be selected. 

5. UPDATING PROBABILISTIC DATABASES 

Probabilistic databases may be updated when new information is received. 

Let us reconsider the decision problem utilizing the database 

Rain NoPhones P! No_Phones Tei nperature V2 Temperature Trains PЗ 
yes true 3/8 true Һigh 1/3 high yes 1/8 

yєs false 1/16 truє m e d 5/36 high no 3/8 

11 o true 1/8 true low 1/36 m e d yes 5/18 
110 false 7/16 false 

false 
false 

high 
med 
low 

1/6 
5/18 
1/18 

med 
low 
low 

no 
yes 

5/36 
5/72 
1/72 

We may imagine that the database contains probabilities for a "typical" August 
day. Suppose that we measure the temperature on the particular August afternoon 
during which we are trying to decide whether or not to go swimming and find that 
it is in the low range; i.e., we are certain that the value of the variable Temperature 
is "low". We may update by ordinary conditionalization our probabilities for the 
variables No_Phones and Trains; for example: 

p_ (No_Phones = true) = p2(No_Phones = true | Temperature = low) 

1/36 

1/36+1/18 
= 1/3. 

Now the probabilities in the original distribution p\ must be reconciled with the 
new probabilities for NoPhones. This may be done by means of Jeffrey's Rule [15]: 
If conditional probabilities p(A\B{) are unaffected by a change in probabilities for 
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mutually exclusive and exhaustive events B\,...,Bn, then, in light of these changes, 
the probability of event A should be updated to 

p'(A) = _>>(-4|fl.) >p'(Bi) = Y^PiMBiY-p'iBi). 

We may assume that conditional probabilities 

p (Rain = x | No_Phones = z) 

are unaffected by the change in probabilities for the propositions "NoPhones = yes" 
and "No_Phones = no", which in turn was necessitated by our observing "Tempera
ture = low". Our database, from which these and many other conditional probabili
ties may be calculated, allows for the possibility that the temperature on an August 
day may be low. (Our database for a typical December day, however, may embody 
very different conditional probabilities; low temperatures in December may make 
telephone problems more likely than when temperatures are in the medium or high 
ranges.) So, referring to an arbitrary p 6 E({pltp2,p2}) and p' 6 ^({p'^P^Ps}): 

p' (Rain = x, No_Phones = z) = p' (Rain = x | No_Phones = z) • p' (No_Phones = z) 

= p (Rain = x | No_Phones = z) • p' (No_Phones = z) 

Since Temperature should no longer be regarded as a variable, the updated database 
is: 

p[ NoPhones p'2 Trains p'3 

1/4 =3 /4 -1 /3 true 1/3 yes 5/6 
1/12 = 1/8-2/3 false 2/3 no 1/6 
1/12 =1 /4 -1 /3 
7/12 = 7/8 • 2/3 

(Note that the structure of this database is not a model.) 
Let us now apply the conjecture stated in Section 4. 

Withs(A') = {{Rain, No_Phones}, {No_Phones}, {Trains}} and V0 = {Rain, Trains}, 
Z is the set {{Rain}, {Trains}}. Projecting onto Z yields the database 

Rain 7rfRain)(Pi) Trains p'3 

true 1/3 yes 5/6 

false 2/3 no 1/6 

We do not assume probabilistic independence of the variables Rain and Trains. 

Let us apply the ^-admissibility criterion relative to the set of probability distribu

tions E'({7r{Rain}(Pi). ^3})- There exist solutions to the system of inequalities 

p(Rain = yes, Trains = yes) + p(Rain rs yes, Trains = no) = 1/3 

p(Rain = no, Trains = yes) +p(Rain = no, Trains = no) = 2/3 

p(Rain = yes, Trains = yes) + p(Rain = no, Trains = yes) = 5/6 

p(Rain = yes, Trains = no) + p(Rain = no, Trains = no) = 1/6 

p(Rain = yes, Trains = yes • (1/2 - 3/4) 

+p(Rain = yes, Trains = no • (0 - 7/8) 

+p(Rain = no, Trains = yes • (1 - 1/8) 

+p(Rain = no, Trains = no • (5/8 - 1/2) > 0. 

Rain No_Phones 
yes true 
yes false 
no true 
no false 
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Thus, there exist probability distributions in £({T{Rain}(p'i), P3)) relative to which 
the action "go swimming" maximizes expected utility. The corresponding system 
of inequalities for the action "stay home" has no feasible solutions. Therefore, "go 
swimming" is uniquely E-admissible. 

6. CONCLUSION AND OPEN PROBLEMS 

Clearly, determining the truth or falsity of the conjecture of Section 4 is an important 
problem. If false, an alternative method of extracting from a database information 
relevant to a given decision problem is needed. If it is true, then an efficient method 
for constructing the reduced structure must be sought when the original database 
structure is not connected and «-acyclic. 

A fundamental issue is whether working with the entire set of distributions of 
which the elements of a database are marginals or with a single "best representative" 
(barycenter, centroid, maximum entropy element) of this set is the more appropriate 
for decision making under the form of uncertainty represented by a probabilistic 
database. 

If the latter course is taken, then, in light of the failure of the rnarginalization 
property 

TTV0 O (E(K)) = fv0(*v0 (E(K))) 

to hold in general, a secondary issue that requires investigation is the appropriateness 
of solving a given decision problem over a set of variables Vn relative to one vs. any 
other of these estimates of the unknown distribution. 

The probabilistic data model supports each of these approaches. As discussed 
in Section 4, the linear inequalities from which it can be determined whether or 
not an action is a Bayes solution (is E-admissible) relative to a database are easily 
set up. At the same time, determining a representative joint distribution of a set 
of distributions (in particular, the maximum entropy distribution) is more efficient 
when the constraints defining the set are in the form of a probabilistic database than 
in the general case. 
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