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RELATIVE STATIONARY PROBABILITIES 

ANTONÍN OTA HAL 

The paper gives a characterization of extremal relative stationary probabilities, i.e. 
extremal probabilities on the set of words of some fixed length whose marginals are invariant 
vv. r. t. all feasible shifts. It is shown that a probability measure is relative stationary if 
and only if it is the projection of a stationary probability and that each extremal relative 
stationary probability is the projection of an ergodic probability with a finite support. 

INTRODUCTION 

Let A be a finite non-empty alphabet. Denote by Wk the set Ak of all words of 
length k, i.e. sequences consisting of k letters from A. We consider the er-algebra 
Bk = (exp./!)* of all subsets of Wk. 

From now on, if not stated otherwise, we suppose that there is given an integer 
k>2. 

Further we consider the projections d, h : Wk —^ Wk-\ defined, for every 
(oi , . ..,~k) ~ Wk, byd(a i , ...,ak) = (au ..., ak_\) and h (au .. .,ak) = (o2 , . ..,ak). 
A probability P on the measurable space (Wk, Bk) is said to be relative stationary 
if Ph~l — Pd~l; denote by I(Wk) the set of all relative stationary probabilities on 
(Wk,Bk). 

Let W = Az denote the set of all sequences indexed by the set Z of all integers 
and B = (£)kez

exV A be the product (r-algebra on W. Obviously, if there is giv­
en a stationary (i.e. shift-invariant) probability on (W, B) then any its projection 
onto a "connected segment" Wk of length k represents a relative stationary prob­
ability. The characterization 1.4 of the extremal relative stationary probabilities 
and the extension Theorem 2.2, together with the "Choquet-type" representation 
of 2.3, imply that this statement can be reversed, i.e. a probability on (Wk,Bk) is 
relative stationary if and only if it is the projection of a stationary probability on 
(W, B). Theorem 3.1 describes the relation between the extremal relative stationary 
probabilities and ergodic probabilities on (W, B) with a finite support. 

The problem of finding the extremal relative stationary probabilities can be 
viewed on as a special case of a generalized version of the transshipment problem, 
cf. [1,5], where systems of measures with given differences of marginals are studied. 
Here the generalization consists in that the considered projections are somewhat 
more general than the canonical, coordinate ones. On the other hand, only the 
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special case of systems of probability measures with zero differences of marginals 
is taken into account. The above-cited references [1,5] as well as related references 
[2,6,7,8] indicate that an alternative way of proving the results of the first section 
is possible. Namely, let us call a set D C Wk a set of relative stationary uniqueness, 
shortly an PSU-set, if P = Q whenever P, Q G I(Wk) and supp P C D, supp Q C D. 
It could be proved that the elementary cycles (introduced in the first section) are 
the same as the RSU-sets in the present set-up. Following the ideas of the cited pa­
pers we could further prove that the extremal relative stationary probabilities have 
RSU-sets as their supports. 

1. EXTREMAL PROBABILITIES 

For a pair of words u, v G Wk we say that v is tied to u (write uDu) if h(u) = d(v); 
in this case t(u, v) = h(u) = d(v) is the tie of u, v. A sequence S = (u>\, .. ., u)j) of 
words from Wk is a cycle if w\ Ow20 • • • OWJ Ow\. The system of all cycles consisting 
of j words will be denoted Cj(Wk). For S G Cj(Wk), we define its restriction r(S) = 
(t(w\, w2), ..., t(wj, w\)). The extension e(S) of S G Cj(Wk) is the (uniquely deter­
mined) cycle in Cj(Wk+\) for which r(e(S)) = S. The support \S\ of a cycle S is the 
set of all the words that ,S' consists of. A cycle S is elementary if in r(S) no tie appears 
more than once. 

1.1. Lemma. 

(i) For any cycle there is a subsequence which is an elementary cycle. 

(ii) If S is an elementary cycle, and R is a (nonempty) subcycle of S, then R = S. 

P r o o f , (i) Let S = (w\,..., Wj) G Cj( Wk) be a cycle. For m = 1 , . . . , j we put 
Tm = {d(w\),..., d(wm)} , M = {m : h(wm) G Tm}. As S is finite, M is nonempty. 
Pu tn = minM, q ~ max{m : d(wni) = h(ivn)}. Then (wq,..., wn) is an elementary 
cycle. 

(ii) Write 5' = (w\,..., WJ) and assume that W{ £ \R\ for some i G { 1 , . . . , j } . Then 
S n d~l(h(wi)) = {u>i+i}, hence u»,+i G \R\, and repetition of the argument for all 
i = 1 , . . . , j proves the assertion. • 

1.2. Lemma. For P 6 I(Wk) the following assertions hold: 

(i) If w G supp P then there exists v G suppP such that wOv 

(ii) There exist j > 1 and 5 G Cj(Wk) such that 5 C supp P. 

P r o o f , (i) As Ph~1(h(w)) > 0 we get, by relative stationarity of P that 
Pd_1(/i(w)) > 0, hence rf-](/i(w;)) 7= 0 and any v G d~](h(w)) is tied to w. 
(ii) Take a t» iG supp P and construct, using (i), elements w2, w3,... in supp P such 
that WiOwi+i- As supp P is finite, WJ + X = w\ for some j and 5' = (wx,..., Wj) G 
Cj(Wk). ° 
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1.3. Lemma. Let P be a probability on (Wk, Bk), S be an elementary cycle on 
Wk and supp P C \S\. Then P ~ I(Wk) if and only if P is uniform on \S\. 

P r o o f . If P is uniform on |5 | , then obviously both Ph~l and Pd~l are uniform 
on |r(5)| , hence P ~ I(Wk). On the other hand, let P be relative stationary. By 
1.2. (ii) there exists a cycle R for which \R\ C supp P and by l.L(ii) we get R = S; 
consequently |5'| = supp P, supp Ph~l = supp Pd~l = r(S) and finally the equality 
Ph~l = Pd~l implies that P is uniform on |5 | . • 

Note that I(Wk) is a compact convex set if we consider an embedding of I(Wk) 
into Euclidean space. 

1.4. Theorem. A probability P on (Wk, Bk) is an extremal point of I(Wk) if and 
only if it is uniform on the support of some elementary cycle S on Wk. 

P r o o f . Let P be uniform on \S\ and P = \(P\ + P2) where P\, P2 £ I(Wk). 
Then suppP,- C |5'| for i — 1,2 and P\ = P2 = P according to 1.3. Consequently 
P is extremal. On the other hand, suppose that P ~ I(Wk) is extremal. By 1.2(ii) 
and 1.1. (i) there exists an elementary cycle S such that \S\ C supp P . If it were 
|5'| ^ supp P , P could be expressed as a nontrivial convex combination of two 
probabilities from I(Wk) (one of them being the uniform one on |5'|) and P would 
not be extremal. Hence S = supp P and according to 1.3 P is uniform on |5 | . • 

For an elementary cycle 5 on Wk we denote by Us the uniform probability on 
\S\. 

1.5. Corollary. For every P € I(Wk) there exist elementary cycles S\,... ,Sm on 
Wk and a\,..., am > 0, J2T=\ a i = 1 such that 

m 

P = Y,ajuSj. 
i=i 

P r o o f . With respect to 1.4, the assertion is the same as that of the Krein-
Millman theorem, cf. e.g. [3]. • 

2. EXTENSION OF A RELATIVE STATIONARY PROBABILITY 

2.1. Lemma. Let S be an elementary cycle on Wk and P 6 I(Wk+\). Then 
Ph~l = Us if and only if P = t/ e ( s ) . 

P r o o f . The definition of an elementary cycle immediately yields that Us = 
Ue(s)h~1- For the "only i f part of the proof, suppose that Ph~l = Us and express 
P = E J L I aiUsi according to 1.5; it holds Us = ( £ a, USj) h~l = £ aj (Us.h'1) = 
Y2 ajUr(Sj). The last equality follows from 

r r , w , f W i l l for u, e r(5,) 
USjh \w)= < 

I 0 otherwise 
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and implies r(S\) = • • • = r(Sm) = S because Us is extremal. D 

For an elementary cycle S on Wk and m = 0 ,1 ,2 , . . . we denote em(Us) = Ue">(5) 
the probability which is uniform on the elementary cycle e'"(,S) on W'k+m. 

2.2. Theorem. Let S' be an elementary cycle on Wk- Then the system em(Us), m = 
0,1,2, . . . , determines a projective system of finite-dimensional distributions on (W, B). 
If we denote e°°(Us) the corresponding projective limit then e°°(Us) is the only 
stationary probability on (W, B) whose projection onto Wk is Us-

P r o o f . Projectivity of the considered system is a straightforward consequence 
of 2.1. The assertion of the theorem follows from the Daniel!-Kolmogorov theorem. 
D 

2.3. Corollary. Let P be a relative stationary probability on (Wk, Bk). Then 
there exists a stationary probability on (W, B) whose projection onto W\ is P. 

Proof . According to 1.5 wemay write P = 5_j=i ajUs3', Poo = J_i = i ttje°°(Usj) 
is a stationary probability on (W,B) and its projection onto Wk is P, cf. 2.2. D 

3. ERGODIC PROBABILITIES WITH FINITE SUPPORT 

A shift 9 on W = Az is defined, for x = (xj)fL_OQ, by (9(x))j = ~ ; _ i . A sequence 
x G W is periodic if there exists a positive integer p such that 0p(x) = x; the period 
of x is the smallest such p. For a periodic x with the period p we define its orbit 
_>(_) = {*>(_): j = 0,...p-l}. 

3.1. Theorem. Let S be an elementary cycle on W_. Then e°°(Us) is an ergodic 
probability with a finite support; conversely, each ergodic probability with a finite 
support is of this type. 

P r o o f . Clearly P = e°°(Us) is stationary. If P were not ergodic we could 
write P = \(P\ + P2) where Pj ^ P, Pj G l(W) for j = 1,2. Denoting by P\ the 
projection of Pj onto Wk we would get Pj ^ Us, j = 1,2, and according to 2.2 
Us = \(P[ + P_) could not be extremal. 

On the other hand, let P denote an ergodic probability with a finite support,then 
P is uniform on supp P = O(x) for some periodic x (cf. [7], pp. 80-81). Let p be 
the period of x and S denote the projection of 0(x) onto IVp+i; S is obviously a 
cycle and if it were not elementary the period of x would be smaller than p. D 

4. DISCUSSION OF RESULTS 

There is noi given an explicit description of the systems of all the elementary cycles 
on Wu, k = 2 , 3 , . . . , because of an involved combinatorial nature of such consid­
erations. The results of the second and third sections however indicate that, even 
though such description is not known, the characterization of the extremal relative 
stationary probabilities can be helpful. 
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A s t ra ight forward general izat ion of the p a p e r would consist in finding charac­
ter izat ions of e x t r e m a l probabi l i t ies of project ions, on finite subsets, of s t a t i o n a r y 
r a n d o m fields indexed by Zd for d = 2, 3, — Here t h e s i t u a t i o n is s o m e w h a t more 
complicated (e. g. t h e relat ive s t a t i o n a r i t y is n o t a character iza t ion of such pro­
ject ions) a n d some non-trivial extension of t h e present p a p e r m e t h o d s would be 
required. 
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