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EXISTENCE, UNIQUENESS AND EVALUATION 
OF LOG-OPTIMAL INVESTMENT PORTFOLIO1 

I G O R V A J D A AND F E R D I N A N D O S T E R R E I C H E R 

It is proved that if and only if the stock market return vector X = (Xi,..., Xm) satisfies 
the condition E | log 53"1 , Xj\ < oo a log-optimal portfolio exists in a reasonable sense. Its 
uniqueness is guaranteed under the assumption that the underlying distribution of X is not 
concentrated on a hyperplane in H m containing the diagonal D = {(d,... ,d) S lRm : d G 
1R}. Under these assumptions, approximations of log-optimal portfolio by means of more 
easily evaluated portfolios are considered. In particular, a strongly consistent estimate of 
log-optimal portfolio based on independent observations X i , . . ., X„ of X is obtained. 

1. I N T R O D U C T I O N 

We consider the stock marke t and the log-optimal investment portfolio introduced 

and sys temat ica l ly s tudied in C h a p . 15 of Cover and T h o m a s [5]. In o ther words, 

we consider a r a n d o m return vector X = (X\,.. .,Xm) for one stock marke t day, 

d is t r ibuted by F(x), x = (x\,..., xm) G IRm- To avoid bankruptcy , let the 

basic a s sumpt ion : E(x) = 0 whenever at least one Xj = 0 , j £ {1,..., m} , 

be satisfied — wi thou t ment ioning it any further. T h u s it holds X > 0 a . s . where 

> is t he usual pa r t i a l ordering in IRm . Each component Xj > 0 represents the ra t io 

of closing to opening price for stock j . 

We shall a ssume wi thou t loss of generali ty the validity of the following condit ion: 

T h e d is t r ibut ion F is no t concentra ted on a hyperplane in IRm 

containing the diagonal D = {(d, ...,d)e Hlm : d G Di}. (1) 

Otherwise one can reduce the dimension m by choosing Euclidean coordinates 

( a l l , . . . , Xm) so t h a t the d is t r ibut ion is concent ra ted on the hyperplane xm = 0. 

An investment portfolio b = (b\,...,bm) is an allocation of wealth across the 

stocks, i . e . bj is the fraction of one 's wealth invested in stock j . Therefore the 

simplex IB = {b = (bi,..., b,n) : bj > 0, ]TJLi bj — 1} is the set of all portfolios b . 

1 Supported by the Czechoslovak Academy of Sciences grant No. 17 503 and by the Office of 
Foreign Relations, University of Salzburg. 
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If one uses b G IB and the return vector is X, the wealth at the end of the stock 
market day is 

W = b X = j S j Xj 
; = i 

in units of the wealth invested at the beginning of the day. If the whole wealth is 
reinvested each day i G IN according to a portfolio b; then the wealth after n days 
is 

Wn = f[ b. X; 
i - l 

in units of the initially invested wealth, where X,- denotes the return vector on day 
i. The stock market is i.i.d. if the return vectors X i , X 2 , . . . are i.i.d., X,- ~ F. 

We wish to maximize Wn in some sense. But Wn is a random variable, so there 
is controversy over the choice of best investment strategy b i , . . . , b n . Not being 
clairvoyants we restrict ourselves to causal strategies, where each portfolio b , may 
depend (in a measurable way) on the past return vectors X i , . . . , X,_ 1 ; but is inde
pendent of the future values X,-, X, + i , . . . . One reasonable possibility is to maximize 
the expected utility 

EU(Wn)= / ^ U m b . x i J dF(xi)...dF(x„), 

where U : [0,oo) —> [—00,00) is a nondecreasing utility function. As shown in 
Lemma 15.3.1 on p. 466 of Cover and Thomas [5], for the utility function U(x) = 
logs there may exist a portfolio b* 6 IB such that the wealth Wn resulting from an 
arbitrary causal strategy b i , . . . , b „ and the wealth W* resulting from the constant 
strategy b * , . . . , b * satisfy the relation 

E U(Wn) < E U(W*) (2) 

or, equivalently, 

J^ElogbiX; <nElogb*X. (3) 
! = 1 

This is one reason why we restrict ourselves to the logarithmic utility. Before dis
cussing other reasons we introduce basic notations and the conventions logic = 
—00 for x < 0 and log(0/0) = 0 considered throughout this paper. 

Consider for portfolios b _ IB the doubling rate 

< (̂b) = E F l o g b X 

and let furthermore 

i/>(x) = l o g ] T _ j , x = (a ; 1 , . . . ,a ;m )GlRm . (4) 
j = i 
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This function will allow us to characterize both the domain of (j> 

dom<£ = { b g IB : E(logbX)+ < co or E( logbX)" < 00} 

i.e. the subset of IB where (f> is well defined, and the effective domain of 4> 

effdorn (f> = {b G dom <j> : 0(b) g IR} 

i.e. the subset of the domain of <f> where </>(b) is finite. 
The motivation of the term doubling rate follows from the following considera

tions. If the stock market is i.i.d. (or stationary and ergodic) then, by the law of 
large numbers, the wealth Wn resulting from the constant strategy b, . .. , b satisfies 
the relation 

lira — log Wn = ^(b) a. s.. 

This means that, for large n, the wealth will be a.s. close to 2n*( J provided log 
is taken to the base 2. Therefore 0(b) = 1 means that the wealth is doubled each 
stock market day. 

Definition. An investment portfolio b* G IB is said to be log-optimal if dom<^ = 
IB and if 

0* = suP{ 0(b) : b 6 IB} G HI and 0(b*) = 0* . (5) 

0* is called the optimal doubling rate. (Note that, by definition, b* is an element 
of effdom0.) 

The log-optimal portfolio has been introduced by Kelly [6], and later studied by 
many authors (cf. Latane [7], Breiman [2], Cover [3,4], Cover and Thomas [5], and 
others cited there). A strong argument in favour of considering this portfolio as 
a solution to the optimum investment problem is the fact that it maximizes not 
only the expected one-day utility E U(W), but also the expected long term utility 
E U(Wn) (cf. (2) and (3)). It is known (cf. Samuelson [13]), that U^(x) = x^/j, j G 
IR— {0}, are the only non-logarithmic utilities for which there exists a portfolio b* 
satisfying (2). Other favourable arguments can be found in Cover and Thomas 
[5], p. 466 (Theorem 15.3.1, asymptotic optimality) and p. 472 (Theorem 15.6.1, 
competitive optimality). 

On the other hand, some discouraging arguments were presented by Samuelson 
[12,13]. His criticism points to the fact that the log-optimal portfolio, while always 
maximizing the expected growth rate (the doubling rate), need not always maximize 
the expected utility. This takes place only if the utility is logarithmic, which is for 
many investors evidently an unrealistic assumption. E.g. for those who prefer, in 
the fashion recommended already by Pascal, to maximize the expected wealth E Wn. 

In all the cited papers we missed a rigorous analysis of conditions under which 
log-optimal portfolio exist. In this paper we present an easily verifiable necessary 
and sufficient condition for the existence of log-optimal portfolio in the sense of (5). 

The second problem addressed in this paper is the evaluation of the optimal 
doubling rate 0* and the log-optimal portfolio b*. We consider approximations b n 
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to b* obtained as solutions of (5) with B replaced by appropriate subsets B n of B 
or with F replaced by more easily available distributions Fn. In the particular case 
where En = Fn are distributions statistically derived from collections of observations 
X i , . . . , X n _ i , we obtain in this manner causal portfolios b n = b n which are strongly 
consistent statistical estimates of b*. In this case the optimal doubling rate <j)* can 
be asymptotically achieved without the knowledge of F (adaptively). 

The asymptotic achievability of 4>* means 

lim - f ] E ^ ) _ ^ 
i = l 

or the stronger property 

1 " 
lim — VJ^(b;) = ^* a. s. 

Results of the last type can be found in Cover and Thomas [5] and also in Sec. 7 
of Cover [4] and in Morvai [8,9]. We shall consider in addition the even stronger 
results of the type </>(b„) —• <j>* a. s. and also b n —• b* a. s. 

Note that a pragmatic investor will only be interested in the optimal doubling 
rate (j>* and in causal portfolios b n asymptotically achieving <f>* and not in whether 
they satisfy the consistency relation 

lim b n = b* a.s. 

But such an investor will presumably not be interested in the log-optimal portfo
lio b* at all. However, as soon as one enters the world of log-optimal portfolio, 
the problem of achieving this portfolio becomes to him or her probably at least as 
challenging as the problem of achieving (f>*. 

2. EXISTENCE AND UNIQUENESS 

Using the monotonicity of log a; one easily obtains for every b £ B and x = 
(~l,...,-m) - lRm (in view of our extension of the logarithm, it suffices to con
sider xG [0,oo)m) 

m m 

logbx < ( logbx) + < ^ ( l ° g „ j ) + and - logbx < ( l o g b x ) - < ^ ( l o g i j ) " 
j=i j=i 

and hence m 
| l ogbx | < ]P|lorg;rj | . 

Thus if m ~ 

Y^EllogX-^oo (fi) 
; '=i 

then, using Lebesgue's dominated convergence theorem and the strict concavity of 
log x, one easily obtains that </>(b) is a finite, continuous and strictly concave function 
on B, with the unique log-optimal portfolio b* = argmax 0(b) G B . Unfortunately, 
(6) is not satisfied by as typical an example of the stock market as the horse race. 
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E x a m p l e 1 (Horse race) . Assume that the random variable X takes on m values 
according to the following table 

Table 1. Horse race stock market. 

value of X probability 
( a i , 0 , 0 , . . . , 0 ) ľn 
( 0 , a 2 , 0 , . . . , 0 ) Г'2 

( 0 , 0 , 0 , . . . , a m ) Vm 

where cij > 0 and p = (p\,. . ., pm) is a probability distribution with positive pj . This 
table completely describes a discrete distribution function F on III'" satisfying the 
assumptions of the present paper. This stock market model describes the situation 
where m horses run in a race and the j-th horse wins with probability Pj. The 
gambler is supposed to put one dollar down. If he bets on one horse, say j , he will 
receive <ij dollars after the race if his horse wins, and will receive nothing otherwise. 

Let /(p,b) = Y2 Pj \°&(Pj/bj) °e t n e /-divergence of p and b then 
j=l 

<Ѓ(Ь) = Ypj Ьgяj bj = ү^pj logctj Pj - /(p, b), b Є 1B, 
3=1 3=1 

(7) 

and E | logXj \ = Pj \ log a,1 + (1 - Pj)\ log0| = oo, j € { 1 , . . . , m}. 

Hence (6) is not satisfied but, as we see from (7), <f> is continuous and concave on 
IB, strictly concave and finite on the. interior IB0 of IB, and minus infinity on the 
boundary IB - IB0. Owing to / (p ,b ) > 0 for all b G IB, with equality iff b = p , b* 

equals p and <j>(h*) = ^ pj \ogcijPj. This example illustrates and to some extent 

also motivates the following general theory. 

Let forb = (&!,...,&„) GIB 

S'(b) = { J G { l , . . . , m } : bj > 0} 

be the support of b and let b m i n = min{6j : j G 5'(b)}. Hence the interior of IB 
can be written as IB0 = {b £ IB : S(b) = { 1 , . . . , m}} . Further, define in accordance 
with (4), for every S C { 1 , . . . , m} 

Vs(x) = l o g ^ t c j , x = (xi,...,xm) G IRm, 
ies 

so that, in particular, V'{j}(x) = log:c.- and V'{r,...,m}(x) = ^(x). Next follows an 
auxiliary result. 
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Lemma 1. Let x = (*i , . . . , xm) G [0, oo)m. Then for every b e B and for every 
subset S C {1, • • •, m} such that 5(b) C S 

( l o g b x ) + < £ (log *,-)+, (8) 

ies(b) 

^ s (b ) ( x ) + + l o S b - i " < ( l o S b x ) + < V-5(b)(x)+ < Vs(x)+, (9) 

and 

M*)~ < ^ s ( b ) ( x ) - < ( logbx) - < V-5 ( b )(x)- - logbm i n . (10) 

P r o o f . Since the functions log* and (*)+ -s max(a;,0) are increasing on the 
domain x G [0,oo), 

l oS Y] bjXj < log( max Xj) < max (log2^)+ < V (log*,)+ 

i£b> ^ b > ^ b > ,Sb, 

and hence (8). Since, in addition, (*)~ = max(—x,0) is decreasing on the domain 
x £ [0,oo), we see that the chains of inequalities (9) and (10) follow from 

bmin • 5Z *i < bx < S *i -s X^i' 
ies(b) ies(b) its 

and from the fact that, for every c > 0, log* c = log* + logc, (x — c)+ > (*)+ — c, 
(*-c)~ < ( * ) - + c . o 

The next lemma characterizes the function (f> on IB by means of E V'(X)+ and 
E V'(X) - . The results are summarized in Table 2 below. 

Lemma 2. Let So,S be two nonempty subsets of { l , . . . , m } such that So C S. 
Then 

(i) 
EV>s„(X)+ < EVs(X)+ (11) 

and 

Efe (X ) " > EVs(X)-. (12) 

Now let b° be any element of IB. Then 
(ii) the following four statements are equivalent 

EV;s(X)+<co, 0^Scs (b° ) , (13) 
E ( l o g b X ) + < o o , b £ B : 5(b) C 5(b°), (14) 

E(logb°X)+ <oo , (15) 

E V;5(bo)(X)+ < oo, (16) 
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(iii) the following three statements are equivalent 

E ( logbX)" < oo, b G IB : 5(b) = 5(b°), 

E (logb°X)- < oo, 

E ^ s ( b 0 ) ( X ) ~ < c o . 

By choosing b° G IB0 particularly it holds 
(iv) 

E Ф(XУ E (logbX)+ < oo, b G 

<=> E v''s(X)+ < oo, 0 -é 5 C { 1 , . . •, m}, 

EV(X) - < o o <==>• E ( l o g b X ) - <oo , bGlB 0 , 

Ei/>(X)- = o o ^=> E (logbX)" =oo , bGlB . 

(17) 

(18) 

(19) 

(20) 

(21) 

P r o o f , (i) (11) and (12) are consequences of the third inequality in (9) respec
tively the first inequality in (10). 

(ii) Choose b according to (14) and select in (13) all one-point-sets 5 = {j},j G 
5(b). Then taking into account V!{j}(X) = logXj (14) follows from (13) by virtue 
of (8). (14) trivially implies (15). (16) follows from (15) owing to the first inequality 
in (9). The implication (16) = > (13) is an immediate consequence of (11). 

(iii) (17) trivially implies (18). (19) follows from (18) by virtue of the second 
inequality in (10). (17) follows from (19) owing to the third inequality in (10). 

(iv) Since for b° G B° 5(b°) = { 1 , . . . , m} the statements (20) and (21) are the 
specifications of assertion (ii) respectively (iii) of this Lemma for b° G B° . Owing 
to (12) applied to 5 = { 1 , . . . , m) and the equivalence (18) <=$ (19), 

E ф(X)~ = oo E ^s(h)(X)' = oo, b G IB 

E ( l o g b X ) - = o o , b G B . 

The essence of Lemma 2 is summarized in the following table. We see that in 
the first three cases the log-optimal portfolio b* does not exist (dom <p i2 B and/or 
<p" £ IR) . 

T a b l e 2 . Characterization of dom <j>, effdom </> and of </>(b) on dom <f> — effdom <j>. 

E У'(X)+ 
E Ф(X)~ dom ф effdom ф Ф(Ъ) is on dom ф — effdom ф 

= oo = oo C I B - I B " = 0 = —oo 
= oo < oo ЭІB U C B - IBÜ = oo if b Є IB , Є { —oo, oo} otherwise 
< oo = oo = IB = 0 = —oo 
< 00 < oo = e =>ю0 = —oo 
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Example 2. Examples for the case 

E V(X)+ =00 , E rp(X)- = 00 

and an empty or a nonempty domain of <j> are easily found. Let e. g. m = 2 and 

(i) let in the first case {(0,0)} U {1} x [l,oo) U [l,oo) x {1} be the support of 
F and let E(logXi)+ = E(logX2)+ = 00. Then E i>(X)+ = E ip(X)~ = 00 and 
dom<jf> = 0. 

(ii) Let {(0,0)} U {1} x [l,co) be the support of F and let E(logX2)+ = 00. 
Then E t/>(X)+ = E rf>(X)~ = 00 and owing to E(logXi)+ = 0 dom 4> = { l { i } } . 

Examples for the case 

E xjj(X)+ = 0 0 , E V(X)- < 00 

and an empty respectively a nonempty effective domain of <j> are equally easily found. 
Again let e. g. m = 2 and 

(i) let {(0,1)} U{l}x [l,oo) be the support of F and let E (logX2)+ = 00. Then 
E( logXi)- = oo,E(logXi)+ = E(logX2)" = 0,E ip(X)+ = 00, E V(X)~ = 0 and 
hence dom<f> = IB, effdom(j6 = 0, </>(l{i}) = —00 and < (̂b) = 00 for all b £ IB such 
that 5(b) D {2}. 

(ii) Let {1} x [l,oo) be the support of F and let E(logX2)+ = 00. Then 
E ip(X)+ = 00, E i>(X)~ = 0 and owing to E(logX!)+ = 0 dom<j> = B, effdom^ = 
{l{i}}, ^(l{i}) = 0 a n d 0(b) = °° f° r a ' l b 6 dom<f> - effdom^. 

In the remainder of the paper we restrict ourselves to the last case considered in 
Table 2, i.e. we assume 

E I V(X) I < 00. (22) 

The next auxiliary result is helpful in characterizing effdom^. 

Lemma 3. Assume (22) and let 

CF = {Sc{l,...,m}:E \i>s(X)\< co}. 

(i) The class CF , which can be equivalently expressed by 

CF = {Sc{l,...,m}:Etljs(X)- < 00}, (23) 

is hereditary in the sense that it contains with any So all sets S : So C S C 
{ l , . . . , m } . 

(ii) The effective domain of <f> 

effdom 4 = {b e B : 5(b) £ CF} (24) 

is a convex subset of dom <f> = B containing B° . In addition 

<f>(b) < E rj)(X)+ < 00, b £ B , (25) 
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and 
ci(b) = -oo , b G IB - effdom cf>. (26) 

P r o o f . Owing to (22) Et/>(X)+ < oo. Therefore (20) implies both (23) and 
sup{</>(b) : b e IB} < oo and hence (26). Taking into account (23) and applying 
the equivalence (17) <=> (19) to every element of C> yields 

E ( logbX) - < oo, b £ IB : 5(b) £ C>, 

and hence (24). The second and third inequality in (9) and assumption (22) yield 

logbX < V(X)+, bGlB , and E^(X)+ < oo (27) 

and hence (25). The hereditarity of C> is an immediate consequence of (23) and 
(12). 

The convexity of effdom <j> is seen as follows: Let b 1 G effdom (j> and thus .^(b1) G 
C>, let, more generally, b 2 £ IB and a £ (0,1). Then, owing to 5 («b ' +(1— «)b2) = 
5 ( V ) U 5(b2) D S(bl) and the hereditarity of C>, S(ab1 + (1 - cv)b2) £ C>. • 

Example 3. If (6) holds then C> contains by definition all one-point-sets {j}, j £ 
{ 1 , . . . , m} and hence by the hereditarity of C> all nonempty subsets of { 1 , . . . , m}. 
Therefore in this case the effective domain is as large as possible: effdom c4 = IB. 
For the horse race which has been investigated in Example 1 the class C> contains 
only the set { l , . . . , m } and therefore the effective domain is as small as possible: 
effdom<j> = IB0. These are the extreme cases for effdom<f>. 

In order to characterize the effective domain of <f> for the general stock market 
model in more geometric terms let us consider 

B 5 = { b £ B : 5(b) = 5 } , l / S c { l , . . . , m } . 

Lemma 4. It holds 

effdomc4 = B ° U \J B s , 
SgcF-{l,...,m} 

where the sets B5 , S £ Cp — { 1 , . . . , m}, are the faces of the boundary of the simplex 
B for which (f> is defined and finite. 

P r o o f . Clear from (24). D 

Lemma 5. If (22) holds then the function <j)(h) is continuous and concave on 
B . Furthermore, it is finite on the effective domain of cA and —00 elsewhere. If, 
moreover, (1) holds then <f>(b) is strictly concave on effdom0. 

P r o o f . The statements concerning the domain and the range of c£ are clear 
from Lemma 3. 

(I) Concavity. We have to show that for every b J , b 2 £ B and every a £ (0,1) 

a^b1) + (1 - a)cA(b2) < ^ ( a b 1 + (1 - a)b2) (28) 



114 I. VAJDA AND F. OSTERREICHER 

and, provided b J , b 2 £ effdom^ and (1) is satisfied, that equality holds if and only 
if b 1 = b 2 . To this end we consider the following three possible cases: 

(i) In the case that none of the elements b 1 , b 2 belong to effdom<^ (28) follows 
immediately from (26). 

(ii) In the case that exactly one of the elements b 1 , b 2 belongs to effdom< ,̂ and 
hence—by the argument at the end of the proof of Lemma 3 — a b 1 + (1 — a)b 2 

also belongs to effdom</>, (26) implies strict inequality in (28). 
(iii) Finally let both b 1 and b 2 belong to effdom<̂ >. Since the function log a;, x £ 

[0,oo), is concave, Jensen's inequality yields 

log(ab 1 + ( l - a ) b 2 ) X - ( a l o g ^ X + (1 - a ) logb 2 X) > 0 (29) 

and hence 

E [log(ab1 + ( l - a ) b 2 ) X - ( a l o g b 1 X + ( l - a ) l o g b 2 X ) ] > 0, 

where — since the latter is finite — equality holds if and only if equality holds in (29) 
a. s. Owing to the strict concavity of log x, this is equivalent to 

( b x - b 2 ) X = 0 a.s. 

Provided condition (1) is satisfied, this holds if and only if b 1 = b 2 . 

(II) Continuity. In order to show continuity, let us first prove that the concave 

function <j> is upper-semicontinuous and hence, by definition, is closed. 
To this end let b n £ effdom<^ , n £ IN, be a sequence tending to b° € B and, 

consequently, 
lira logb"X = logb°X a.s. . (30) 

n—+oo 

Since in addition (27) holds, the application of Fatou's lemma yields 

lim sup cj>(bn) < <f>(b°). (31) 

Therefore, by definition, 0 is a closed concave function. 

Finally we have to distinguish the two cases b° 6 and ^ effdom<^ respectively, 
(i) Since for b° £ B - effdom<£ it holds <f>(b°) = - c o , (31) trivially implies 

l im <j>(bn) = 4>(b°). (32) 

(ii) Now let b° £ effdom</> and consider for any e > 0 the set 

(b°)£ = {b = (6 i , . . . , bm) £ B : bs > 6° - e for all j £ S(b°)} 

which evidently is a simplex containing the element b°. Provided e £ (Ojb 0 ^) , 
moreover, 

(b°)ECeffdom<£. 

To see this let b £ (b°)£. Then bj > b] - e > b°min - e > 0 for all j £ 5(b°) 
yields 5(b) D 5(b°) and thus, since 5(b°) £ CF and CF is hereditary, 5(b) £ CF . 
Owing to (24) this implies b £ effdom</>. Hence we have shown that there is a 
simplex containing b° which is entirely included in effdom</>, effdomc/i is a locally 
simplicial set. Together with the fact that <f> is a closed concave function this implies 
by virtue of Theorem 10.2 in Rockafellar [11] that (j> is continuous on effdom<^. D 
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Remark 1. The continuity of (f> °u every set IB5 , S G Cp , may also be shown as 
follows: Let b n G IB5 , n £ IN, tend to b° G IBs • Then for every e G (O.b^,,,) there 
exists a number n0 £ IN : || b " - b° ||TO= max{| b" - 6° |: j £ 5} < £ for all n > n0 

and thus, by the second inequality in (9) and the third inequality in (10), 

| logb"X | < | Vs(X) | - log(b! n - e), n > nQ . 

Owing to E|i/-"s(X)| < oo and (30), the application of Lebesgue's dominated con
vergence theorem yields (32). 

Theorem 1. If (22) holds then a log-optimal portfolio b* exists. If, moreover, 
(1) holds then b* is unique. 

P r o o f . First of all (25) and effdom <j> ^ 0 imply <j>* G IR. Since, owing to 
Lemma 5, </> is a continuous function on the compact set IB there exists an element 
b* £ IB satisfying (/>(b*) = <j>* and hence being log-optimal. <t>* £ IR and (26) 
finally imply b* £ effdom </>. Now assume the validity of condition (1). Then the 
uniqueness of b* is seen as follows: Let b° £ effdom </; be any log-optimal portfolio 
and let a £ (0, 1). Then (28) applied to b° and b* and 0(b) < 0* for all b £ IB 
yield 

a<j)(b°) + (1 - a)j>(b*) = <f>(ab° + (1 - «)b*) 

and hence, due to the strict concavity of (j>, b° = b*. • 

3. DETERMINISTIC APPROXIMATION 

The following result can be employed in the theory of approximations of log-optimal 
portfolios. 

Lemma 6. Let (22) hold and let (j>* he the optimal doubling rate and b* be any 
log-optimal portfolio. Furthermore, let b " , n £ IN, be any sequence in IB. Then 
the following property (33) implies (34). If (1) holds, then b* is unique and the two 
properties (33) and (34) are equivalent. 

lim b " = b * , (33) 

J i m <j>(hn) = cj>* . (34) 

P r o o f . Since, by Lemma 5, (f> is under (22) continuous and since < (̂b*) = <j>* 
holds, (33) => (34). Now suppose that (1) and (34) hold. Since IB is compact, the 
sequence b n has a limit point b°. Let us consider a subsequence b n t such that 

lim b"* = b°. 

Then, another application of the continuity of <f> yields 

lim <j>(bnk) = 0(b°) 
k-^oo 
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and hence, by virtue of (34), <f>(h°) = (f>(h*). Therefore b° is log-optimal. Since, by 
Theorem I, the log-optimal portfolio is unique, it holds b° = b*. Thus b* is the 
only possible accumulation point of b" . Therefore (33) holds. • 

The next result guarantees that the optimization method of sieves (cf. e. g. van de 
Geer [14]) leads asymptotically to the log-optimal portfolio. It follows from this 
result that, in particular, the evaluation of log-optimal portfolio is possible by using 
the iterative optimization algorithms from standard software packages. 

Lemma 7. Let (22) hold and let 1B0 = {b i ,b 2 , . . . } be a subset of IB the closure 
Bo of which contains b*. Furthermore, let b n be the log-optimal portfolios with 
respect to the subset IBn = { b i , . . . , b„ ) , i.e. <j)(hn) = max{0(b) : b £ B n } . Then 
the sequence b n satisfies the relation (34). 

P roo f . This holds since, by definition, 

</>(bn) / sup {0(b) : b e Bo} 

and since, because of the continuity of (f>, the latter equals <j>*. D 

In the sequel let F and Fn, n £ IN, be probability distribution functions satisfy
ing the basic assumption of Section 1. Furthermore, let / , /,, denote the associated 
Radon-Nikodym derivatives of the corresponding probability distributions with re
spect to a dominating cr-finite measure fi on IRm (i.e. / , fn are the derivatives of 
F, Fn if these functions are absolutely continuous, and probabilities of the corre
sponding vectors x G [0,oo)m if F, Fn are discrete). 

Moreover, let 

ess supF(F n) = ess supF ( / „ / / ) , 

be the essential supremum of the ratio fn/f taken with respect to the probability 
distribution corresponding to F and remind that 

I(F,Fn) = EF)~~ / ( X ) 

7n(X)' 

are the /-divergences of F and Fn . 

Theorem 2. Let F and Fn, n £ IN, be probability distribution functions satis
fying (22) and let <f>* be the optimal doubling rate with respect to F. Furthermore, 
let 

lira I(F, Fn) = 0. (35) 

Then any sequence b n of log-optimal portfolio with respect to Fn satisfies the 
relation (34). 

P r o o f . Let b* be any log-optimal portfolio with respect to F. Then the 
application of Theorem 15.4.1 on p. 467 of Cover and Thomas [5] implies 

0 < <t>(b*) - <j>(bn) < I(F,Fn). 
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and hence, in view of (35) and <f>* — <^(b*), the assertion. • 

The following lemma provides a simple but rather strong sufficient condition for 
the existence of log-optimal portfolios with respect to F„. 

Lemma 8. Let F and Fn be probability distribution functions and let 

ess supF(F„) < co . (36) 

Then, provided F satisfies (22), Fn satisfies (22) as well. 

P r o o f . Note that, owing to 0 = E P ( / „ / / - 1) < ess sup F ( / „ / / ) - 1 and 
hence | / „ / / - 1 | < max ( / „ / / , 1) < ess supF ( / „ / / ) , it holds 

|E F _ | iKX) | -EHi&(X) | | < | E F | V ; ( X ) | | / „ / / - 1 | | < EFty(X)\x esssupF (E„) . 

Therefore (36) and the validity of (22) for F yield the validity of (22) for F„ . • 

4. STATISTICAL APPROXIMATION 

Let F be a probability distribution function satisfying the basic assumption of 
Section 1 and the conditions (1) and (22) and let X\, X 2 l . . . be i.i.d. random 
vectors distributed according to F(x). Furthermore let, for every x _ _ l m , kn(x) be 
the number of integers i _ { 1 , . . ., n} such that X,- < x. Then, for every n > 1, 

^ ( - ) - - ^ (37) 

is the empirical distribution function. Note that, since F satisfies the basic assump
tion of Section 1 then consequently Fn does as well. Moreover, as n —* oo, Fn 

satisfies condition (1) with a probability tending to 1, 
An arbitrary sequence of probability distribution functions F„ measurably de

pending on the observations X i , . . . , X„_i is said to be a random estimator of F. 
It is called consistent in I-divergence if 

lim I(F,Fn) = 0 a.s. 

If F is discrete (e.g. as for the horse race, Example 1), then the empirical 
distribution function (37) is a random estimator of F. It follows from the strong law 
of large numbers that it is consistent in /-divergence. 

Barron, Gyorfi and van der Meulen [1] found relatively mild restrictions on general 
F under which some modifications Fn of the empirical distribution function (37) 
are consistent in /-divergence. Their estimator satisfies the basic assumption of 
Section 1. Another interesting property of Fn is that if condition (1) is satisfied 
with respect to F then it is a. s. satisfied with respect to Fn. In other words, their 
estimator F„ then satisfies a.s. all basic assumptions imposed on F in Section 1. 
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Theorem 3. Let F satisfy (1) and (22) and let b* and 4>* be the corresponding 
log-optimal portfolio and the optimal doubling rate respectively. Moreover, let Fn 

be a random estimator of F which satisfies (1), which is consistent in /-divergence 
and satisfies 

esssupF(fn) < oo V?i 6 IN. (38) 

Then the log-optimal portfolios b„ with respect to Fn exist, are unique, and mea
surably depend on X i , . . . , X n - i - Furthermore they satisfy the equivalent relations 

lim b n = b* a.s., (39) 
n—*-oo 

lim (j>(hn) = 4>* a . s . (40) 

P r o o f . By virtue of Lemma 8, (38) implies that property (22) holds for every 
Fn and every realization of X i , . . . , X n _ i . The validity of property (1) is given by 
assumption. Thus the existence and uniqueness of the log-optimal portfolios b n 

follow from Theorem 1. The measurability follows from the continuity of 

</.n(b) = E J ? n logbX 

on IB for every realization of X i , . . . , X n _i (cf. Lemma 5 with F replaced by Fn), 
the compactness of IB, and from Theorem 1.9 of Pfanzagl [10]. The limit relations 
(39) and (40) are clear from Theorem 2. • 

R e m a r k 2. An immediate consequence of (40) is the convergence of the corre
sponding sequence of Cesaro means, namely 

lim -ir4>(*>i) = <t>* a . s . (41 
n — oo n f—;' 

Cover in Theorem 7.L of [4] and Morvai in [8,9] established under weaker as
sumptions somewhat weaker result. They found portfolios b„ depending on the 
empirical distributions (37) and satisfying (41). 

5. APPLICATION TO FINITE STOCK MARKET 

Let X be a random variable with finite range {xi , . ...xjif) C [0 ,oo) m -{(0 , . . . ,0)} 
and probability distribution p = ( P I , . . - , P M ) satisfying condition (1) and pmin = 
min{pt : k £ { 1 , . . . ,M}} > 0. Note that, since the range of X does not contain 
the null-vector of IRm, condition (22) also holds. Hence this general finite stock 
market model satisfies all conditions considered in Section 1. 

As said in the previous section, the empirical distribution function Fn considered 
in (37) also satisfies the basic assumption of Section 1. But condition (1) need not be 
satisfied by Fn for every X i , . . . , X n _ i . However, the following modification satisfies 
both these conditions 

Fn = (l-en)Fn + en^^Sx)j (42) 
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where 0 < en < 1 and <5X denotes the distribution function with all probability 
concentrated at the point x G III"1. In the sequel we additionally assume en —> 0 . 

The Radon-Nikodym densities / and fn of F and Fn respectively are zero 
outside the range {xi, .. . ,XM}- On this set they are given by the formulas 

/(x,) = pk, /n(xfc) = (1 - en)^^p- + ^ , (43) 

where Kn(xk) is the number of integers i G {\,...,n} such that X; = xjfe. Since 
/ , /,, are probabilities, 

esssup( /„ / / ) < p-,1,, 

and moreover, 

| / „ ( x * ) - / ( x t ) l <\Kn"l{Xk)-Pk I +en. /i — 

Therefore the law of large numbers ap])lied to Kn_i(x,)/(?j— 1) yields together with 

/„(xfc) -> / (x , . ) , i b € { l , . . . , M } a.s. (44) 

and thus 

/ (^ ,Fn) = i : / ( x 0 1 o g ^ 4 - 0 a.s. 

Hence all assumptions of Theorem 3 are satisfied. Consequently, for all n G IN there 
exist unique log-optimal portfolios 

A/ 

b n = argmax ] P /n(xjt) log(b xj.) (45) 
k=\ 

measurably depending on X i , . . . , X„,_ \ and satisfying the asymptotic relations (39) 
and (40). 

In Example 1 this conclusion can be verified by an explicit evaluation of the 
portfolios (45). Namely, under the assumptions considered there, 

b„ = ( / „ (x i ) 1 . . . , / „ (x m ) ) . 

Therefore the equivalent relations (39) and (40) follow immediately from (43) and 
(44). 

R e m a r k 3. The mixture of distributions (42) is analogical to the mixture of port
folios 

b n = ( l - £ n ) b n + £ n ' 

in Morvai [9], where b n is log-optimal for the empirical distribution Fn. It seems 
that there are two possibilities how to avoid being ruined in the horse bettinc hn<=»ri 
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on empirical d is t r ibut ions . One possibility is to mix r a n d o m noise with the empirical 

d is t r ibut ion over the horses, and to employ the corresponding log-optimal rule. T h e 

other possibili ty is to mix r a n d o m noise with the log-optimal rule resul t ing from the 

empirical d is t r ibut ion . Th i s is one of the interest ing s i tua t ions where the r a n d o m 

numbers help to make money. 

(Received July 16, 1992.) 
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