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STABILITY IN STOCHASTIC PROGRAMMING — 
THE CASE OF UNKNOWN LOCATION PARAMETER 

VLASTA KAŇKOVÁ 

The assumption of a complete knowledge of the distribution in stochastic optimization 
problem is only seldom justified in real-life situations. Consequently, statistical estimates 
of the unknown probability measure, if they exist, can be only utilized to obtain some 
estimates of the optimal value and the optimal solution. 

The empirical distribution function is usually used everywhere when the theoretical 
distribution function is fully unknown [1], [5], [17]. This substitution leads to the "good" 
statistical estimates [2], [9], [10], [14], [16]. However, unfortunately, it is also well-known 
that the corresponding approximative problem need not be a concave problem even in the 
case when the theoretical original one possesses this property. In particular, this happens 
rather often in the case of the chance constrained stochastic programming problems. 

If we can assume that the theoretical distribution function belongs to a parametric fam
ily, then we can employ estimates of the unknown parameter to get some estimates of the 
optimal value and the optimal solution [3], [16]. In this paper, we shall consider the case 
when the unknown parameter can be introduced as a location parameter. We obtain the 
estimates of the optimal value and the optimal solution with statistical properties fully 
determined by the properties of the original parameter estimates. Moreover, the approxi
mative problems belong to the same type of the optimization problems as the original one. 
However, to obtain these results we have to study the stability problem with respect to the 
location parameter, first. 

At the end of the paper we shall try to apply some obtained results to stochastic opti
mization problem considered with respect to the discrete time interval 1 -^N. Namely surely, 
the main importance of the former results will be found just in such dynamic models. 

1. I N T R O D U C T I O N 

Let (Cl, S, P) be probabi l i ty space, £ = £(ui) = [ £ i ( w ) , . . . , £ s ( w ) ] be an s-dimensional 

r a n d o m vector defined on (Cl,S, P), g,(x,z), i — 0 , 1 , 2 , •••,£, be real-valued, contin

uous functions defined on En x Es, X C En be a n o n e m p t y set (En, n > 1 denotes 

an n-dimensional Eucl idean space) . 

T h e general op t imiza t ion problem with r a n d o m elements can be in t roduced as 

the p rob lem to find 

max{go(x,Z(u))\xeX : gi(x,£(u)) <0, i = 1,2,... ,£}. (1) 
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If the solution x has to be found without knowing realization of the random vector 
£(u>), then it is necessary, first, to determine the decision rule. This means to assign 
to the original stochastic optimization problem (1) some deterministic one, called 
the deterministic equivalent. Two well-known types of deterministic, equivalents can 
be introduced as the following problems (cf. [4]): 

I. Find 
ma,x{Eg(x,£(u>))\x e X}. 

This type includes, among others, the problems with penalty function and two-stage 
stochastic programming problems. 

II. Find 

max{Eg(x,Z(u))) \x e X(a)}, 

such that X(a) = {xeX : P{u,:gi(x,t:(<M))<0, i = 1,2, ...,£}> a} . 

This deterministic equivalent is called the chance constrained stochastic program
ming problem in the literature. 

In what follows, a 6 (0,1) is a parameter, g(x,z),g(x,z) are some real-valued 
functions defined on £„ x E „ E denotes the operator of mathematical expectation. 

Remark. In detail, the introduced definitions of deterministic equivalents are 
given in [4] for linear case only. 

We shall restrict our investigation to the special form of the function gi(x,z), 
i = 1,2, . . . , / , in the case of the deterministic equivalent II. In detail, we shall 
assume in this case that 

l = s, gi(x,z) = fi(x)~zi, i=\,2,...,t, z = (zx,...,zt), (2) 

where f(x), i = 1,2,... ,f., are real-valued, continuous functions defined on En. 

If (generally) A C Es is a nonempty parametric set, 
FQ(Z) is an s-dimensional distribution function, 
Va, a £ A, denotes a parametric family of distribution functions such that 

Fa e Va, a e A <=> Fa(z) = F0(z - a), (3) 

then we can denote the set X(a) by Xa(a), that is 

X(a) = Xa(a) = {x e X : Pa{u> : f(x) < &(u>), i = l,2,...£}> a}, (4) 

where Pa is the probability measure corresponding to the distribution function Fa. 

Remark. It is evident that there exists an inaccuracy in relation (4) 
form should be 

X(a) =Xa(a) = {xeX: Pa{u> : f(x) < &(u), i = 1,2, . . . , /} 3r%}, 
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where £a(u) = (£ iH> • • • >£"H) is some random vector with the distribution func
tion Fa(z). 

If in addition a(N) = a(N, UJ), N = 1,2,..., denote some statistical estimates of 
the parameter a £ A, then it is easy to see that maxEa(jv) <7(X'>£H) estimates the 

T£X 

value maxEag(x, t"(u>)) in the case of the deterministic equivalent I. In the case of 

the deterministic equivalent II the theoretical value max Ea g(x,£(uj)) can be esti-
Aa(«) 

mated by the value max Ea(^) g(x,(,(oj)) (Ea denotes mathematical expectation 
A'«(N)(«) 

considered with respect to the distribution function Pa). 
The aim of this paper is to study the just introduced estimates, first. (Of course, 

it will be done under the assumptions that the theoretical distribution function of the 
random vector £(w) belongs to the parametric family of the distributions given by 
(3).) Further, we shall apply these results to time dependent sequences of stochastic 
optimization problems. 

Remarks. 

1. The choice of the functions </(•,•) and g(-,-) depends on the character of the 
original stochastic problem. 

2. It can generally happen that some symbols mentioned above are not reasonable. 
However, this situation cannot appear under the assumptions considered in this 
paper. 

2. SOME AUXILIARY ASSERTIONS AND DEFINITIONS 

Lemma 1. Let X C En, A C Es be nonempty sets. If 

1. g~(x, z) is a continuous function on X x Es, 

2. for every x £ X, g(x, z) is a Lipschitz function of z S Es with Lipschitz constant 
L independent of x 6 En, 

3. for every x E X there exists a finite Eo~g(x,£(u>)), 

then 
|E.(i) J ( * , £ H ) - Ea(2)g(x,^))\ < L- \\a(l) - o(2)|| 

for every x £ X, a(\), a(2) G A (\\ • || denotes the Euclidean norm in Es). 

P r o o f . First, it follows from the assumptions 2, 3 of Lemma 1 that for every 
x 6 X, a E A there exists a finite Eag(x,t;(u))). Furthermore, we get immediately 
from the definition of mathematical expectation that in virtue of (3) 

E«(x)ff(*,£H)-Ea(2)?(z,£H)|--

= J g(x, z) dFa{2)(z + o(2) - a(l)) - Jg(x, z) dFa(2)(z)\, 

and hence we obtain the assertion of Lemma 1 on the bases of the assumption 2. • 
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Lemma 2. If a £ (0, 1), X = E+ ,a,a £ A are arbitrary such that a < a compo
nentwise, then 

*«(«) C XJa). (5) 

(£•+ = {x £ En : a; = (xu ... ,xn),Xi > 0, i = l ,2 , . . . , n} . ) 

P r o o f . Let a = (ax,. ..,«_,), a = ( a i , . . . , at), a be arbitrary fulfilling the 
assumptions of Lemma 2. 
If XJa) = 0 relation (5) is trivially fulfilled, so in the rest of the proof we assume 
that XJa) ^ 0. To verify the assumption (5) (in this case) it is sufficient to prove 
the validity of the implication 

x £ XJa) ==> x £ XJa). (6) 

However, since for every x £ XJa) it holds 

a < P^LU: fi(x)<£i(Lo), i= 1,2,...,£} = 

= Pa{u : /.-(*) + a. - &• < &(w). i = 1, 2 , . . . , /} (7) 

and since a — a > 0 componentwise, we obtain the validity of the implication (6) 
immediately. • 

Lemma 3 . Let a £ (0,1), a, a £ A, a = ( a t , . . . ,a_,) , a = (a j , . . . ,a<), X = E+. 
If 
1. there exists a £ E^ , a > 0 such that a,: + a = a,-, i = 1,2,. . . , / , 

2. there exists real-valued constant 71 > 0, such that fi(x') — f,(x) > 71 Y^j = i(x'j ~ 
Xj), i = 1,2,.. .,£, for every x — (x\... ,xn), x' = (x\, x'2, . .. ,x'n) £ En, x < x' 
componentwise, 

3. the probability measure corresponding to the distribution function Eo(-) is abso
lutely continuous with respect to the Lebesgue measure in Ei, 

4. XJa) ± 0, 
then XJa) ^ 0, and 

A[AV(«), XJa)] < ~^Ti. 
Ti 

(A[-, •] denotes the Hausdorff distance of sets, see e. g. [10].) 

P r o o f . It follows from the definition of the Hausdorff distance and from the 
assertion of Lemma 2 that to prove the assertion of Lemma 3 it is enough to prove 
the following inequality 

sup inf p(x,x') < —л/ÏÏ, 
xЄAVЫ^ЄA-ą.ía) 71 

where p(-, •) denotes the Euclidean metric in En. 
So let x £ XJa) be arbitrary. It is easy to see that to prove relation (8) it is 

sufficient to find x' = x'(x), x' £ Xj^a) such that 

p(x,x') < —\fn. 
7i 
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If x G Xa(a), x — (xi,..., xn), then we can set x' = x, evidently. It remains to 
consider the case x $. Xa_(a). If we define in this case the point x* = (x*,x2, .. .,xn) 
by x* = Xi — —, . ' = 1 , 2 , . . . , n, we get \\x — x*\\ < y/n^-. Two different cases can 
happen 

a) there exists an r G {1, 2 , . . . , n} such that x* > 0, 

b) x*j < 0 for every j £ {1 ,2 , . . . , n}. 

Let us, first, consider the case a). In this case we can define the point x' = 
(x\,x'2,...,x'n)by 

x'r = x*r, x'j = Xj for j / r. 

It follows from the assumptions that /,-(."') < fi(x), i = 1,2, . . . , / , and moreover 

fi(x)- fi(x') > a, i= 1,2, . . . , / . 

However, it means 

fi{x')<fi(x)-a, i=\,2,...,L 
Furthermore, since x G Xa(a) we obtain 

a < Pa{u : h(x)< .ff(w), j = 1,2,...,£} < 

< Pa{" • fi(x') +a< &(u), i - 1 ,2, . . . , /} = 

= P . { w : / i ( * ' ) < € i ( w ) , i - - l , 2 , . . . , i } 

and so also 
x' G Xa(a). 

Since p(x,x') = •&• we have finished the proof of the assertion in the case a). 
Now we shall consider the case b). However, since then ||a;|| < y/n-^-, the assertion 

of Lemma 3 follows from the assumptions 3, 4 and the properties of the probability 
measure. D 

Lemma 4 . Let a G (0, 1), «(1), a(2) G A be arbitrary, Xa(1)(o/) ^ 0, Xa{2)(a) £ 0, 
X = E_\~. Let, further, the assumptions 2, 3 of Lemma 3 be fulfilled. If there exist 
vectors a, a G A, a = ( a i , . . . ,at), a = (a _,..., at) such that a,- — at- = aj — ax, 
i = 1,2, . . . , / , A'o(a) # 0, A'a(cv) ^ 0 and simultaneously a < a(\) < a, a < a(2) < a 
componentwise, then 

A[Aa ( 1)(«), Aa (2)(a)] < V " — where a = a\ 

P roof. First, it follows from Lemma 2 that A a(«) C A a ( 1 ) (a) C Xa(a) and 
simultanously Xa(a) C A a ( 2 ) (a) C Xa(a). 

Moreover, it follows from the above facts and from the definition of the Hausdorff 
distance that 

A[A'a(1)(a), A a ( 2 )(a)] < A[A a(a) , Xa(a)}, 

and hence the assertion of Lemma 4 follows immediately from the assertion of Lem
ma 3. D 
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Lemma 5. Let X = E+ and A C Ei be a nonempty set. Let further cv G (0, 1), 
a G A be arbitrary such that Xa(o) / $. If the assumptions 2, 3 of Lemma 3 are 
fulfilled, then Xa(a) is a compact set. 

P r o o f . Let a, a fulfil the assumptions of Lemma 5. Since it, follows from Lemma 
4 of [9] that Xa(a) is a bounded set, the assertion of Lemma 5 will be proved if we 
verify the validity of the implication 

*N € Xa(a), N = 1,2,..., lim xN = x = > x- G Xa(tv). (9) 

It follows immediately from the assumptions that for every e > 0 there exists 7V"o = 
N0(e) such that 

a<Pa{cu:fi(xN)<ii(io), . = \,2,...,£}< 

< PaW:fi(x)<Zi(w), i=l,2,...,£}+ 

+ tPaW^i(a)e[fi(x)~e,fi(x) + e},iJ(u>)>fj(x)~e,j^i,j=l,2,...,£} 
i = i 

for N > N0(e). 
However, since according to the assumptions it follows from the former inequality 
that a < Pa{w : fi(x) < £,, i = 1, 2 , . . . , £} too, we see that the assertion of Lemma 5 
holds. • 

At the end of this part we shall present one result of convex analysis. However, 
first, we shall recall the definition of strongly concave functions [13], [15]. 

Definition 1. Let h(x) be a real-valued function defined on a convex set 
K C En. h(x) is a strongly concave function with a parameter p > 0 if 

h(\Xl + (1 - A)x-2) > \h(x{) + (1 - \)h(x2) + A(l - A)p||x-! - x21|2 

for every xltx2 6 K, AG (0,1). 

Lemma 6. Let K C En be a non-empty, compact, convex set. Let further h(x) be 
strongly concave with a parameter p > 0, continuous, real-valued function defined 
on K. If XQ G K is defined by the relation 

xQ = argmax/i(x) (10) 

then 
| | x -x-o | | 2 < -[h(x0) - h(x)], 

P 
for every x G K. 

P r o o f . Since it follows from the definition of strongly concave functions with a 
parameter p > 0 that 

h(\Xl +([- \)x2) > \h(Xl) + (1 - \)h(x2) + A(l - \)p\\Xl - x2 | |2 
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for every xx, xi G JC, AG (0,1), we get 

A(l - \)p\\x - xoll2 < \{h{x0) - h{x)) + h{\x + (1 - A) x0) - h{x0) 

for xo given by (10) and x G /C arbitrary. Since further 

h{\x + {l- \)x0) - h{x0) < 0 for every A G (0, 1) 

we can see that the assertion of Lemma 6 holds. • 

Rem arts. 
1. An assumptions under which a quadratic form is a strongly concave (respectively 
strongly convex) function are introduced for example in [13]. 

2. The assertion of Lemma 6 has been already presented for example in [15]. 

3. STABILITY RESULTS 

Let a(l) , a{2) G A, a G (0,1) be arbitrary. In this section we shall present an upper 
bound on the expression 

max Ea(i) g{x, £(w)) - max Ea(2) g{x, £(w)) 

in the case of the deterministic equivalent I and further an upper bound on the 
expression 

max Ea(i) g{x, £(w)) - max Ea(2)ff(x,£(w)) 
|*a(j)(a) *a(2)(a) I 

in the case of the deterministic equivalent II. We shall see that similar upper bounds 
also exist for the optimal solution in some special cases. 

First, we shall deal with the deterministic equivalent I. To this end, let us assume 

i) ~g{x, z) is a continuous function on X x Es, 

ii) for every x G X, ~g{x, z) is a Lipschitz function of z G Es with Lipschitz constant 
L independent of x G E+, 

iii) a) X is a convex set, 
b) for every z G Es, g{x,z) is a strongly concave function of x G En with a 

parameter p > 0. 

We shall define the point xa (if it exists) for a G A by 

xa = argmaxEa<7(a;,£(w)). 

(It is easy be see that the point xa for a G A is uniquely defined, under the assump
tion iii.) 

We shall present the following theorem. 
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Theorem 1. Let X C E„ be a nonempty, compact set, A C E, be a nonempty 
set and let the assumptions i), ii) be fulfilled. If there exists a finite Ea g~(x,!;(ui)) for 
a = a(l) , a = a(2), a(l) , a(2) G A, x G X, then 

|maxEa(1)ff(x>e(w))-maxEa(2)F(x,(f(w))|<r||a(l)-a(2)||. (11) 
| x £ A x £ A 

If, moreover, the assumption iii) is fulfilled, then 

| | ^ ( i ) - ^ ( 2 ) | | 2 < ^ r | | « ( l ) - a ( 2 ) | | . (12) 

P r o o f . First, it follows from Lemma 1 that |Ea(1) g(x,l;(u>)) — Ea(2) g(x,((u>))\ 
is uniformly bounded by the constant L| |a(l) — a(2)||. Consequently, the assertion 
given by relation (11) is valid. 

So it remains to prove the assertion given by (12). Since it follows from Lemma 1 
and from (just proven) relation (11) that 

|Ea(1)?(.-,«!(«)) - Ea(2)g(x,tH)\ < r | |a( l ) - «(2)|| 

for every x G X, and simultaneously 

|Ea( l )?(Sa(1)^H)-Ea(2)^a(2),^))|<r||a(l)-a(2)||, 

we obtain, employing the triangular inequality successively, 

\Ea(i)li(xa(i),Z(u)) - E a ( 1 )s(x a ( 2 ) )£(w))| < 

< |Ea(i)9r(xTa(i),^(^)) - Ea(2)fl(ar
a(2),^(a)))| + 

+ |Ea(2)ff(-5a(2),^(w)) - Ea(1)sf(xa(2),£(w))| 

< r||a(l)-a(2)|| + r||a(l)-a(2)||. 

However, since further it follows from Lemma 6 that 

\\xa(i)-xai2)\\
2 < -[£.„(!)g(xa(1),Z(uj)) -Ea (1 )ff(xa (2),£(w))] 

we can see that the relation (12) is valid, too. D 

Theorem 1 presents stability results in the case of the deterministic equivalent I. 
Further, we shall try to present similar results for the deterministic equivalent II. 

To get some results in the case of the deterministic equivalent II, we shall assume 

that 

i') g(x,z) is 

a) a continuous function on A' x Et, 

b) for every z G Et a Lipschitz function on E% with Lipschitz constant V inde
pendent of z G Et, 

c) for every x G X a Lipschitz function of z G Et with Lipschitz constant L 
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independent of x £ En, 

ii') gi(x,z), i = \,2,...,l, fulfil relations (2) with continuous functions / , (*) , i = 
1, 2 , . . . ,£, for which there exists a real-valued constant 71 > 0 such that 

fi(x') - fi(x) > 71 E (x'j - *j), i=\,2,...,n 
j = i 

for every x = (x\,..., xn), x' = (x'2,..., x'n) £ En, x < x' componentwise, 

iii') the probability measure corresponding to the distribution function Fo(-) is ab
solutely continuous with respect to the Lebesque measure in Et, 

iv') for a & A, a £ (0, 1), Xa(a) is a convex set, 

v') there exists a convex set X* such that Xa(a) C X* for a £ (0,1), a £ A and 
further for every z £ Et g(x,z) is a strongly concave function of a; £ X* with a 
parameter p > 0, 

vi') there exists a convex set X* such that Xa(a) C A'* for a £ (0,1), a £ A and, fur
ther, for every z £ E(, g(x,z) is a strictly concave function, i.e. g(Xx\ -\-(\ — A)s2) > 
Xg(xx) + (1 - A)fi((.52) for every xlt x2 £ X, A £ (0, 1). 

If the points xa, for a £ A, fulfil the relation 

xa £ arg max Eag(x,£(u)), (13) 
A'„(a) 

then the following theorem takes place. 

T h e o r e m 2. Let X = E+, A C Et be nonempty sets, a £ (0, 1). If the assump
tions i'), ii'), iii') are fulfilled and if for x £ X, a = a(\), a = a(2), a(\), o(2) £ A a 
finite Ea#(£,£(u))) exists and simultaneously Xa(a) ^ 0, 
then 

I max Ea(1)g(x,£(L>))- max Ea(2) < 7 ( * , . » ) | < [L+^~] | | a ( l ) -a(2) | | . (14) 
| A a ( i ) ( a ) * a ( 2 ) ( « ) I 71 

Furthermore, there exist points x' £ X a ( i ) (a) , x" £ ./Ya(2)(a.) such that 

and simultaneously 

|Ea0)<7(£a(i),^)) " E^8),(«",€(«))| < [-• + ^ } IK1) - -(2)H. 

|Ea(1) </(*', .») - Ea(2) jf(Sa<a),«H)| < [L + ^ ] IK1) - °(2)H-

(15) 
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If, moreover, the assumptions iv'), v') are fulfilled and a(l) < a(2) component
wise, then also 

lls«(.) " ^( 2 ) l l 2 < ~p [L + - ^ - - ] ||a(l) - a(2)||. 

P r o o f . First, we shall prove relation (14). To this end we employ the triangular 
inequality 

max Ea ( 1)g(.c,£(w))- max Ea(2)g(s,£(w)) < 
|-*«(1)(<*) A„(2)(«) I 

< max Ea{1)g(x,Z(w))- max Ea(2)g(x,£(w)) + (16) 
ix.(i)(°) x«(i)(«) I 

+ max Ea(2)g(a?,£(w)) - max Ea(2)g(i,^(w)) . 
|A. ( 1 )(a) Aa(2)(a) | 

Since it follows from Lemma 5 and Theorem 1 that 

max Ea(!) g(x,£(w)) - max Ea(2)g(x,£(w))\ < L\\a(l) - a(2)\\, 
F«(l)(«) *"a(l)(«) I 

to prove (14) it is sufficient to prove that 

I max E a ( 2 ) J ( x , e H ) - max E ^ ^ ^ U t ' ^ M l M l . ( 1 7 ) 
\x<Hi)(") Xa(2)(a) | 7) 

If we define vectors a,a£ Et,a = (ai,...,ai),a~(a1,...,QJ) by 

a.- = a,(l) - ||o(l) - a(2)||, 

at = a,(l) + | | a ( l ) - a (2 ) | | , i = 1,2,. . . , / , 

a(l) = ( a , ( l ) , . . . , a , ( l ) ) , 

a(2) = (a1(2) , . . . ,a , (2)) , 

we get a < a(l) < a, a < a(2) < a componentwise. 

Two cases can happen 

a) a, a £ A, Xa(a) -i 0, 

b) either a, a ^ A for at least one element from the pair (a, a) or Xa(a) = 0. 

First we shall consider the case a). 
Since it follows from the assumptions that Ea(2) g(x,£(w)) is a Lipschitz function 

with Lipschitz constant V, we shall obtain relation (17) on applying Lemma 4. So 
we have finished the proof of the assertion given by (14) in the case a). It remains 
to consider the case b). However, it is easy to see that on the transformation bases 
we obtain the assertion in this case, too. 

Now, we shall give the proof of relation (15). But this follows immediately from 
Lemma 1, Lemma 3, Lemma 4, Lemma 5 and the assumptions. 
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We have finished the proof of the first part of the assertion of Theorem 2. It 
remains to verify the validity of the second part. Since it follows from Lemma 2, 
Lemma 5 and Lemma 6 that 

2 I I 
\ka(2) ~ *a(l)\\2 < - |Ea(2)ff(Za(2)>£H)-Ea(2)</G£n(l),<,CH)|, 

we see that the assertion will be proved if we verify the validity of the inequality 

\^a(2)fl(x<2),a^)) - Ea(2)ff(3U(i),€H)| < 2 [ l + - ^ - j ||a(l) - n(2)||. 

To this end we shall employ the triangular inequality 

Ea(2)<7(*a(2)>£H) ~ Ea(2) Jffe^l), £ H ) | < 

max E o ( 2 ) 0 ( . - , £ H ) - m a * Ea(1) a (a : ,£H) + 
A a ( 2 ) ( « ) * < . ( . ) ( < * ) | 

+ L m a ?s E «( 1 )« f ( I ' ^H) - Eo(2)ff(£a(1),CH) • 
|Ao ( 1 )(a) | 

However, since it follows from the assertion of relation (14) that 

I max EB(2)ff(.B>«H)- max E a ( 1 ) 3 (x , (H) |< fL + - ^ - 9 ||a(l) - a(2)|| 
| A a ( 2 ) ( « ) * « ( l ) ( « ) | L 71 J 

and since it follows from Lemma 1 and Lemma 5 that 

I max E a ( 1 ) j7(x,*H) - En(2) tf(£a(1),£H)| < L\\a(l) - a(2)|| 
|^«(»)(«) I 

we can see that we have verified also the last assertion of Theorem 2, • 

Remark. Evidently, if we omit the assumption a(l) < a(2), then it is possible to 
prove some similar assertion to the one presented in the second part of Theorem 2, 
too. 

The results obtained in this section will be the foundation for convergence results 
of statistical estimates. 

4. CONVERGENCE RESULTS 

If we denote by a(N) — a(N,u), N = 1,2,.. . , a sequence of statistical estimates of 
the parameter a, then we can already present the following theorem. 
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Theorem 3. Let X C E„ be a nonempty, compact set, A C E, be a nonempty 
set, and let a finite E„ g(x,£(w)) exist for a G A, x 6 A'. Let, further, assumptions i), 
ii) be fulfilled. If a(N) = a(N, w), N = 1, 2 , . . . , is a sequence of statistical estimates 
of the parameter a £ int/1, then 

p lim a(N,w) — a ==> p lim max Ea(A>) {/(£,£(w)) = 

and 

= max Eag(x,£,(w)) 

lim à(N,w) = a a.s. 

lim m3.xEa(N,u,)9(x^(^)) - max Ea g(x,(,(w)) a.s. 

If moreover, the assumption iii) holds, then also 

p lim a(N,w) = a ==> p lim ||£a(yv,w) — xa\\" = 0, 

lim a(N,w)=a a.s. ==> lim \\x-fNll.) - xa\\
2 = 0 a.s. 

P r o o f . The assertion of Theorem 3 follows immediately from Theorem 1 and 
elementary properties of the probability measure. • 

Theorem 3 deals with the deterministic equivalent I. There are presented the 
assumptions under which the convergence of parameter estimates to the theoretical 
parameter value in some sense vouches the convergence of the optimal value estimates 
and the optimal solution estimates in the same sense. Further, we shall try to 
introduce similar results for the deterministic equivalent II. 

Theorem 4. Let X = E+, A C Et be a nonempty set and cv £ (0, 1). Let, further, 
the assumptions i'), ii'), iii') be fulfilled and a finite Eag(x,£(w)) exists for a E A, 
x E X. If a(N) = a(N,w), N = 1,2,.. . , is a sequence of statistical estimates of 
the parameter a £ int A such that there exists neighbourhood U(a) C A for which 
X a - ( a ) ^ 0 , a ' e U(a), then 

p lim a(N, w) = a ==> p lim max Ea(/v,u;) g(x,£(w)) = 
N-+CO N—oo A ' d ( W ] „ ) (« ) 

= max Ea g(x,£(w)) 
A'a(a) 

lim a(N,w) = a a.s. => lim max Ea(jv,w) g(x,£(w)) (18) 
JV—OO TV—oo A " d ( N l j ) ( a ) 

= max Ea g(x,tl(w)) a.s. 
Xa(a) 

Moreover, if the assumptions iv'), vi') are fulfilled, then also 

lim a(N,w) = a a.s. = > lim Wsj,,N^ - xa\\ = 0 a.s. (19) 
N-^oo N-*oo • ' ' 
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P r o o f . The assertion given by relation (18) follows immediately from Theorem 2 
and elementary properties of the probability measure. So, it remains to prove the 
assertion given by relation (19). 

First, it follows from the assumptions iv'), vi') that the xa^N w), xa, N = 1,2,..., 
w £ f i , a € A are uniquely defined for enough large At. So, if we denote 

Q' = {u> € Q : lim a(N,w) = a and simultaneously 
/V—*oo 

lim max Ea(N,w)9(x,Z{v))= max Ea <j(x,^(ui)) }, 
N— oo X d ( N , „ ) ( a ) A „ ( a ) 

then, according to Lemma 1 of [16] and relation (18), it is easy to see that relation 
(19) will be proved if we verify the implication 

u> G ft' ==> Jim | | ^ ( A > ) -xa\\ = 0. 

We shall prove this implication by contradiction. We shall assume that there exists 
u)' E 0 ' such that 

l™Jka{N,w>) ~-HoII ̂ o . 

It follows from Lemma 4 and Lemma 5 that there exists a compact set A" C A' and 
a natural number No = N0(ui') such that 

X&(N,w>){a) C X, Xa(a) C X for At > At0. 

Since X is a compact set we can see that there exists a subsequence {a(Nk. ^'^J^Z-i 

of the sequence {a(N,uj')}N'^[ and a point x' 6 A", x' ^ xa such that 

Y\mJ\xa{NliiWl)-x'\\ = 0. 

According to Lemma 4 and Lemma 5 it must hold that 

x' eXa(a) 

and further, since Ea g(x,£(uj)) is a strictly concave function, it also holds that 

Ea<K*',£(w))^Ea0(£a,£(W)). < (20) 

Employing the triangular inequality and Lemma 1, we obtain simultaneously 

|Ea(Jvfc,w')0(£a(jv-fc,<,')>£M) - EaffOr/,£(w))| < 

Ea(JVfcA,')tffei(A'fc,W')>£M) - Ea£f(£a(Affc>u,,),^(w)) 

' , ' (21) 
+ | E « f l f ( « a ( ^ , w 0 , « « ) ) - E a f l f ( i ' , « $ ( a ; ) ) | < 

L| | a (yV, , c , ) -a | |+ |E f l . ( 7 (a I ^ f c ^ , ) , ^ ( W ) ) -E a ! / ( ; E
, , ^ (a ) ) ) | . 
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Since, further, we can easily see that Ea g(x,£(u>)) is a continuous function we get 

N l^E a f f(z a ( Ar t X ) ,<£(u>)) = Eag(x',£(u>)) 

and employing (21) also that 

jv1™, pCN^u,')* fffe.(jvfc,u.<)'£H) - Eaff(a;',<J(w))| = 0. 

However, according to (20) this contradicts with u>' £ fl'. D 

Further, we shall study the convergence rate. It is easy to see that the conver
gence rate of the a(N,u>) fully determines the convergence rate of the optimal value 
estimates. Moreover, a similar assertion also holds for optimal solution estimate in 
the case of the deterministic equivalent I. 

Theorem 5. Let X C En be a nonempty, compact set, A C Es be a nonempty 
set, and a finite E„ g(x,£(u>)) exists for a £ A, x £ X. If assumptions i), ii) are 
fulfilled and if a(N) = a(N,u>), At = 1,2,... , is a sequence of statistical estimates 
of the parameter a £ int A such that there exists a real-valued sequence i/N, N = 
1,2,.. . , vN —> +oo as (At —+ oo) and one dimensional distribution function G(-) 
fulfilling the relation 

liminf P{u> : vN\\a(N,u>) - a\\ < c} > G(c) 
N^oo 

for every c £ E\, 
then 

lim inf P < u> : vN max Eaţjv,w) g(xЛ(шУ) — m a ? Ea g(xíţ(ш))\ < c ( > 

> G ( = j for every c £ E\. 

Moreover, if the assumption iii) is fulfilled, then also 

limiirf P {w : VN\\XKNIW) - a^H'2 < c} > G (~^\ for every c £ £?i. 

Proof . The assertion of Theorem 5 follows immediately from Theorem 1, the 
assumptions of Theorem 5 and the elementary properties of the probability measure. 

D 

Theorem 6. Let X = £+ , A C E, be nonempty set, a £ (0,1) and a finite 
Eag(x,£(w)) exists for a £ A, x £ A. If the assumptions i'), ii'), iii') are fulfilled 
and if 

1. a(N) = a(N,u>), N = 1 , . . . is a sequence of statistical estimates of the parameter 
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value a € int A for which 

a) there exists a neighbourhood U(a) such that Xa'(a) ^ 0 for all a' £ U(a), 

b) there exists a real-valued sequence i/N, N = 1, 2 . . . , such that lim I/JV = +oo, 
N-HSQ 

and one-dimensional distribution function G(-) fulfilling the relation 

lim inf P{w : i/N\\a(N,w) - all < c} > G(c) 
N-++00 

for every c G Ei, 
then 

lim inf P < w : vN \ max EarN w\ g(x,^(w)) — max Eag(x,^(w))\ < c> > 
N-^co { \XMN,„) ' Xa(a) I J 

> G ( ' c / ( ' l + ^--5X)>) for every c e ^ j . 

P r o o f . The assertion of Theorem 6 follows immediately from Theorem 2, the 
assumptions and elementary properties of the probability measure. • 

Remarks. 
1. It follows from Theorem 1 and Theorem 2 that the optimal value is a Lipschitz 
function of the parameter a, in both cases under considered assumptions. Conse
quently, we can obtain the first part of the assertion of Theorem 5 and the assertion 
of Theorem 6 immediately from Theorem 15 in [11], too. 

2. If a) fi(x), i = 1 . . . , i, are convex functions on En, 

b) the probability measure, corresponding to the distribution function Eb(j is log-
aritmic concave, 

then it follows from [12] that Ao(cv) is a convex set. Consequently, the approxima
tive sets are convex, too. (The definition of logaritmic concave probability measure 
is given for example in [12].) 

3. It happens rather often that the estimate of the unknown parameter a can be 
introduced as a sample average. Then it is easy to see that to obtain a converge 
rate we can utilize the method of large deviations in the case of independent random 
sample [10]. The case of dependent sample is discussed in [10], too. 

4. Theorem 5 and Theorem 6 present some convergence results. It is easy to see 
that some similar results can be also introduced for finite natural numbers N. 

5. APPLICATIONS TO SEQUENCES OF STOCHASTIC OPTIMIZATION 
PROBLEMS 

It is well-known that many practical problems repeat in time. It is also well-known 
that if we solve such optimization problems with respect to time dependence, we 
often obtain rather better results than by solving the corresponding separated prob
lems. In particular, this appears in the case of stochastic optimization problems. 
Namely, there often exists a stochastic dependence of random elements. 
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Let £J(UJ) = £3 = (£{(w),... ,^ (w)) , j = 1,2,..., be s-dimensional random 
vectors defined on (Cl,S,P), 
g1(x,z) be a real-valued, continuous function defined on En x Es, 
gJ (xJ, z3~l, z3), j = 2 , . . . , be real-valued, continuous functions defined on En x 
Esx Es, 

XJ(zJ~l) = X3 , j = 2,. . . , be mappings of Es into the space of non-empty, compact 
subsets of En, and A'1 C E„ be a non-empty, compact set. 

We shall introduce the stochastic optimization problem (w.r.t. the discrete time 
interval 1=-_V) as a problem of finding (a:1, x2,..., xN), xl € A'1, x3 = xJ(^J-](u)) _ 
Xi^-^to)), j = 2,. . . , N, for which 

E^V,^)) + E.9V,^VUJH)}> (22) 

is maximal. 

The aim of this section is to utilize the former results to obtain some estimates 
of the optimal value and the optimal solution of (22) under very special conditions. 
In detail, we shall consider the case when there exist s-dimensional random vectors 
if(io) -zif,j= 1,2,..., defined on (_2, S, P) such that 

; 
_''(") = £ i r > ) , j = 1,2,... . (23) 

i=l 

In what follows 

F^j (•) denotes the distribution function of the random vector rf(u>), j = 1,2,..., 

Fjj (•) denotes the distribution function of the random vector £J (u), j = 1,2,..., 

F,, l. i (•) and E; 5 denote the conditional distribution function and the con-
ditional mathematical expectation of the random vectors £J'(W) by £ J _ 1(w), j = 
1,2,..., respectively, 
aJ £ v4, 6̂  £ A are parameters, j = 1,2,..., 

Iji if" (0 denotes the common distribution function of (,1(OJ), £2(w), . . .,£N(u>), 

Ej| ' " j N denotes the operator of mathematical expectation corresponding to the dis-
>1 , N 

tribution function F t , '"'';;„ . 
Moreover, we shall assume that there exist s-dimensional distribution functions 
Fo'('). fo'(-). i = 1,2,... , such that 

Khz) = F?(z-aJ), i=l,2,..., 
j (24) 

F « ( , ) = F | J ( z - 6 i ) , 6i = D o * . 
t = i 

It is easy to see that under our assumptions it holds 

I£r'(^)=I^(^-^_iH)- (25) 
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Remark. If for example, rf(u), j = 1,2 . . . , are independent normal distributed 
random vectors with the average a J, j = 1,2,..., then relations (24), (25) are 
fulfilled. 

First, the following lemma is proved in [8]. 

L e m m a 7. Let there exist a finite 

E < . 1 ( . c 1 , . 1 ( w ) ) + ^ f f i ( - 5 i , . i - 1 ( w ) , e i ( w ) ) > for every x1, x2,..., xN G En. 

If for every t = 2,...,N, b\...,bN eA 

1. " ^ ' " " ' ( a . ) , ^ - 1 ) = x1 is a solution of the problem to find 

. P x ^ . ^ E S ' _ ^ i ( a ! i ' ^ " 1 ( w ) ' e i a ; ) ) ' 
2- Eji j ; _ , g'(x1,£*-1 (<_>), ('_>)) is a measurable function w.r.t. the cr-algebra given 

by £l(w)> • • • ,£ ! _ 1 ( w ) a n c l if z1 i- a solution of the problem to find 

n m x E / O c U V ) ) , 

then ( a . 1 , - " 2 ^ ' ^ ) ) , . . . , xN(l;N~1(u>)) is a solution of the problem given by (22). 

(We have omitted somewhere the index &,V,i = 1,2,... , at the symbol of 
mathematical expectation. The same shorthand notation will be used also in the 
sequel.) 

Now we are in a position to present the following result on the stability. 

Theo rem 7. Let A C Es be a nonempty set. If 

1. for every x1 6. En, g1(x1,z1) is a Lipschitz function of z1 G Es with Lipschitz 
constant L\ independent of x1 G En, 

2. for every x* G En, z>~1 G Es, <7J(aj, zj~x, _•*'), j = 1,2. . . , are Lipschitz func
tions of _J' with Lipschitz constant L\ independent of _ ; G En, _-' -1 G Es, 

3. for every _•' G Es, <7-'(a;',_J-1, _•''), j = 1,2. . . , are Lipschitz functions of _•*", _ J ' - 1 

with Lipschitz constant L'j independent of _•' G £ . , 

4. there exist finite E% gl(xl,£l(u)), Ey'l'-l g>(x>, £ j _ 1(w), £'(_>)), for every 

a> G i4, fri = £ a*', V G A, aj G En, j = 1,2,.. . , 

5. there exists a real-valued constant C such that 

A [ ^ ( ^ _ 1 ( 1 ) ) , ^ ( _ J ' _ 1 ( 2 ) ) ] < C | | _ J - 1 ( 1 ) - _ J ' - 1 ( 2 ) | | 

for every 2J ' -1(1), z J - 1 (2) G £_, j = 2,..., 
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6. max Ej, j._ 1_r'(a;\^'_ 1(w) )^
,(w)), i = 2 , . . . , _V, 6\ 6 , _ 1 ' A are measur-

I'eX't. '- 1) 
able functions, 
then 

Ғ Ғ 
П£xE6ҶÏj,...,6"(l) 

Ғ1 Ғ 
Ш X X iҶ2) , . . . ,6 N (2) 

!7
1(x\í1H) + V2.9i(x\^'-1(w),eH)] 

«V.í'M) + __.»V, fM.íҶ")) 

s Ľ L_|K(1) - '̂(2)11 + ]T L\(C + 1) ||a!(l) - a*'(2)| 

for K= {x\x\...,xN : x1 G X \ x-2 G X 2 (^(o))) , . . ., xN G X N ( ^ - ' (w))}, 

<•'(»•) 6-4, I . a ' ' ( r ) = tV'(r)G^ ) i = 1,2,..., _V, j = 1,2,.. .,N, r = 1,2 (£_ = 0). 

P r o o f . First, according to Lemma 7, it is easy to see that 

JV 

m ғ E í . !л gi(x\e^)) + ^2gj(X
j,e-\ío),e(oj)) 

= max E ^ Í ; 1 ( z 1 , í 1 (t-)) + (26) 

Jv 

+ E C ' r , P X
m f , x - ,^ E í t -5 i (^ .c ; " 1 H>e ; (^ ) ) 

for every aJ G A, b3'' — J_ aJ G A. 
! = 1 

Further, since it follows from Lemma 1 that 

|Ef 1 ( 1 ) 5
1 (x \^H)-Ef 1 ( 3 ) f l 1 ( a ; \^H) |< i i | |a 1 ( l ) -a 1 (2) | | 

and simultaneously 

l-fSi-icij^C-^.^^H.^H) - -^.^(s/'^.^"1^).^"^))! < 
< L 1 | | a*( l ) -a>(2) | | 

for every 
a;1 G X \ aj G X-*({J"1 ({_)), _•' = 2 , . . . , iV, w £ SI, 

it is easy to see that also 

I m a x E f . ^ V ^ V ) ) - max E ^ V ^ H ) ! < L1\\a
l(l) - a1(2)|| (27) 
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|^ex^1(w))Etir);j-1(2)3
j(^,e,-1(-),ej(-))-

- ^^^.^/tT^-ui)^^'^"1^)-^^))! (-8) 
< Li\\a>(l)-a>(2)\\ 

for every a ^ l ) , a1(2), 6»'(1), tV'(2) £ A, j = 1,2,... , AT. 

However, employing the triangular inequality, we obtain for j = 2 , . . . , TV, 

I^H^^^.^^V^.e-1^),^^)) 

-6 
E^:wxJ6X

m^Hw))
E£a7 ^'(~,.e,-1(-).e,(-))| < 

< I ^ H ^ ^ - ^ ^ ^ ^ E ^ ) " 1 ^ v . ^ V ) , ^ ) ) - (29) 

- E ^ : H ^ , 6 x m ^ H . ) ) E ^ l f f J ( a J ' ^ ~ 1 ( w U J ( w ) ) ! + 

+ I^H^.^x^u^))^1^^'^"1^)'^^))-

^ - H ^ ^ X ^ K ^ ) ) ^ 1 ^V.e^H.W)!. 
Since it follows from Lemma 2 of [7] that 

max l-li ,e '~V(- i»e ,"1('-).e i(w)), j = 2,...,At, 
xiexj((j 1("0) 

is (for every aJ £ A) a Lipschitz function of 2 ; _ 1 £ £7. with Lipschitz constant 
Z/j(C+ 1) we get, utilizing relations (24), (26), (27), (28) and Lemma 1, the validity 
of the assertion of Theorem 7. • 

Further, we shall pay attention to estimates problems. To this end we shall 
restrict our consideration to the case a-*' = a, a £ A, j = 1, 2, — A specific situation 
arises in this case. Namely, if relation (23) is satisfied, then the random sequence 
{£J(w)}fJLi is fully determined by the random sequence {rf(w)}'?Ll. However, then 
it is obvious that an estimate of the parameter a can be obtained from one realization 
of the random sequence { ^ ' ( w ) } ^ , under some additional assumptions, of course. 
More precisely, we can obtain an estimate on the realizations bases of the first N 
members of the random sequence {£ ( w ) } ^ = ] . 

Theo rem 8. Let A C Es be a nonempty set. If the assumptions 1,2,4,6 of 
Theorem 7 are fulfilled and if a(N,u) = a(N), N — 1,2 . . . , are statistical estimates 
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of the parameter a ~ int A obtained from the first N — 1 members of the random 
sequence {^J(w)}?i1, then 

a(N,w) —> a a. s. ==> 

lim max E ^ V 9N(*f,,tI,~'1 (->),£"(->)) = (30) 

Efl^"1^^,^-1^),^^)) a.s. 

If, moreover, for every 2 J _ 1 , z^ ~ Es, j = 1,2,.-., 

a) __i(z-'_1), j = 1 , . . . , are convex sets, 

b) for every z J~' , zJ E _ , , g*(x*',zJ_1, zJ) are strongly concave functions of aj G _„ 
with a parameter p > 0, 

c) 

^ ( T v . ^ a r g ^ m p ^ ^ /v = l , 2 , . . „ 

_ / / = arg max E f l £ " , " s w ( ^ I f J , - 1 ( « ) I ^ ( w ) ) ) 

xNexN((N J(_)) 
are measurable functions, 
then also 

lim å(N,ш) = a a.s. = > Jim Цx2fiV.». ~ xa\\2 = ° a - s - ( 3 1 ) 

Ґ l í " " ' . _ p í " ! ^ " 1
 kN _ ŁJV-1 

TV-~ 

+ -) 

The validity of the assertion of Theorem 8 follows immediately from the assertion 
of Theorem 1. 

The next corollary follows immediately from Theorem 8. 

Corollary 1. Let A _ Es be a nonempty set. If the assumptions 1,2,4,6 of 
Theorem 7 are fulfilled and if a(N,u) = a(N), N = 1,2..., are statistical estimates 
(defined in Theorem 8) of the parameter a £ int A, then 

lim a(N,u>) = a a.s. ==>• 

, M | 

M—oo M --—' xN_Xwf_N-1 ' ) aCJV>w) v v / ' - v // 
T V - 1 I ^ ; 

- max Efl«A , _ ,<, J V(_ j V
ie

J V-1(W) ) ,
J V(a;)) |-: Oa . s . _•_•___N-(e_-i) a - v .<. v ;•«> v ; j | 

If, moreover, for every 2-?_1, z-i _ _*,, j = 1,2.. . , assumptions a), b), c) of Theorem 
8 are satisfied, then also 

M 

jv-co u ^ v , u , l - « a - s - ==• i"11 77 Z_ II*«(-/)(-j ~ x ^ " 
A _ l 

1 ^ 
lim ä(N,ш) = a a.s. = > lim — / Uяř 

ÍV-oo V ' M-co M ---• a ( 
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Remark. Sufficient a s s u m p t i o n s u n d e r which 

max E f l ^ V V ^ ' - ' H . m ) , i = 2,3...., 
X>(^ l(w)) 

are m e a s u r a b l e functions follow for example from L e m m a 1 of [16]. 

6. C O N C L U S I O N 

In th i s paper we have dealt with s tabi l i ty of one very special p r o b l e m in s tochast ic 
p r o g r a m m i n g wi th unknown p a r a m e t e r s . However, it is well-known t h a t real-life 
p r o b l e m s satisfy n o t se ldom only our a s s u m p t i o n s . Moreover, t h e a s s u m p t i o n s under 
which even the approx imat ive p r o b l e m s are concave ones follow from R e m a r k in 
Section 4 in t h e chance constra ined case, too . 

It is evident t h a t t h e o b t a i n e d results can be in m a n y o t h e r ways applied to t i m e 
d e p e d e n t s tochast ic opt imizat ion problems. T h e a im of this p a p e r was only to t u r n 
a t t e n t i o n to this possibility. 

(Received October 7, 1991.) 
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