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WRAPPED EIGENSTRUCTURE OF CHAOS 

ANTONÍN VANĚČEK AND SERGEJ ČELIKOVSKÝ 

Nonlinear differential equations with chaotic, i. e. with bounded, nonvanishing and non-
cyclic solutions will be analyzed. Two tools of analysis will be introduced: (i) the pencil of 
affine and nonaffine vector fields of the right hand side of nonlinear differential equation, 
(ii) generalized eigenstructure with curved generalized eigenvectors, and even mutually 
wrapped unstable generalized eigenvectors. 

The state model of linear control systems dx/dt = FKX where FK is the state 
matrix parametrized by vector or matrix K, e.g. FK = F + GK, resp. F + KH 
have been used for any linear control system [16], [17]. The matrix K changes 
generally the right eigenstructure (V, S) of semisimple (diagonalizable) FK, where 
V is the matrix of right eigenvectors v\,... ,vn as the columns, S is the diagonal 
matrix with the eigenvalues s\,... ,sn: FKV = VS. The control synthesis is done 
to make matrix exponential exp(Ext) properly asymptotically tend to 0 £ R", the 
unique (for invertible FK) equilibrium point of dx/dt = FKX. By the properness we 
understand that the eigenvalues are from the feasibility truncated cone of the left 
half plane, [16]. 

The state model of nonlinear control systems dx/dt = }K(X) where fK is a 
(unique solution guaranteing, e. g. globally Lipschitzian) vector field parametrized 
by vector or matrix K, e.g. / K ( - ) = /(•) + g(K(.)), resp. /(.) + Kh(.) have been 
postulated for use for any nonlinear control system, [18] . The matrix K changes the 
generalized eigenstructure of fi<(), [18]. The control synthesis in the vicinity of equi
librium point is done to make generalized matrix exponential lim [/ + fK(.)t/N]N 

properly asymptotically tend to an equilibrium point of da;/di = }K(X). Generally 
there are several equilibrium points, i.e. several solutions of fK(x) = 0 for fixed A'. 
For the dimension of the state space n = 1, the only possible asymptotic stabilization 
is the stabilization to an equilibrium point - the attractor of the dimension 0. For the 
dimension of the state space n = 2, there is possible even the stabilization on a cycle 
- the attractor of dimension 1. For the dimension of the state space n = 3,4, . . . , 
there are some JK(-) for which it is possible the stabilization on the attractors - the 
cycles of dimensions 2 , 3 , . . . but also on the attractors of Hausdorff fractal dimen-
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sions 2 + £, 3 + £ , . . . where e 6 (0, 1). The stabilization on the fractal attractors with 
enlarged above whole dimension by e should have both interesting and important 
applications connected with mixing of solutions in the state space - with application 
to physiological health, [1], [3], [4], [6], [7], [8], [9], [13], [14], [18], [19]. We take as 
fundamental the change of paradigma from the negative to the positive valuation of 
chaos as the goal of behavior. The reasons for such new paradigma: (i) chaos makes 
possible better absorption of energy and movement, (it) chaos is distinguished by 
spectral reserve with the spectrum of the type 1 / / which is resistive with respect 
of resonance, (Hi) chaos is substantially connected with healthy activity - at the 
difference to the periodic behavior, and the point attractor connected with the end 
of activity at all; with this is connected even the robustification of the behavior, 
(iv) chaos is very closely connected with the novel fundamental tools of the nature's 
description - the fractals, self-similarity, and renormalization groups: chaos acts 
mainly as an organizing principle. The specified reasons are mutually connected. 
Some our results in this field of control synthesis are presented in [2], [21], [22], [23], 
[24]. In this paper we shall limit ourselves on analysis and a scalar, real parameter 
K, in the spirit of classical Root Locus method of Bode and Evans and some of its 
nonlinear generalizations [15], [16]. 

Definition 1. We shall call 

fK(x) = c + Fx+Kg(x) 
K £ R; c,x e Rn; g(x) = o(x), Ax/\\t = fK(x) 

the A'-pencil of vector fields, the first vector field being affine, the second nonaffine. 

Definition 2. Let for K = 1, fK(x) has equilibria e\, e 2 , . . . , em, i.e. / i(e,) = 
0 (i = l , 2 , . . . , m ) . Then the A-loci, K > 0, of the equilibria, eigenvectors and 
eigenvalues at those equilibria (EK, VK, SK), we shall call the eigenstructure of the 
A'-pencil of vector fields. 

Example 1. Let us consider three A'-pencils of vector fields, introduced by Chua 
[12], Lorenz [11], and Roessler [10] - only for A = 1: 
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T h e equil ibria p a r a m e t r i z e d by K: 
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T h e s t a t e m a t r i c e s l inearized near equil ibria p a r a m e t r i z e d by K: 

тpchu _ 
ЃKA = 

-а(Kа + 1 ) a 0 

1 - 1 1 

0 -ß 0 
• ^ _ . 2 -

- „ ( _ " & + 1 ) cr 0 

1 - 1 1 

0 -ß 0 

_ pcftu 

ғr = - 1 

o 

- O " (7 0 

1 - 1 -R'° 
Rlor Rlor _ & 

ғir = 
— CГ 

1 

-R ÌOГ 

- 1 

- Ä ' ° 

E- = 1 
c + Я ţ ? 

- 1 

0 

- 1 
0 ??% = 

0 
1 

c~Rl 

- 1 

T h e JiT-pencil of C h u a vector field h a s 7\-fixed center equi l ibr ium e\ and K-
d e p e n d e n t b o t h t h e off-center equil ibria ec^u

2, e ^ g and all t h e s t a t e m a t r i c e s F%•", 
F K \ 2 . FRZ w i t n ^ ' - d e p e n d e n t eigenvalues and eigenvectors. P a r a m e t e r values used 
by C h u a , ' [12], are a = -f, b = - § , a = 9, /? = 14, A" = 1. For those 
a, /?, a, b, K : s u = 2.233, s l j 2 = - 0 . 9 7 3 5 + i 2 . 6 6 7 , s 1 ) 3 = - 0 . 9 7 3 5 - i 2 . 6 6 7 , s M = 
- 3 . 9 5 7 , sfc,2 = 0 . 1 9 2 8 + i3.01, 's f c ,3 = 0.1928 — i.3.01 (k = 2 ,3) . Each equi l ibr ium 
has b o t h eigenvalues wi th posit ive a n d negat ive real p a r t s or each equi l ibr ium is 
hyperbolic - w i th i ts n e i g h b o r h o o d e x p a n d i n g in some lines (for real eigenvectors) 
or a p lane (for complex conjugate eigenvectors defining the p lane by t h e real a n d 
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imaginary part of an eigenvectors). Changing our K, some equilibria lose their 
hyperbolicity, see Fig.i. The slate space projector to horizontal axis is [ 1 0 0 ] , 
the projector to the vertical axis is [ 0 1 | ]. At any equilibrium there sits the 
triple of abssisas representing the three eigenvectors. The off-center equilibria and 
eigenvectors triples are /{-dependent. 

Һ 

Fig. 1. 

The /{"-pencil of Lorenz vector field has simply /{-dependent the off-center equi
libria: e'j°-r

2 = c\°2/K, e'^r
3 = e\°r

3/K and /{-fixed both the center equilibrium elor 

and the state matrices E1'
or, Flov, F3

h'r. So even their eigenvalues and eigenvectors 
are /{-fixed. Parameter values used by Lorenz, [11], are a = 10,6 = | , r = 28 and 
K = 1. For those a, 6, ?• and for K > 0 : s1A = -22.83, si,2 = 11.83, si,3 = 
- § ; - t > , = -13.85, ski2 = 0.09396 + il0.19, s*>2 = 0.09396 —ilO.19 (* = 2,3). Even 
now each equilibrium is hyperbolic. 

The /{-pencil of Roessler vector field has /{-dependent both equilibria e^®, crj?e
2, 

and the state matrices F^-06, F^-06,, and even their eigenvalues and eigenvectors are 
/{-dependent. Parameter values used by Roessler, [10], are a = 0.4, 6 = 2, c = 4 
and A' = 1. For those parameters: s M = -0.07691 + i.3.23, s J | 2 = -0.07691 -
L3.23, .si,3 = 0.3427, s2)] = 0.1323 + 10.9807, s2,2 = 0.1323-10.9807, s2,3 = -3.654. 
Again, even now each equilibrium is hyperbolic. Changing K, some equilibria lose 
their hyperbolicity. 

Note 1. We were considering the eigenlocus of the /{-pencil of the affine and 
nonaffine parts of the vector field. It can be easily generalized to the p-sheaf, for the 
differential topological notion of the sheaf see [5], [17], [25], taking as the parameter 
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p any of the parameters: a, /?, a, b, K ; a, b, r, K ; a, b, c, K. In fact we 
computed, [20], all such p-eigenloci of fphu, fp°

r, fp0e - generally with the result 
of losing the hyperbolicity of the equilibrium point in some vicinity of the nominal 
value of the parameter p. 

In [18] we introduced the generalized eigenstructure as based on a refinement 
of the stable and unstable manifolds of the central manifold theorem. In following 
we shall introduce the curved eigenstructure based on the A'-pencil of solutions of 
differential equations with the right hand side being previously introduced A'-pencil 
of the affine and nonaffine vector fiels. 

Definition 2. The curved eigenstructure of the vector field fi(x) with the hy
perbolic equilibria points, is the limit point of the continuation on (0, 1] of the 
eigenstructure of lim /JC(X')-

Algorithm. To find the curved eigenstructure of the vector field from the Defini
tion 2: 
1. Compute the equilibria points. 
2. Compute the eigenvectors and eigenvalues at those equilibria points. 
3. Choose the point on the real eigenvector or either on the real or imaginary part 
of the one of complex conjugate eigenvectors near the equilibrium points. 
4. For the real eigenvector with positive (negative) eigenvalue integrate the differen
tial equation with the vector field from Definition 1 starting in an initial point from 
the step 3 for positive (negative) time. The solution is the curved real eigenvector 
of the curved eigenstructure. 
5. For the real or imaginary parts of the complex eigenvector from the step 4 with 
positive (negative) real part of the eigenvalue, integrate the differential equation 
with the vector field from Definition 1 starting in the initial point from the step 3 
for positive (negative) time. The solution is the curve on the curved surface of the 
curved eigenstructure. 

Note 2. On the opposite way, the eigenstructure has the meaning of the tangent 
vector or plane to the curved real eigenvector and or of the curved real surface with 
the meaning of the both real eigenvalues and the real and imaginary parts of the 
complex eigenvalues as tangent coefficients, [18]. 

Example 2. We shall demonstrate the curved eigenstructure of the Roessler equation 
near the two equilibria for Roessler nominal values of the parameters a = 0.4, 6 = 
2, c = 4, A' = 1 , see Fig. 2. The projector of the state space to the horizontal axis 
is [ 1 | 0 ], and to the vertical axis is [ 0 | — | ]. The sphere-like segments with the 
center sitting at two equilibrium points are represented by the spiral sitting on these 
segments. The spiral near the bottom equilibrum is stable, so it was computed for 
negative time. The stable curved axis for the top equilibrium was computed also for 
negative time. 
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Example 3. The Lorenz equation which is the prototype differential equation with 
chaotic-bounded, nonvanishing, noncyclic behaviour, we shall use for the demon
stration of the behaviour of unstable curved eigenstructure in large. For nominal 
values of the parameters <r = 10, b = | , r = 28, K — 1, see Fig.3. The projector 
to the horizontal axis is [1 i 0 ], and to the vertical axis is [0 1 — | ]. Now the 
unstable curved eigenvectors get wrapped. Similar wrapped unstable eigenstructure 
of chaos we have computed for the Chua and Roessler equations, like for the Lorenz 
equation not only for nominal values of parameter but for the sets of the parameters 
a, /?, a, b, K; a, b, r, K; a, b, c, K sets containing the nominal parameters, [20]. 
For the both the Lorenz and the Chua equation the curved unstable eigenvectors 
get wrapped changing their positions from the vicinity of one of the hyperbolic e-
quilibria points to the the other; for the Roessler equation, the unstable eigenvector 
from the bottom hyperbolic equilibrium point, after reaching the vicinity ot the top 
hyperbolic equilibrium point, remain in that vicinity. 

Fig. 2. Fig. 3. 

N o t e 3. The eigenvectors of simple (diagonalizable) linear vector field span the 
solutions. This they do in some vicinity (by global linearization) even the curved 
eigenvectors. This property is lost in large: the curved unstable eigenvectors settle 
in fractal attractors. 

Conclusion. The A'-pencil of eigenstructure of matrices was generalized to K-
pencil of the eigenstructure of the affine and nonaffine parts of the vector field. The 
linear eigenstructure of the matrix was generalized to the curved eigenstructure of 
the vector field. It was demonstrated that its unstable eigenvectors are wrapped for 
the chaotic solution oT Lorenz, Chua and Roessler equations. 

(Received January 9, 1992.) 
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