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NEURODYNAMIC ADAPTIVE CONTROL SYSTEMS 

JULIO C. PROANO, JAN T. BIALASIEWICZ AND EDWARD T. WALL 

Precision adaptive control has been accomplished using a neural network to generate the 
required system dynamics, given the desired input and output. That is, an artificial neural 
network has been designed and incorporated into an adaptive control system to function as 
a synthesizer of a dynamic plant which senses and continually reduces, in a learning sense, 
the system error. This approach is called neurodynamic adaptive control since the system 
dynamics are modeled by an adaptive neural topology. 

1. INTRODUCTION 

The concept of a neural network can be traced back to the early 1940's. About thirty 
years ago engineers and scientists began to use this approach in an attempt to model 
static and simple dynamic problems. In this paper it is shown that neurodynamics 
and advances in adaptive learning systems are at a state of development where a 
synthesis of these principles leads to a significant advance in on-line adaptive control 
systems for control design and off-line model synthesis. 

Neural network models of the brain or nervous system have been studied for many 
years. Initially, they were of primary interest to physiologists, biologists, psycholo
gists, etc., primarily to understand the behavior of the brain and nervous system. 
In recent years, modeling techniques have been extended and developed in an effort 
to improve the technology of signal and control processes. The term neurodynamics 
has been chosen to identify the learning process which is accomplished within this 
control system. 

The approach developed makes use of a class of feedback dynamic neural .nets 
described by a system of nonlinear difference equations. The solutions of these 
equations must converge to a bounded region of state space. If the model is a 
gradient system, i.e., a system that contains no stable limit cycles and has at least 
one equilibrium state, then its stable trajectories will enter or exit from selected 
equilibrium states. System applications such as identification, estimation, pattern 
recognition, etc., essentially become special cases of this normalized gradient system. 

For control system applications this research has been limited to systems of linear 
difference equations, so that accurate adaption and learning laws may be developed 
for on-line use, using the neural system concept. Thus providing an adaptive control 
system for standard application. 
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The neurodynamic adaptive model has been successfully tested in three modes 
of operation: off-line learning mode, on-line learning mode and normal mode. First, 
the plant is modeled by the neurodynamic system using input and output data 
as shown in Figure 1. This training or learning process is done off-line until the 
neurodynamic system adjusts its own parameters to reproduce the input-output pair 
sequences. Second, once this process is completed satisfactorily, this model can be 
put in the control loop of the plant (refer to the inverse dynamics control example), 
in which it will operate in normal execution model. Finally, the complete control 
of the plant is obtained by adding a duplicate (parameter-wise) neurodynamical 
system in parallel to the plant which operates in on-line learning mode as shown in 
Figure 2. Any significant change of the dynamics of the plant is sensed by the latter 
system and the result is the almost instantaneous changes of its parameters. The 
two neurodynamic systems (one in normal execution mode and the other in on-line 
learning mode) share the values of their parameters, and the result is a self-adapting 
control system. 
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F i g . 1. Neurodynamic adaptive model. F i g . 2. Inverted dynamics control system. 

2. NEURODYNAMIC ADAPTIVE SYSTEM 

The neurodynamic adaptive system behaves like a synthesizer that evaluates the 
performance of a dynamic system using multilayer neural network topology. A 
multilayer dynamic neural network was chosen to implement the system because 
of its potential for supplementing the dynamics. 

The use of a discrete representation of the behavior of a physical system was 
adopted to introduce the time dimension into the neural network structure. This 
discrete implementation of the model of a system requires a delay network. This 
additional subnetwork has been implemented by a neural structure [1] and by shift 
registers. 

The basic research part of the present study is the application of multilayer neural 
networks to the simulation of the dynamics of physical systems. The most relevant 
properties for control systems compensation by neural networks can be enumer
ated as follows. The first is the instantaneous performance using simple computing 
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elements. The second is the partial immunity to system crash if some elements mal
function, which is known as the property of continuous domain memory and redun
dancy. Third, and most important, is the parallel processing behavior of multilayer 
topology, which is particularly exploited in this research. 

3. ARCHITECTURE 

The topological structure of the dynamic neural network synthesizer, shown in Fig
ure 3, is based on two main developments in the areas of adaptive filters and neural 
networks, Madaline network developed by Widrow [2], [11] and the delta rule or 
backpropagation method originally developed by Werbos [9], [10]. The applications 
of the backpropagation method in neural networks were originated by the paper 
by Rumelhart, Hinton, and Williams [3]. Windrow's contributions to the field are 
summarized in [11]. A new recursive prediction error algorithm for the training of 
feedforward layered network with better convergence properties than the classical 
backpropagation algorithm is proposed in [12]. Improved learning algorithms are 
also reported in [17]. 

Fig. 3. Topological structure of the dynamic neural network synthesizer. 

The optimization of parameters of the neural network is accomplished by gradient 
descent to optimize the values of the weights that interconnect the different layers 
of the neural network. The present approach goes a step further, and optimizes 
three other parameters directly related to the slope, threshold value, and saturation 
level of the activation function of each neuron or processing element. In addition, it 
updates the learning rate coefficient according to the total error. Thus the learning 
in this neurodynamic architecture is an extended version of the delta rule. 

In the following derivation, it is important to recognize the local character of 
optimization process. The computation of the updated values of the parameters of 
the neural network is local to each processing unit. This property makes the overall 
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system a parallel computational structure suitable for hardware implementation with 
on-line adaptation capabilities. 

The delta rule when applied to the neural network provides the learning process. 
The system uses the input vector to generate its own output Oj, which is compared 
with the desired output or target vector tj. If a discrepancy occurs between these 
two vectors, the delta rule accommodates the values of the interconnecting weights 
to reduce the difference. The output of any neuron 

Ok(r) = fk(netk(r)) 

where fk is an activation function defined below and 

netk(r) = ] P wkt Ot 
l 

where the subscript £ is the reference to the preceding layer. In the three-layer 
topology considered in this paper, the subscript j will refer to the output layer, the 
subscript i will refer to the second hidden layer, and the subscript r will refer to the 
first hidden layer. The measure of the error on the input/output pair at time t = r 
is given by 

E(T)^E(^T)-°i(r))2 o) 
3 

where the sum over the index j refers to all the neurons in the output layer. The 
delta rule implements a gradient descent in E(T) , where E(T) in equation (1) can be 
written as 

E(r) = ^ X > M 2 (2) 
3 

and e ;(r) is the j th component of the output error vector. Let Wji be the weight 
that connects the *th neuron (in the second hidden layer) to the j th neuron as shown 
in Fig. 4. The weight values at time t = r are WJJ(T). These weights connect the 
neurons in the second hidden layer to the neurons in the output layer and can be 
updated as 

Wji(r+\) = wji(r)+Awji{T) (3) 
where d£, x 

and i] is a constant called the learning rate or the step length of the gradient proce
dure. 

The evaluation of A Wji(r) for all j and i is given by 

Awji(T) = r1SJ(T)Oj(T) (5) 

where 6; is defined as 

«' = - * £ W 
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Fig. 4. Interconnections in the multilayer neural network. 

This procedure is extended to all layers of the network. The approximation capa
bilities of neural network architectures have been investigated by many authors. 
Interesting results are presented by Cybenko [15]. In Hornik [13] it is rigorously es
tablished that standard multilayer feedforward networks with one hidden layer using 
arbitrary squashing or activation functions are capable of approximating any Borel 
measurable function from one finite-dimensional space to another to any desired de
gree of accuracy, provided sufficiently many hidden units or neurons are available. 
Farther results on approximation capabilities are reported by Hornik in [14]. 

4. THE EXTENDED DELTA RULE 

The extended delta rule is based on the consideration of a semilinear activation 
function fk for the neuron uk that belongs to any layer of the neural network. 

The generalized activation function fk of the neuron uk is a sigmoidal function 
that depends on the following parameters: 

(i) Measure of the slope of the sigmoid in the linear region ak 

(ii) Threshold value hk 

(iii) Saturation level Kk-

Such a function is given by 

/ - K l ~ exP(-®k(netk + hk)) 
Jk k l + exp(-ak(netk + hk)) ['> 



and 

Neurodynamic Adaptive Control Systems 35 

or in a more compact form 

fk = Kk tanh [y(ne.fc + hk)] • (8) 

The parameters a;-, a,- and a r of the sigmoidal function in equation (7) at time i = r 
can be updated as „. . . . . . 

« i ( T + l ) = cvj-W + A a ^ T ) , (9) 

a ; ( r + l ) = a t ( r ) +Aa , ; ( r ) , (10) 

a r ( r + l ) = « r ( r ) + A a r ( r ) , (11) 

W l l 6 r e A 9 j = n6Jnetj (12) 

A a,; = n6fneti (13) 

A a r = i)6rnetr (14) 

6J = {tj-Ofif? (15) 

*" = I>«y.ff (16) 
i 

6? = ^SiWirf? (17) 
k 

, u A i dfk 
h = ^ dn^' ( 1 8 ) 

This approach is extended to the other two parameters hk and Kk. 
The parameters hj, hi and hr of the sigmoidal function in equation (7) at time 

t = T can be updated as , , , , , 

A ; ( T + 1 ) = / ! j(r) + A/ l j ( r ) (19) 

A,(r + 1) = A,-(T) + A A . ( T ) (20) 

/ i r ( r + l ) = /i r(r) + A / V ( r ) (21) 
where „ , , 

A hj = n Sj (22) 

Ahi = rj6i (23) 

A Ar = n 6r (24) 

63 = (tj-OrffJaj (25) 

6i = ^SjWjiftai (26) 

j 

6r = "£6i UHrf? Or (27) 

The parameters Kj, A',- and Kr of the sigmoidal function (7) at time t = r can 
be updated as , s , 

KJ(T+1) = KJW + AK^T) (28) 

Ki(T+l) = Ki(T) + AKi(T) (29) 

Kr(T+l) = A'r(r) + A K r ( r ) (30) 

and 
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where 
A Kj 

Д KІ 

A Kr 

чSïírKf1 

Ji 

Цбфlí-1. 

(31) 

(32) 

(33) 

5. DYNAMICS OF THE NEURON STRUCTURE 

The dynamics introduced in the multilayer neural network structure is the most im
portant component of the neurodynamic adaptive synthesizer (NDAS) architecture. 
It provides the memory feature that transforms a static neural net into a dynamic 
neural net. This dynamics is essential in the development of control system models, 
compensators, estimators, etc.. 

Definition. Memory-type elements are elements whose input-output characteris
tics are not unique in a static sense but are unique if initial pairs of input-output 
values plus the entire histories of inputs are specified [4]. 

Since the output for a memory-type device depends on the entire input histo
ry, the input-output relationship for the memory device can best be represented 
mathematically by a specific functional 

Fig. 5. Active-memory neuron. Fig. 6. Passive-memory neuron. 

Two types of memory structures for the neuron have been investigated: active-
memory type and passive-memory type. The neural implementation of these two 
types of memory-elements are shown in Figs. 5 and 6. In the literature on nonlinear 
control systems, active-memory elements and passive-memory elements have mostly 
been studied in the context of response to sinusoidal inputs. 
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Definition. A memory element is called active if over one cycle of the input, the 
characteristic is traversed in such a way that a nonzero area is encircled in a clockwise 
direction [4]. 

Definition. A memory element is called passive if over one cycle of input, the 
characteristic is traversed in such a way that a nonzero area is encircled in a coun
terclockwise direction [4]. 

An important feature of passive-memory elements in nonlinear systems is that 
the area enclosed by the element characteristic is a measure of the energy dissipated 
during each cycle. On the other hand, the area enclosed by the active element 
characteristic represents the energy supplied by this element to the system in each 
cycle. 

These two concepts are fundamental in the performance of the neurodynamic 
adaptive synthesizer. The feedback uses the necessary delay to produce the memory 
effect in the hysteresis in Figs. 5 and 6. The basic equations for the active and 
passive memory structure of an arbitrary neuron uk, are respectively 

ofcí>) = fk(netk(T)-K;lOk(T-\)) 

Ofc(r) = fk(netk(T) + I<;1 Ok(T - 1)) 

(34) 
(35) 

Input 

Fig. 7. Effect of changes in the values of the parameter a for the active-memory neuron. 

Figure 7 shows the hysteresis produced by the active-memory neuron where the 
sigmoidal function is defined by equation (7). The different curves show the effect 
of changes in the values of the parameter a, where the saturation level K is con
stant and normalized to unit, and the threshold value to zero. The values a are: 
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2; 1.5; —2; —1.5. Figure 8 shows the hysteresis produced by the passive-memory 
neuron where the sigmoidal function is defined by equation (7). The different curves 
show the effect of changes in the values of the parameter a, where the saturation 
level K is constant and normalized to unit, and the threshold value to zero. The 
values of a are: 2; 1.5; —2; —1.5. Figure 9 shows the effect of the parameter h 
(threshold value), where the sigmoid is defined by equation (7). The values of K 
and O' have been normalized to unity. 

Input 

F i g . 8. Effect of changes in the values of the parameter a for the passive-memory neuron. 
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Fig . 9. Effect of threshold value h on the neuron characteristic. 
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6. COMPUTER SIMULATION EXAMPLES 

Example 1. Single-degree of a positional controller for a robotic arm. 
This is a third-order system with the transfer function 

T(s) = 
75 

s 3 + 7s2 + ЗOs + 75' 

_ o.в --•• -; 

/Г\! I i 

- T(s) 

NdAS 

І L._ Error 

i 
0 0.5 1 1.5 2 2.5 3 3.5 

Time [sec.] 

Fig. 10. Step response of the third-order positional controller in a robot arm and its 
neurodynamic model. 

Fig. 11. Illustration of the noise rejection ability of the neurodynamic model 
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The Hemodynamic model was trained to follow the behavior of this system. Fig
ure 10 shows the result of off-line learning. The solid line is the step response of 
T(s) and the dashed line represents the step response of the neurodynamic model. 
It can be seen that the difference in the performance of the real system and its neu
rodynamic model is practically negligible. The noise rejection characteristic of this 
model is illustrated by Figure 11. The step input plus noise shown in this figure pro
duces the response shown by a. light line. It can be compared to the noise-free step 
response1 of the system model, shown by a solid line. The extremely low sensitivity 
of the neurodynamic model to noise is to be noted. 

An analysis of the. structure of the neuron weights after the completion of learning 
shows that the neurodynamic model may be used as a state estimator or observer 
and the states can be defined by the set of outputs of all neurons. However, it has 
been found by experiment that a sufficient reduced set of states exists [5]. In the 
recent paper, it- has been shown by Soloway and Bialasiewicz [16] that using Volterra 
expansion the output of a neural network can be represented as a linear combination 
of the first and higher order impulse responses, determined by the weights of the 
trained network. This expansion can be truncated and its term can be used as a 
finite-dimensional estimate of the state vector. 

Example 2. Design of a simplified vertical channel landing condition autopilot. 
The state model after linearization, as specified in [6] is 

0 1 0 0 
0 KiK2C K2Cmg K2Cmde 

0 1 K3Cla KiCae 
0 0 0 - 2 0 

x + 

Based upon an altitude of 500 feet, an approach speed of about 260 knots and typical 
values for the various stability derivatives, the A matrix is evaluated to be: 

A = 

0 1 0 0 
0 -.856 -2.737 -0.812 
0 1 -.521 -0.77 
0 0 0 20 

It is now possible using conventional state-variable techniques to obtain the open-
loop transfer function of the vertical airplane channel as 

GЉ) = 
-164.24(5+ .495) 

ф + 20) (s + .69 + j 1.65) (s + .69 - j 1.65)' 

The goal is to show that using the neurodynamic simulator a close approximation 
to the inverse dynamics l/Gp(s) is obtained, which when cascaded with the plant 
Gp(s), produces an overall dynamics such that the system performance is satisfac
tory. For simplicity, in the simulation, the velocity controller was developed for the 
plant transfer function G(s) which is Gp(s) without integration. Figure 12 shows 
the undesirable performance of the uncompensated plant. To illustrate the high 
accuracy of the neurodynamic model, its step response (solid line), and also the. step 
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response of the plant (dashed line) are shown together in Fig. 13. To develop a 
neurodynamic compensator with the transfer function which approximates 1/G(s), 
a step input is applied to the plant. The inverse dynamics of the plant is learned by 
the neurodynamic model by inverting the input and output when operating in the 
learning mode. The performance of the developed inverted dynamics in the form 
of the unit step response is shown in Fig. 14. Also, the approximate inverted dy
namics were used as a compensator cascaded with the plant. The step responses of 
the uncompensated plant (dashed line) and the compensated plant (solid line) are 
shown for comparison in Fig. 15. The significant improvement in performance is to 
be noted. In Fig. 16 the performance of the neurodynamic inverted compensator is 
compared with the performance of a compensator that uses state-variable feedback. 
It is seen that the system with the neurodynamic compensator is much faster with 
a slightly higher overshoot. This can be improved with a longer off-line learning 
process. The neurodynamic compensator is faster than the state-variable feedback 
design due to the difference in performance of the two systems. The neurodynamic 
compensator is a highly nonlinear system that optimizes the overall performance, 
driving the parameters in a nonlinear fashion. 

Time [sec] 

F i g . 12. Plant performance before compensation. 
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Fig. 13. Step response ol ilii- plani and its neurodynamic model. 
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Fig. 14. Step response of the approximate inverted dynamics. 
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Fin;. 15. Step response of the uncompensated and compensated plant. 
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Fig. 16. Step responses illustrating the performance of the neurodynamic inverted 
dynamics compensator and the compensator designed using state space approach. 

E x a m p l e 3. Application to attitude control of a flexible spacecraft. 
In general this is a problem of feedback control of bending modes in flexible systems. 
In theory, such systems required an infinite number of elastic modes to completely de
scribe their behavior. However, they are usually modeled by large finite-dimensional 
systems. The fundamental problem of feedback control of flexible systems is to pre
cisely control a high dimensional system with a smaller dimensional controller, since 
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on-board computer limitations and modelling errors restrict the control to a few 
critical modes. This restriction can be removed by the application of a controller 
based on a neurodynamic simulator. One possibility is the use of an inverted dynam
ics controller. In order to show that the neurodynamic system is capable of accurate 
modelling of the dynamic of flexible structures, an example with the following pole 
locations is given. 

- 0 . 5 ± j 

-0.5 ± j 2 

- 1 . 0 ± j l . 5 

- 1 . 5 ± j 2 . 5 . 

This corresponds to the normalized transfer function 

60.43 
гo) = s 2 ± 9 . 5 s 7 + 39.25s6+114.6s5 + 223.06s4 + 321.90s3 + 305.05s2 + 194.71s + 60.43' 

The neurodynamic model trained with this plant performs almost exactly as the 
plant. This is shown in Figure 17 in which the step responses of both the plant 
and its neurodynamic model can be seen to be almost identical. Figure 18 shows 
the neurodynamic model response with a square wave input signal and a random 
magnitude. j a 

4 6 8 10 12 14 

Time [ s e c ] 

Fig. 17. Step responses of the plant (flexible structure) and its neurodynamic model. 
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-1 .5 

60 Time [ sec ] 
Fig . 18 . Neurodynamic model (flexible structure) response to the square wave input 

with random magnitudes. 

7. CONCLUSIONS AND SUMMARY OF OTHER RESULTS 

The value of this break-through in using self-teaching methodology in automatic 
control analysis and synthesis is of significant value in this modern era of high 
technology. It should be mentioned that some of the more important advantages 
of using a dynamical neural network structure as the basis for developing modern 
control technology are the following: 

1. Instantaneous or almost instantaneous processing performance by using simple 
computing elements. 

2. Immunity to system crash due to a malfunction or deterioration of some ele
ments of the network (not discussed in this paper). 

3. Parallel (learning) processing behavior of multilayer topologies, producing an 
on-line learning capability. 

Finally, the relative simplicity of electronic neural network hardware (possessing 
learning capabilities due to the use of voltage/current controlled resistors driven 
by a gradient-algorithm firmware code of general application) promises to lead to 
significant improvement in cost-performance factors. Because of the highly-parallel 
nature of neural network processors this approach may provide answers to some of 
the more formidable complex control system requirements. 

There exists many interesting results and approaches to identification and con
trol of dynamical systems using neural networks. A general overview, some appli
cations as well as predicted research directions are presented in [18]. Many aspects 
of the field are discussed and illustrated by simulation examples by Narendra and 
Parathasarathy [19], Bialasiewicz and Soloway [20], Chen, Billings and Grant [21], 
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Poloycarpou and Ioannou [22], and Bialasiewicz and Ho [23]. Stochastic, neural 
adapt ive control a lgor i thms are presented in [24], [25], [26], [27] and i l lustrated by 
s imulat ion resul ts . 

In spi te of numerous interest ing s imulat ion results and some applicat ion a t t e m p t s , 
the relevance of research on neural identifiers and controllers is still open to deba te . 
Al though encouraging results have been obta ined, the development of sound theo
retical bases is still required for the applicabil i ty of neural networks to real control 
problems. T h e first achievements genera ted a lot of exci tement . However, the key 
to the future of neural networks lies in high-quali ty long- term basic and applied re
search, not in creat ing "new" a lgor i thms and generat ing endless s imulat ion results . 

(Received December 5, 1989.) 
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