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FUZZY INFORMATION AND 
COMBINATORIAL INEQUALITIES 

ARTHUR RAMER 

Properties of information measures both in fuzzy theory and in the theory of evidence are closely 
related to combinatorial identities and inequalities. It is demonstrated how study of information func
tions leads to new combinatorial results. Three cases are presented 
- metric property of fuzzy information distance 
- approximations of continuous fuzzy information 
- maximum for a combined Dempster-Shafer evidence measure 

1. I N T R O D U C T I O N 

In 1982 Higashi and Klir [3,6] introduced the notion of fuzzy uncertainty measure and 

the related fuzzy information distance. They were expressed as function of t he possi

bility assignments corresponding to fuzzy sets under consideration. Later, in [10] and 

[7] uncer ta inty measures were classified and characterized axiomatically. These char

acterizations were mostly in terms of certain identities, but also included at least one 

inequality, corresponding to the property of subadditivity. Following tha t development, 

we [8] obtained related characterizations for information distances. A closer analysis of 

their propert ies led to a novel combinatorial inequality. In particular, this inequality was 

responsible for the metric property of G-distance. 

Another development was related to our recent paper showing how to define notions 

of fuzzy information on continuous domains of discourse. A natural question thus arose, 

whether the 'cont inuous ' information can be approximated by the discrete ones. The 

answer is positive, leading to an interesting family of expressions for limits of sums, 

representing discrete information values. 

Very recently, Klir [6] studying general properties of information across various modes 

of definition - probabilistic, fuzzy and Dempster-Shafer - introduced a principle of 'in

formation preservation' . This study suggested a very intriguing inequality for Dempster-

Shafer theory [11]. It gives an upper bound for a given evidence assignment. 

In the remainder of our paper we outline these combinatorial results. The theorems 

about rearrangements and about approximations of continuous information will be only 

i l lustrated with representative examples, the proofs being published separately. The re

sult about 'evidence ' information is very recent and we outline its proof. In the closing we 

remark that our study is likely only a beginning of mutual influence of the developments 

in two very distinct disciplines - fuzzy reasoning and combinatorics. 
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2. T E C H N I C A L N O T E 

In our discussion we often refer to the values of a finite sequence (p,) as arranged in 

descending order of their values. We denote such rearrangement (p;). On occasion we 

assume tacitly tha t we have also defined po = p n+, = 0. We adopt [5] style of writing 

summat ion symbols without explicit limits if the maximum range is mean t . Such range 

is usually 1 to n, but it may become 1 to n — 1 or 2 to n to avoid terms like logO or 1. 

Logari thms are in base 2, except in the section on continuous information where natural 

logari thms are more convenient; we assume that OlogO = 0. 

Fuzzy sets [1] are defined by their membership grade with respect to a domain of dis

course. We assume these domains to be finitely measurable sets. Most results will be 

s ta ted only for finite domains; an obvious exception will be the definition and approxi

mat ions of 'cont inuous ' information functions. 

Given a domain X = {x\,... ,xn} and a membership grade x : X —» [0,1], its values 

p\ = TT(X\),. .. ,pH = n(xn) form a possibility distribution. They can be interpreted as 

giving numerical expression of the likelihood of observing a specific instance Xi within 

the domain X. 

Given two such distributions ir = (p,) on X and w = (qi) on Y, we can form a joint 

distr ibution p = jr <g> n? on X x Y by put t ing 

P- (xi,yj) >-» min(p. ,o ,) • or r „ = min(p.,ijf,). 

Conversely, given an arbi t rary distribution a = (sij) on a product space X x Y, we can 

construct its marginal projection a' on X and a" on Y 

a'(xi) = m a x ^ i j ) <r"(j/,) = max(s,_,). 

Our model of Dempster-Shafer theory [11] will consist of a domain of discourse given 

as a finite set A' and of a basic assignment of evidence - an assignment of nonnegative 

weights nii, 0 < trij < 1 to a family of subsets A; of X. We s t ipulate tha t ]T m, = 1. 

The subsets A, are called focal subsets of evidence assignment, thus defining a mapping 

p : Ai H-» m,-. It is convenient to extend p to all subsets of X by pu t t ing p(B) = 0 for a 

non-focal B. We do not presuppose any containment or intersection s t ruc ture of sets Ai 

- they may, and usually will have uon-empty intersections; if Ai C Aj it is possible tha t 

p(Ai) > p(Aj) and so on. 

3. INEQUALITIES AND FUZZY INFORMATION 

We shall conduct our discussion in terms of a finite domain of discourse X and possibility 

dis t r ibut ions, say it : X —» [0,1], s u p x g X n(x) = 1, represented as a sequence p\,... ,pn, 

where p; = ir(xi). Here and in the following we assume tha t the cardinality \X\ = n. 



The basic information function [3, 4, 8] is [/-uncertainty. Given 7r sorted in the 
descending order of values p~\,... ,p„, we assign it an information value 

U{ir) = Y,{Pi ~ Pi+i) loS * = J2 P' los yzy • 

Given two distributions 7r = (p,), p = (r;) such that Pi < rt, i = l , . . , , t ) w e define 
their information distance 

g(n,p)=U(p)-U(ir). 

In a general case of arbitrary 7r and p we first define their lattice-theoretic supremum 
7r V p = (g") where o" = max(p;,r;). Now we can define a metric distance G(ir,p) = 
g(%, 7r V p) + g(p, IT V p). Dual definition, using 7r A p, leads to H(TT, p) = g(it A p, w) + 
g(w A p, p); this distance is not a metric, however it has an attractive property of being 
additive. 

Closer analysis of G(ir,p) shows that its metric property is a direct consequence of an 
important inequality concerning rearrangements of sequences. Given a sequence (a;) we 
shall denote its descending rearrangement by a = (a,). Given two sequences a = (a;) 
and b = (&,) we denote by a V 6 the sequence (maxja,, 6,)) and by a A 6 the sequence 
(min(a,-, &,)). We observe here that, for example, a V b is a very different sequence from 
a V 6, as the former results from rearranging the pairwise maxima max(a,, &,) of the 
original a and b. 

We can now state the inequalities. We shall state them only in the form directly 
applicable to the discussion of information metric; their general form is presented in [9]. 
We assume that a = (a,), b = (&,) and c = (c,) are arbitrary sequences of n elements and 
that w = (wi) is a non-increasing sequence of weights w\ > • • • > wn. 

Theorem 1. 

£ ] w(a) + Y w(b) > Y w(a V b) + VJ ш ( a Л b). 

Theorem 2. 

] P w(a V c) + ] T w(b V c) > ] T w ( a V&) + ]Pu;(č). 

We now indicate how Theorem 2 leads to the metric property of G distance. Assume 
given three possibility distributions 7r = (p;), p = (r,) and <r = (a,-). The inequal
ity G(7r,a) < G(7r,p) -f G(p,cr) can be expressed using /7-uncertainties giving, after 
regrouping terms 

U(7r V a) + U(p) < U(% V p) + U(p V a). 

It is effectively the statement of Theorem 2, where to; = log -—j. 
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4. CONTINUOUS INFORMATION FUNCTIONS 

For the continuous case we consider interval [0,1] as the prototypical domain of discourse 

and function / : [0,1] —• [0,1] to represent a possibility distribution. We recall tha t in 

the discrete case 

U(*) = ^2(Pi ~ Pi+i) log« = Yl P{ A log ' 

and tha t suggests using a 'sorted' version f(x) of the original function f(x), together 

with the differential d\nx — \dx. (In this section we use In rather than log function.) 

[5] provide such construction for an arbitrary measurable function / . The rearranged 

function is defined to ' s tay ' above any given level over the same 'space ' as the original 

function. It is constructed as a descending function, and its formation generalizes the 

sorting process of possibility values. 

We define / ( / ) = / dx. We use it instead of more obvious / dx to 
jo x J0 x 

avoid a singularity at 0. Our expression can in fact be viewed as the dis tance to the 

function which is identically 1 and represents a possibilistic uniform distr ibut ion. In the 

discrete case it would correspond to the distance to a distribution consisting of \X\ = n 

values 1. Thus for 7T : X -* [0,1] we put l(ir) = U(\,..., 1) -U(ic) = \ogn-U(w). 

(To define a general distance, we put for fy < / 2 

9{fnh)~ I 
Jo 

lUx)~Һ(x)dx 

and then extend it to arbitrary fi,fi [3].) If the domain of discourse is an arbi t rary set 

X t h e rearrangement results in a descending function over an interval corresponding to 

t h e measure of X. It is then only required to change limits of integration to correspond 

to t h e end-points of t h a t interval. 

Our preliminary results indicate t h a t the complete theory, built for discrete distribu

tions, carries to the sett ing of continuous (or measurable) distr ibutions. It is significant 

t ha t all the information values can be obtained through approximations by discrete dis

t r ibut ions. It means tha t the discrete cases can be viewed as ' imperfect ' approximat ions 

of an idealized continuous description. 

E x a m p l e 1. Let us consider possibility distributions represented by f(x) = xk, k = 

0 , 1 , Denoting Jk = I(xk) and remembering tha t xk = (1 — x)k, we find 

l~U = o = I(\)= f 
Jo 

/" - - (1 -
jo -

j2 - / ( x3) = f L l í i Z f ) ! ^ = f(2- X)dx -1 
Jo x Jo z 

J j = I(x) ~ I Ü ^-dx - 1 



To find a general expression for J/t, we first compute Jk — J/t-i 

/ " ( i - ( i - » ) ' ) - ( i - ( i - * ) * - ' ) ^ = 

fi'V-c-^.Ai.,^ ' 
jo a: 7o * 

As J 0 = 0 we have J* = 1 + 1 -J 1- | = H*, the Arth harmonic number . 

Finally, we remark tha t / ( / ) can be approximated as a limit of / (7r ( n ' ) , where 7r(n> 

are discrete distr ibutions approximating / . Already a non-trivial example is offered by 

a linear function. 

E x a m p l e 2. We select f(x) = 1 — x and approximate it using the values at j j , .~ , . . . 0 . 

T h e approximat ing distributions are 7r(n' = ("—^, s ~-^ , . . . 1) and have as their information 

measures 

t!(T(n)) = 5>- P t + 1 ) ln* = 

= E(^-^>- ;• 
= — > In J = — In n! 

n -—' n 

Invoking Stirling's formula, we find 

In n! = n In n — n + 0 ( l n n) , 

and therefore 

U(7r(n') ~ Inn — 1, n —> oo. 

This gives 

/(7r ( n ' ) = l n n - ( / ( 7 r ( n ) ) ~ l 

which agrees with / ( / ) . 

A more general f(x) = x* leads to an interesting identity involving limits of logarith

mic sums. Approximat ing as above we get 

£/(*<»>) = £ ( # - & . > . - . . 

z-< n* 
Expanding with respect to n — i and retaining only the highest order terms gives 

Subs t i tu t ing into l i m ^ o o Z(7r(n') = I(xk) finally leads to 

11-.00 y n J 
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5. INFORMATION INEQUALITIES IN DEMPSTER-SCHAFER THEORY 

We consider a finite domain of discourse X, with cardinality \X\ = n, endowed with a 
basic evidence assignment fi concentrated on the focal subsets Ai C X. We put fi(Ai) = 
m„ where 0 < m,- < 1 and )> m,- = 1. 

For this theory there were developed essentially two separate information measures 
[1]. The first one - nonspecificity N(fi) expresses how specific is the assignment. It is 
represented by a sum 

At(/.) = £m,log|/l,|. 
The other one - S(ii) addresses the question of how much overall information results 

from mutual support lend by the focal subsets. Given a focal set B we first define its 

plausibility Pl(B) = ^ m«- N o w S^) = ~ H m ; loS Pl(Ai)-
AinB^t 

Klir [6] has proposed studying a combined information measure 

\M JM = од + sм = $>..og^щ-

He in particular suggested that this measure has as its maximum value log \X\ (for a given 
overall domain X), and asked for a description of evidence assignments which have this 
information value. The answer is given in the next two theorems. We let F be a concave, 
monotonically increasing function which satisfies limj:_o xF(x) — 0 and is defined for all 
positive real numbers. Thus if F(x) is twice differentiable, then F'(x) > 0, F"(x) < 0. 
An example of such function is logx, and conclusions apply to the question as posed. 

Theorem 3 . 

P r o o f . Function F being upward concave and m,'s summing to 1, we can apply 
Jensen's inequality [5] and obtain the first inequality. We note that the equality occurs 

u . i 
here only if all terms ' are equal. '. '' 

As F is monotonically increasing, the other inequality will follow if we show that 

We rewrite the left-hand side as 

. ™iAi) S>i PI(AІ) 

and consider it a counting expression for a multiset, where elements are those from all 
>t;'s separately, and where every x € X is entered as many times as the number of 
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sets At to which it belongs. However, we shall count each element only with a weighted 

multiplicity - if it is contributed by A, we give it weight ' . . 
Pl(Ai) 

Now the combined multiplicity of an element x : £ X is 

E m, 

PUAi) 

Let the summat ion be over the sets A\,..., A),. As x is simultaneously in all A\,..., A^, 

they all have pairwise non-empty intersections and all contribute to one another plausi

bilities. In part icular Pl(Ai) > m(A\) + • • • + m(Ak) and the combined multiplicity of 

any given element a: € AT is 

k k 

y^^<Y ^ = 1 
~{ 'W ~.{ztmi + ' ' ' + m* 

They are n elements in X and thus the sum of their multiplicities is less or equal to n 

- the cardinality of A'. We remark tha t the equality here requires tha t (in the notat ion 

above) Pl(Ai) = m\ + • • • + m * for all A,. This would imply tha t any set from among all 

Aj t ha t intersects A; must contain the selected element x. As x could be any element 

of Ai it means tha t A,- would be a subset of every Aj it intersects. This is possible only 

if AiS are all disjoint. Finally, all x £ X must be accounted for; therefore Ai's form a 

par t i t ion of X. • '• 

T h e o r e m 4 . Combined information value of the evidence assignment J(n) reaches 

its max imu m value log \X\ exactly when it consists of disjoint focal subsets Ai covering 

X and assigns weights m, proportional to cardinalities |A.,|. Thus 

A,r\A3 = %, ifj, \jAl = X, m, = fi(Ai)=1-^ 

P r o o f . Immedia te from the previous discussion. • 
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