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A V I E W ON FILTERING OF CONTINUOUS 
DATA SIGNALS 

I V A N N A G Y A N D M I R O S L A V K Á R N Ý 

A spline approximation of continuous signals and its extension to the piecewise polynomial functions 
has been derived. Bayesian identification is used for determining the parameters of the approximation. 
The conditions on the smoothness of the approximation are introduced in the form of prior information 
about the parameters through so called fictitious data. The approximation can be used e.g. for spline 
modelling, filtering of data signals and it enables differentiation of filtered signals. 

1. I N T R O D U C T I O N 

A d a p t i v e control based on discrete- t ime models of the controlled p lan t is widely spread , 

s imple , theore t ica l ly well e labora ted and easy to implement on digital compu te r s . Of

ten , especial ly for slow processes, the digital control with "reasonably" long per iod of 

sampl ing and a low order model of t he plant is fully satisfactory. Somet imes , however, 

t h e informat ion a b o u t t he controlled sys tem lost between two sampl ing ins tan ts is non-

negligible. An ex t rac t ion of this information by a continuous or high r a t e filtering can 

b e of a significant help . 

In control p rob lems in which noise and sys tem dynamics are well separa ted a lmost any 

of t he vast a m o u n t of filters available can be used. Si tuat ion becomes more difficult when 

the d y n a m i c s are close each other . Then , filters based on local model l ing of t he filtered 

signal [4, 5] seem to be the only feasible way. Because of the difficulty of the filtering 

problem solved qual i ty of the solution depends much on the prior information fed into 

t h e filter. Th i s na tura l ly suppor t s use of Bayesian methodology for it and especially new 

methodology [2] of fictitious d a t a which admi t s to incorporate t he available information 

in a sys t emat i c way. 

Technically, t he pape r deals with a filtering based on approximat ion of the measured 

noisy signal by a function defined in a piecewise manner . The par t ia l functions used 

for c rea t ing the approximat ion are made mutua l ly dependent . For each node of the 

approximat ing-funct ion domain , linkage conditions are set which connect the par t ia l 

funct ions. Each connection is specified with a weight de termining the impor t ance of its 

precise fulfilling. 
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Here, a piecewise polynomial approximation is considered with conditions on continu
ity of the approximating function and some of its derivatives. For the conditions precisely 
fulfilled, a spline approximation is obtained. 

In this way, the piecewise linear filtering described in [4] which considered no relation 
of generated lines is generalized in two directions: 
1) Instead of piecewise lines it generates piecewise polynomials of arbitrary order. 
2) The accuracy of connecting adjoint polynomials can be controlled by the introduced 
weights. 

The paper starts with preliminaries with which the explanation of main results gets 
rid of the technicalities. The application areas which motivated the reported research, 
namely, 

- spline modelling 

- filtering of data signals 

- differentiation of data signals 

are described in Section 3 in detail. The main results are given in Sections 4 (filtering by 
spline approximation) and 5 (filtering by piecewise-defined functions). In Section 6, the 
theory is illustrated by a simple analytical example. Simulation results are presented in 
Section 7. 

2. PRELIMINARIES 

2 .1 . Spline functions 

Consider a finite time interval [0, T] divided by At nodes TV,-, i = 1 , . . . , At, Ati = 0, Atjv = 
T to N — 1 subintervals. A function x(t), t £ [0, T] is called spline of the degree rn and 
the defect d (cf. [1], [6]) iff 

- x(t) is a polynomial of the degree at most m on each subinterval of the interval [0, T], 

- x(t) possesses continuous derivatives up to the order m — d on the open interval (0, T). 

As polynomials are naturally continuous with all their derivatives, it is sufficient to ensure 
the continuity conditions only at inner nodes of the domain. Thus, by the definition, a 
spline x(t) 

1) has the form 

x(t) = Xi(t) = JT aiti(t - Nty, t 6 (At,-, Ni+1) (1) 
i=o 

for : '= l , 2 , . . . , A t - l 
2) with continuity conditions on m — d derivatives 

Xi(t) = a;,_i(t)|t=iVi, 

*P(t) = *£i(.)Urw 

(2) 
«<—-)(*) = x^~d)(t)\t=Ni, 
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for . = 2 , 3 , . . . , _ V - 1 . 

The smoothness conditions can be expressed in terms of the spline parameters a,,,-. 

They read 

«o,, = f>i,,-1(yv.-Ati_1y, 
3=0 

m 

«... = X>.,.-.w--w-.r\ 

(3) 

am_„ = t{jJm+d)^W'^y^-
]—m-d 

The formulas (3) imply that m — d + 1 parameters of the polynomial at each interval 

(A., Ni+i) are deterministic functions of parameters from the previous interval (A._i, A.). 

As splines of given order and defect form a linear space, any spline x(t) can be ex

pressed in terms of a space basis 

N 
x(t) = Y,x,qx,i(t) = xTqx(t), (4) 

, = i 

where qx,i(t) are the base functions of the spline space, T denotes transposition, a;, are 

coefficients of the spline approximation and 

xT = [X!,X2,..., xN], q](t) = [g-,i(<), qx,2(t),..., qx,N(t)]. 

яM) -««_ = { 

As the basis we shall use the fundamental splines which are defined by the following 

property 
1 for i = j 
0 for i 7- j 

for i,j = 1,. . . ,_V. For the base considered, the coefficients _. are values of the spline 

x(t) at its nodes A. 

a. = x(A.), i = l ,2 , . . . ,A. 

2.2. Bayesian estimation of regression model 

Consider a linear stochastic regression model 

y(t) = PTz(t) + e(t) (5) 

where 

y is modelled variable (regressand), 

P T = (Po, Pi,..-, Pm) is vector of regression coefficients, 

_ T = (_o, - i , . . . , z m ) is data regressor and 
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e(t) is noise term of the model which is supposed to be white and Gaussian with zero 
mean and variance r. 

The unknown parameters of the model to be estimated are Q = (P,r). 
Suppose that at a time instant t we have at disposal the measured data y(t),z(t) and 

the conditional probability density function (p.d.f.) p(6|E>t_i) from the previous time 
instant t — \. Dt_\ denotes the data y(r),z(r), r = 1,2,.. . , t — 1. Then, the posterior 
p.d.f. p(Q\Dt) in which the piece of information from y(t) and z(t) is included can be 
computed as follows 

P(e|A)cxPMoie,*(j))p(eiA-,) 
where the p.d.f. p(y(t)\Q, z(t)) is determined by the system model (5) as Gaussian p.d.f. 
with mean PTz(t) and variance r. 

It can be shown that the prior p.d.f. p(Q) determining a proper Gauss-inverse-Wishart 
distribution reproduces for the model assumed. Thus, the conditional p.d.f. p(Q\Dt) has 
a fixed functional form determined by statistics P, C, u, f which evolve according to the 
following formulas 

_____ 
l+< 

Cn = C-^f-f, (6) 

where index n denotes new (updated) statistics, no index means old one, 
y is the value of the approximated signal (regressand) measured at time instant t, 
z denotes data vector (regressor) at the same time instant t, 
P coincides with the least square estimate of the identified parameters, 
C is proportional to the covariance matrix of P, 
v denotes a positive scalar counting the number of measurements, 
f coincides with a point estimate of the noise variance r, 

C = zTCz. 

The above formulas coincide formally with famous recursive least squares [7] but they 
have fruitful (at least to the studied case) Bayesian interpretation which admits to built 
in prior information available (see the next paragraph). 

For detailed discussion of Bayesian view point see e.g. [8]. 

2 .3 . Additional conditions in Bayesian estimation 

Suppose that at a time instant t we have the p.d.f. p(Q\Dt_x). Instead of building in 
a new piece of information from the measured data y(t) and z(t) we are to build in 
some additional condition. The condition carries a piece of information (denoted by / ) 
concerning 0 , for instance, that some of the parameters is more or less known: i.e. its 
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mean is known and its variance is zero or small. An example of this type is given in 

Section 6. 

Suppose that the condition can be expressed in the following form 

E [ P T f - j / | A - i , I ] = 0, l[(PTz-y?\Dt-UI} = r (7) 

where y, z are so called fictitious data. 

Another form of (7) is 

y= Prz + e 

e is a fictitious noise with the conditional mean E [e\Dt-\, 1} = 0 and the given variance 

E[(e)2|A-i,/] = r. 
Thus, the fictitious data express the information / in the form similar to that of the 

system model (5). 

It has been shown recently in [2] that the additional condition can be built in to the 

p.d.f. p(6|-) in the way of regular recursion (6). The data y, and z used in the recursion 

are computed from the fictitious data y, and z mentioned above simply by multiplying 

and shifting them 

y = ay + /3, z = az (8) 

where constant coefficients a and j3 depend on the values of the statistics (6) resulting 

from the previous identification and the variance f of the fictitious noise e. 

3. MOTIVATION FOR PIECEWISE FILTRATION 

3.1. Spline-based modelling 

Spline models (see [3]) belong to the class of so called hybrid models. They describe 

continuous reality in the sense that the modelled continuous variable can be predicted 

in an arbitrary (continuous) time instant but they have the form suitable for digital 

(discrete) treating. They have been developed mainly to improve discrete control with 

high sampling rate. 

The starting point of spline-based modelling is the continuous convolution model 

/ 9(t - т)y(т)dт = / h(t- т)u(т)dт + є(t), 
Jo Jo 

(9) 

where the finite-support kernels g, h and the signals y (output) and u (input) are con

sidered to be splines, e(t) is a noise term of the model. The finite supports of the kernels 

determine the length of the history of signals y and u necessary for the model to remem

ber. They assure that the integrations in the model (9) are performed over a finite, path 

even if the time t goes to infinity. 

For the description of the splines g, h, y, u in the model, the form (4) has been chosen. 

After substituting into the convolution model (9) and integrating over the functions 

depending on time (the base functions) we obtain the discrete form of the model 

g1P(t)y = hlQ(t)u + e(t), (10) 
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where 
g, h are vectors of model coefficients (samples of kernels g(t), h(t) at their nodes), 
y, u are output and input data vectors (for finite support kernels they are finite vectors 
of samples of the signals y(t) and u(t) at their nodes). 
P, Q are matrices of integrals of base functions products 

P(t) = f q](t - T)qy(T)dT , Q(t) = f qT(t - r)9u(r)dr. (11) 
Jo Jo 

For given base functions they can be computed off-line and used as fixed filter matrices. 
For identification of the parameters g, h , the model can be written as a regression one 

with filtered data gTy — hTu + e, where y = Py, u = Qu. 
For control design, the model with filtered parameters gTy = hTu + e, is used with 

gT = gTP, hT = hTQ. 
Further details can be found in [3]. 

3 .2 . Filtering of data signals 

Let us list other cases where filtering of measured noisy data signals is indispensable. 
- Smoothing, which removes high frequency noise from the data signals, is known to 

be necessary in almost all practical control problems. 

- Equidistant sampling of data signals is supposed in the digital control. If the data 
are measured irregularly the filtering helps to recover continuous approximation of 
the measured data which can be sampled with a fixed desired period. 

- Discrete control with low model order requires relatively long period of sampling. In 
order to utilize the information between sampling instants it is reasonable to use 
continuous or high rate measuring of data for the filtering. The low rate discrete 
data can be either simply sampled on the filtered signal or generated in some other 
more sophisticated way (e.g. as in the spline-based control). 

3.3. Differentiation of data signals 

The filtered data signal in the form of a piecewise-defined function which is composed of 
known smooth functions (e. g. polynomials) can also be differentiated. If, for instance, 
the approximation (4) is considered 

N 

x(t) = YtxiqXli(t) 
i=i 

then its fcth derivative x^h\t) is 

xM(t) = JTx,qlkl(t) = jrX,px,i(t) 
.=i i=i 

where px,i(t) — %)(t)t i = 1,2, . . . , iV are fixed known functions. Thus, knowing the 
samples x, of x(t) signal values and derivatives can be computed at any selected point. 
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4. SPLINE APPROXIMATION OF DATA SIGNALS 

For spline approximation of measured data signals, we shall consider the following ar
rangement 

...ť Һ.І . . . *».,. 

H i •" ' I 
Ni-i Ni Ni+l Ni+2 

where 

x is the signal to be approximated, 

TV, are nodes of the approximating spline and 

tjti are time instants at which the continuous signal is measured and the spline approxi

mation is fitted (tjti denotes j t h point in the ith interval (JV;,JV,+1)). The distance 

between ij,; and i ; +i,i is arbitrary. 

Note, that the domain [0, T] of the filtered signals is usually potentially infinite. Then, 

At increases with T. 

The data measured on the ith interval are 

{y(tt,i), y(h,i),...,y(tni,i)} (12) 

where n; is the number of measurements on the ith interval. 

The observed data are assumed to be related to the approximated signal x(t) by 

V(*j..) = * ( - * ) + «(•«). J = l , 2 , . . . , n ; (13) 

where 

e(tj,i) represents a combination of random and approximation errors and it is supposed 

to be white with normal distribution, zero mean and variance r, 

x(t) is mth order spline i.e. 

k 

x(t) = xt(t) = J2ai,i(t-Niy f o r te(Ni,Ni+1) 
j = 0 

and i — 1,2,...,At, i.e. on each interval (A;,At;+i), x(t) is an mth order polynomial. 

We require x(t) to be a spline of a defect d. Thus, each pair of the adjoin polynomials 

Xi-i(t) and Xi(t) is coupled by the conditions (3). The coupling restrict the m - d + 1 

parameters related to the interval (At;, At1+1) a,,,-, j = 0 , 1 , . . . , m - d to be deterministic 

functions of the parameters from the previous interval. 

Our task is to identify the parameters {a0,;, a.,;,..., am,;} of the polynomial Xi(t) on 

the ith interval (A;, At;+i) using the data (12). 
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In order to reach recursive filtering we shall restrict ourselves by identifying the pa

rameters a separately in separate intervals. Just smoothness conditions (3) will be used 

as additional information when starting the identification on a new interval. 

We formulated the knowledge of a parameter subset on the given interval as additional 

conditions of Section 2. Clearly, we shall proceed more generally than necessary for the 

task solved. But it offers the direct hint for the task generalization treated in the next 

section. 

For the interval (.V,,!V,+i) the model relating the measured data and unknown pa

rameters has the form 

Vi(t) = Xi(t) + ei(t) = f ; «,.„•(< - NY + ei(t) = Pjzi(t) + e,(f) 
3=0 

where 

Pi = (a0,i, au, ..., am,i) 

zj(t) = (1, (t-N), . . ., (t-Ni)m). 

Thus, the gained model has the form (5) and the recursive least squares algorithm (6) 

is directly applicable. 

The additional conditions for x(t) to be a spline in the node W; are (3). They can be 

written as the sequence of conditions having the form (7) with 

Ўu = E _ 
'.}=! 

|Ş(;.i.)вi,í-iW-^--tУ-'|i>.--ь/ 

= E ÇG-І ) a џ ~ i ( N І ~ N І -*У~'\ V І -

(14) 

(15) 

for / = 0 , 1 , . . . ,m — d. In the equation (15) D._. denotes the information about the 

approximated signal extracted from the data measured on the previous (i — l)th interval 

and the additional (continuity) information concerning the interval. / denotes the addi

tional information concerning the ith interval. The second equality in (15) is a formal 

expression of our assumption that the information / from the ith interval does not in

fluence the parameter estimates from the interval (i — 1) which are used for computing 

the continuity conditions on the ith interval. 

The" exact meeting of the conditions (3) will be reached when 

f = 0. 

The conditions are built in to the identified parameters according to (8). 
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5. PIECEWISE APPROXIMATION OF DATA SIGNALS 

In the previous section, the conditions (3) determining the identified signal x(t) to be a 
spline have been considered in a deterministic way, i.e. the variances of their fictitious 
models have been set to zero. However, the experiments with the designed algorithm 
show that even splines (especially those with defect 1) are not flexible enough to follow 
suitably the approximated signal. Especially, at the very beginning of the experiment, 
the initial value x(0) and the derivatives x'''(0), / = l , . . . , m — d have to be chosen 
very close to those of the approximated signal x. If not, the approximation error damps 
rather slowly. 

The simple and very efficient way how to increase flexibility of the signal x(t) is to 
release deterministic (precisely zero error variance) conditions on smoothness and to 
consider them in the probabilistic way in the form (15) with nonzero variances r. 

The approximation x(t) we obtain in this way is not a spline but only a piecewise 
polynomial function. It has not the smoothness required for splines. Even, it need not 
be continuous if the variance of the condition requiring continuity of x(t) is greater than 
zero. On the other hand such curve is very flexible and approximates acceptably not 
only values of x(t) but gives us also some information about its derivatives which can be 
computed almost everywhere (not in the nodes). 

6. EXAMPLE 

To exemplify the results derived we shall consider the signal x(t) to be approximated on 
two intervals with nodes Ni,N2,N3 as it is indicated in the following diagram. 

!1,2 t2,2 h,2 
_ | 1 , , , | 

-V. N2 JV3 

xi(t) x2(t) 

The model of the signal x(t) (2) is 

x(t) = Xl(t) + e(t) t£(Nl,N2), 

x(t) = x2(t) + e(t) te(N2,N3). 

The spline approximation is of the order m = 2 with defect d — 1. For the 2nd order 
the polynomials X] and x2 are 

xi(t) = ao^+a^^t-N^ + a^t-Nr)2, 

Xi(t) - aQ,2 + ali2(t-N2) + a2,2(t-N2)
2. 
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We suppose the parameters on the first interval have already been estimated and we 
are to compute the smoothness conditions and to perform identification for the sec
ond interval using the data measured at time instants {<i,2,*2,2,*3,2} and respecting the 
smoothness conditions. For m = 2 and d = 1 we demand 2 — 1 = 1 continuous derivative 
of the approximating spline. With the condition on the continuity of the spline itself we 
have two conditions on smoothness 

x2(N2) = x,(JVa) and x'2(N2) = x\(N2), 

which according to (3) gives 

ao,2 = ao,i + ai,i(At2 - Ati) + a2,i(N2 - A\)2 = a0,2 

ai,2 = ai , i+2a2 , , (A t2-A t i) = ai,2 (16) 

The regression model (5) for the second interval has the form 

y(t) = Pjz2(t) + e te(N2,N3) 

where 

Pjz2(t) = x2(t), P2
T = la0,2,a1,2,a2,2}, z] = [1, (t - N2), (t - N2)

2} 

for all measured t, i.e. t € {ti,2,t2,2,t3,2}. 

The fictitious data for introducing the conditions (16) are 

y = a0,2, z = [1,0,0] for the first condition, and 

y = ali2, z — [0,1,0] for the second one. 

7. EXPERIMENTAL RESULTS 

For illustration of experimental results, the second order piecewise polynomial filtering 
has been chosen. The typical results are shown on the previous figures. Here the dashed 
lines represent the noisy signal to be filtered, the solid lines are the deterministic signals 
(derivatives of the signals) i. e. the signals without noise, the dotted lines are the filtered 
signals. Figure 1 shows the filtering by spline with defect d = 1 i.e. both the filtered 
signal and its derivative are continuous. It can be clearly seen that the spline approxi
mation is not able to follow the signal. The improvement of approximation, attained in 
Figure 2, is caused by increasing the defect of the spline used for approximation to d = 3 
(to discontinuity). It means that, now, both the approximation and its derivative are 
not forced to be continuous at nodes. The approximation is performed by a piecewise 
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Signal and its approximation 

1 2 3 4 5 6 7 

Derivative of the signal and its approximation 

1 2 3 4 5 6 7 

Fig. 1. The second order spline approximation. 

Signal and its approximation 

1 2 3 4 5 6 

Derivative of the signal and its approximation 

1 2 3 4 5 6 7 

Fig. 2. The second prder piecewise approximation. 
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8. CONCLUSIONS 

A spline approximation of continuous signals and its extension to the piecewise poly

nomial functions has been derived. The extension of spline approximation consists in 

releasing strict conditions on spline smoothness in the nodes (i. e. continuity of some 

derivatives). Instead, only approximate conditions admitting some errors in fulfilling 

the required conditions are introduced. As a result, an approximation in the form of a 

piecewise (polynomial) function is obtained. This function need not even be continuous 

but it is more flexible than splines. It can better approximate both the function itself 

and also some of its derivatives (with the nodes avoided). 

The approximation is a starting point for so called spline models, but, it can also be 

considered a suitable filtering for noisy measured data. 

(Received December 13, 1991.) 
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