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ADAPTIVE MAXIMUM-LIKELIHOOD-LIKE
ESTIMATION IN LINEAR MODELS

Part 2. Asymptotic normality

JAN AMos VISEK

An adaptive estimator of regression model coefficients based on maximization of kernel estimate of
likelihood was proposed and its consistency proved in the Part 1. Asymptotic normality is shown in the
Part 2. An asymptotic representation of the estimate implies also its asymptotic efficiency. .

1. INTRODUCTION

This paper is a continuation of the paper “Adaptive maximum-lkelihood-like estimation
in linear models. Part 1. Consistency”. The reasons and discussions about the adaptive
estimation may be found there and also in (8] and [9]. The notation of the present paper
is the same as in the Part 1 and numeration of Theorems and Lemmas continues.

The proof of consistency of the maximum-likelihood-like adaptive estimator has shown
that the basic technique is simple application of classical tools of stochastic approxima-
tion. This technique overcomes difficulty caused by the fact that residuals in regression
model are (weakly) dependent. The same technique is used here. That is why some
proofs were omitted. On the other hand at some places we have left also details to
facilitate reading where some hesitations could occur.

The conditions under which all results will be given are the same as in Part 1. Since
the conditions are rather complicated to write down we will not recall them now and we
refer to Chapter 3 (Assumptions of Part 1 (i.e. to Conditions A, B, C and D)). We shall
recall them just before the Theorem 2. Nevertheless to prove asymptotic normality we
will need one additional condition.

Condition E. Let Fisher information /(g) exist and be finite. Moreover let for any
j=l...,ni=1,....n,teRandseR

P (& —E{&le; =t} < —sle; =t) = P (& ~ E{&le; = t} > sle; = 1).
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Remark 7. The requirement to use as a preliminary estimator 3" such estimator
which implies “symmetry” of distribution of & may seem - at a first glance - rather
restrictive. But under assumption what e;’s are symmetrically distributed only estima-
tor " which prefers in some way positive values of residuals before the negative ones
(or vice versa; for instance, estimators based on asymmetric trimming) may yield &;
“asymmetrically” distributed.

2. PRELIMINARIES

Lemma 5 (Csorgd, Révész [2].) If g(y) has bounded derivative on an interval
—00 £ A < B < 400 then for any € > 0 we have

sup  |Ega(y,Y, 8% — 9(y)| = Ofca)-

Ate<y<B-e
Further we have
sup var  cilw (]t (y—2)) =¢;l.
A+e<y<B-¢ A4e<z<B-c
(Clearly we mean —oco + € = —00, +00 — £ = +00.)
Proof. See [2], Lemma 6.1.1. o

Lemma 6 (Csorgd, Révész [2].) Letforany y € R

Jim_ et (61 (y ~ 2)) [G(z) loglog G ()]

i

= lim c;'w (' (y - 2)) [(1 = G(2) loglog(1 — G(2))']* =0
then
lim sup |ga(y, Y, 5°) — g =0 aeg
N yeR
Proof. See {2], Theorem 6.2.1. o

Lemma 7. We have

% 2/ [w'(c;' (v — €)) = Ew"(c;" (v ~ &))] ba(y)dy = 05(1)-

n =
>5}

Proof. For any € > 0 we have

|

;,%3 i / [w0"(cs (y — ) — Ew'(a {y — €))] bnly)dy

n o=l
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< Gt {Z [ wrtesto = cmstiran~ [ Ewrtertt - i) }

< ezﬁe [0 - o] <

< g [ [ [ [l it - sty
K2 K,
S o

Since in what follows we shall prepare only technical steps for proving Theorems 2 we
shall assume that Conditions A, B, C, D and'E hold not stating it explicitly.

Lemma 8. We also have

d’Egn(2,Y, 5°)
J[EEE) b=t
Proof may be carried out nearly along the same lines as the proof of Lemma 6 of
[10].
The absolute value of the integral in the assertion of lemma is bounded from above
by

(y = r)g(r)ba(y)drdy

i=1

and in fact the first part of proof of Lemma 6 in [10] is devoted to proving that

f / w"(t)g(y — te,)dtdy

and it is nothing else than the fact that

ne // Yy = 7))g(r) ba(y)drdy n=io 0

which is equivalent to the assertion of the Lemma. n]

n—o0 0

n02

Lemma 9. We have

1 2
dgd(;Y,8°)  dEiga(z,Y,8°
/[ > (zdz ) _&e (dzz £ )} ba(y)dy = o,(1).
z=y

For the proof see [1], Lemma 3 or [10], Lemma 3. [}
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Lemma 10 (Beran [1].)

lim ¢}

n—oo

3 U‘ w'(c; (y — Z))Q(Z)dz]2 ~
/ Tty = Ne)d ¥ =19

For the proof see {1] - lemma is not isolated there - or [10], Lemma 9. u]

We are going to prove one of lemmas which are basic for establishing asymptotic
normality. Although the proof of lemma is rather long we have decided to give it in
details because it illustrates technique of (simple but unfortunately tedious chain of)
approximations. Results of the approximations enable us, however, to substitute kernel
estimates {of density and its derivatives) by corresponding integrals. On the other hand
since the proofs of the rest of lemmas are very similar, using precisely this technique,
they will be omitted.

Lemma 11. For any k, £=1,...,p we have

~1(e. — &
me Z’”"‘ o RS e

o [ / W' (y —z))g(z)bn(y)dzdy] = 0,(1)

ple? Z’”f"z” [{_:Jc:ﬂ%}? bn(es)—

v w(en (e

o [fw (e (v = 2))a(z)dz]* _
- & [ 0| =)

Proof. At first we shall show that the following difference is small in probability.

sz;kz,z [ :=1“’ Mgt (es = &)) D wlen" (e — é‘))] ba(e;)

and

e w(er (65 — &) Er;&; w(c;{e; — &)
e [T e [ e i) - w2}
=l Zx]k i i wicr(ei—¢r)) Z:;ej w(cy(ej — ét)) *
o wleg (e = e) { T wleg e — €) = Loy 0l (e, — &)
Yore w(ci(e; — &) Et;&j w(cg(e; ~ er))

bale).  (22)

Let us consider the ﬁrst member of the right-hand-side. Since Y7, |w"(c;"(e; — &)| -
(v wleit(ej — &))" < Kj it is sufficient to show that

Kan'c; ; Tik TieTr i:fi;im _:i))er)) (23)
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is small in probability. supw(z) < K; and also sup gzt |z;k zje] < K2, hence the last
expression is not greater than o

1
n"%c K3 Ky - K? .
;E:nl-zrm“’ PR

Finally, using Assertion 2 (Part 1) we find an upper bound for (23) in the form

n=3 -2K3 K- K Z Z w(c—l — (24)

=1 r#j

Now for any € > 0

Pl Sy a5 s @)

J=1 r#j

< 26_1n_1c;2/w"1(c;1(z~t))g(z)g(t)dzdt

which converges to zero for n — co due to Condition B. Let us denote by

an{wen: O 3) R g}

=1 r#j

and fix a A > 0. Then find ng so that for any n > ng P(B.) < A. For w(c;(e; — &)
write

w(c; (&5 — &) = w(er (e — e)) + 5w (Eirm) - X7 (8° = BT)
where
Einr € [4:;1 min{e; — e, €; — &}, ;' max{e; — e,, ; — ér}] .

Due to the assumption about the order of consistency of A" we may find ny € A and
L € R such that for any n > n,;

P {n‘ 18° - 3l > L} <A.

Denote by C,, = {w en: nf||go-pr > L} and

E,= {w €0: a3 S wl (e e~ &) > 5} .
=1 r#j

Find ny € N, ny > ny such that for any n > n; n7%c;'K;-Ks-D-L-p < 1 and

n78c;'L - K5 - p < v (remember that D and v were introduced in Condition B). Let us

recall that we have

-

lej—& —ej+ e =le.— &=
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Let us consider any w € C¢. Then nf||#° — 3*|| < L and therefore
citler — &l =" |XT(B° = B")| < v,
and hence
irn =~ (e — )l < .
It implies (see Condition B) that

w(fﬁrn)

ool —e| <P

Hence it holds for any w € C¢
w’(g'rn) w(f<,.") B

(f:m) ’ w(c"l(ej —¢)) “w(e; (e — e,)
< K;-D-w(c (e_, ~e)).

b (€)= |

It again implies that for w € Cg and n > ny
w(c; (e; ~ &) 2 w(c; (ej — €)1 —n°c;' - p- Ko Ks- D - L]
> zu(er (e~ ):
Now for any w € E, N C; we have

e<n” c ZZU) c'1 ej — &)) <2n cn ZZw c,_l1 (e; — &)

i=1 r#j =1 r#j

which means that w € B,,. But it gives
P(E,) = P(E,NC,)+ P(E.NC;) < P(C,) + P(B,) < 24.

It proves that the first member of the right-hand-side of (22) is small in probability. For
the second one we obtain instead of (23) an expression

e A= )
" =1 e %Er#w(ql(“‘i“ér))

which is not greater than (compare (24))

n n
Nl Ky K- K2y Y [ (e (e~ &)
=1 r#j
and hence the second member of (22) is also small in probability.
Now let us show that also

et S, [ S =) T ma)
;" “ z#w(c o o) 2,¢jw(cn1(ej—e))}”(l) (36)
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is small in probability. Similarly as above we obtain that (26) is equal to

“le? i Tk Tj {E"‘i w(cg(ej =€) D [ (c5 (e ’_é-')—w"(c_l(ei —&))]

r#j w(cg(e; ~ &) Ez;é] w(c;{e; — er))

Zi;&j w”(c;M e; — & )Ez;&,[ ej — ex) — w(e; (e — &))] o
T e (e mzwm%1~w }”” (@)

For the first member we obtain an upper bound in the form

+

e D [0 ) - XT (B - )|
n 1:,,21{5 Z Er# wle.1(e; = &)

J#1
< nleBKE p-||fn - ﬂ"llzz ‘#J 'w (:J‘i)l )
it W

(28)

where again &in € [c;! min{e; — ¢, €; — &}, ¢;' max{e; — €;, e; — &}]. Now fix ¢ >
0,A > 0 and find ny € A and L > 0 so that for any n > n; we have

P{nIB -1 > L} < a

and denote by C,, = {w € nf||fr - g0 > L}. Moreover find n, € N, ny > n; such
that for any n > n, we have '
n‘ac;‘l\'s p-L<w

(Remember that v stays in Condition B and keep its role in mind.) Then we have again
for any w € CS and n > ny

Ifjm_ eJ_e)I SC;I les — €~ ¢; + &
cMej — &l =c;t

- XF (@ - 87|
< K plBr -8 =t Ky pen®|Bh - B < v

and hence

lw"(€im)l _ w(&sin)
wlE)  wle (e — 8,
< Ka- D w(c;' (e~ ).

[w"(&im)] < w(ey(e; — &))
So expression (28) is for n > n; and w € Cf bounded by

K3 Ks-p-||B"~ 8% - D.
Therefore finding n3 € N, n3 > n, so that for any n > n3

n8¢PK: Ks-D-p-L<e,
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we have for any n > n3 and w € Cf (remember that for w € Cg and n > ny {and hence
also for n > nj) we have || — 8°|| < Ln~9)

“1,-2 . T T D [W(c5 (e — &) — w"(c7 (e — )]
"o JZ._.; Tt Er;éi w(crl(e; —er)) ‘ <e

and it implies that for any n > nz and for any w €  for which

o, D (e e = &) — v s — )]
&1 RIS ¥ e (e — o) \>€
5}<A.

The second member of (27) may be treated along the similar lines as the first one.
The next step will be to show that also

j=1
we have w € C,. But it means that

P Lo 105 (s = &) — w" (7 (e — ei))]}
P TikTy 3 =
{\n o 2 whe { Er;ej w(cz(e; ~ &) ”

j=1

v D W (e ~ &)
_-1.-2 E o i#i e
Snie =n"en ok Tt [Zr#,‘ w(c;e; — e,)) bu(es)

=1
_ Yigi w’(c; (e;—ei)) .
; { Eﬁe:‘w(cﬂ(erer))b"( )

is small in probability. Let us fix again some ¢ > 0. Then using Chebyshev’s inequality
one obtains

61221,...,61'_1:2‘]‘-1,8]‘4_1=Zj+1,...,en=zn}]

4
1

P(|Suke| > €) < ESnkz = TZ

=1

where
_ -2 -4 i#] Cn (el _e')) N
El - ;I]" zjl[ r#J w(c-l( € —¢e )) "(EJ)
2
i W (e (e, )y
- E {%‘ (€| e1=21,. .., €515 2j-1, €541 =241, - . - € =2 y
T j Ca 3
(65 (e = )
& = 2En7%t Tk Tje Topls Ly Wi (e e b(ej)—
2 ;g k T3t Tk l[z,#w(cf.l(ej‘er)) (J)

Ei;&j (e ej—e,)) e
£ { Zr;ej w(ey!(ej—er)) bales)
et (e (e — 1)
% s wleri(es —e) )

€121, -3 61251, €541 =241, - - - 7€n=2n}]
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{ Dt w7 (e,—e1))
E 2 bn(es)

Z‘;:; w(c;(e,—ey))

€172y 03 €1 T 2513 Cs 417 254150+ Cn=ZnH )

& = 2En_20,_l422-77jk1j113k1at [,_'ﬂ.__(,(e_i_’n(,ﬂ(ej)‘_
3=1 s>j 2 T#T er))
> (7' (ej~ei))
- E {ﬁ:l—(;—_—mb (e5)| 1= 215+« 0, €51 =215 €j41=Zjp1y - -+, En =2
r#j W j—€r
2‘;; w"(c; (e, — et))b Zt;; (e (es — er))
: Rt 5
e w(e (e ) S (e (e~ en) )
vyky v#y
and finally
(=1 P
PRSP PO L C ) R
,, 3 = = L
Toigi w(cr (65— ei))
- E {Z—j—ﬁﬁj'(e-]T))b"(e") €121y, €1 2ol €41 = Zjkly -y €0 = Zn
r#j r
[{Engigzjﬁ 0 PO
E#,w(c e’_ev)) m\€s 1= 215+ ++3€5-1 = 251,541 — 241+ -, €n = 2n
Z;:; w'(cg e, —ey))
E m n(t;,) €1 = 215009 €sml = 251,541 = 2541y o380 = Zn 0| -
vy » ¢ v
Since

Zi;&j [w"(c;(e; — &)}

E¢¢j w(c;(ej ~€r))
£; may be bounded by n~'c;* - K? - K2. £ may be rewritten into the form (remember -
that E{Z12,} = E{Z,E[Z,|Z]})

~2, ~4
{ E Z%k Lt TskTst

i=1 s>j

Et;ﬁs w"(c" (es—er))

u,u w(c;(e, —ey)) T o wolei(e oy ()

i#] (e ( e —¢€;)) N
E{[,ﬁ T s wlet e e )
{ (c‘1 (e

< Kj,

Z-;e.w ! e,—e;))b( |
B e (e (e = e

E

€1=Zn~--,5a—1=za—1,5,+l=Za+1,'-»1en=2n’}]

iz Wl (ei—e)

£ Zr;é] e")) "(e’

€1 =21y ..5€5-1=Zj-1,€541 =2j+l1"'1en=zn}]

€1 = 21y €1 T Zj-15 €541 =Zj+1,---,6n=z,.} }
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Pests W (e (eamer))
The modification is possible due to fact that the expression Z‘ ”

ey 9(en (eemea))

bu(e,) as

. o B .
well as its conditional mean value depends only on random variables which are “fixed”
by the set in condition, namely {e; = z1,...,€j_1 = zj-1,€j41 = Zj41,...,6n = z,}. But

E{[zr;éjw(c_l (&5 — e ) ba(e;)—

_ Zi;eg w”(c; (e;—ei)) »
E{ E,;&j w(cg? (e:—er))b n(e3)

€1 = 215, €51 = Zjm1,€j41 = Zjt1y-- -5 €n =Zn} =0.

€1 =21y...,€5-1 = Zjuy, €541 =Zj+1,---,en=2n}]

Hence &; = 0. The expression €; may be bounded by (remember again Assertion 2)

: |t w77 (60 = €0)) = g, (5" (00 — 1))
n~2c K 2K, E
DY 2'*" (e (e =)

=1 s>j #i W
Teg 067 s = €0)) [Srgs (e (o0 — &) = Ep, 0l (e — 1)
+ <
Loz wlez (s =€) E oy wlez (e ~ €0))
< mTAAKE L 2KE K, Z YN Ew e e —er)

i=1 s>j t#s

and this expression may be treated in the same way as (24). The expression £ may be
bounded in a similar way as &;.

S (e ),
{ S eyl e —e) )

l: E.#J :/(c—l(y _ e'))b

2w (e (y — er))

Since

€1 =215+ 3 €51 = Zj-1,€j41 = Zj415-+ 5 6n =Zn}

)y(y)dy]
€1=2] oo —1 T2k 4o €54 1254 Lyees€n =20

we have proved that

et Yy [Ty )

'_lw c;l(e;— € ))

Tigi w5 (v — &) _
he—))‘bn(y)y(y)dy = op(1).

Using once again Condition B we may prove ~ along the similar lines as at the start of
this proof — that

n7lc? ﬂ Tk T _——-——_————Z#w (e (y — )
2 {/ {E,ﬁ SIOEE)

=1
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YRR G o))} N .
o wle - ))] ""’)-"‘y)dy} = 0,(1),

i.e. that also

-l ‘zz%k e [E‘_lw C 1(81 e.)) "( ) ' (29)

pa w(c‘l(e] —&))

}: 5!)) _
/ r—l w(C“(y — € )) (y)g(y)dy] = op(1).

Now let us prove that

- _zz%wﬂfw [ Z w(c (y — &) 'y(y)] (30)

rlw y_ef))

-(y)dy = 0p(1).

Since n~! ,E;'l:x Tk zﬂ| < K2 it is sufficient to show that

/ b _1 y: ))))[ ‘ Zw(c;‘(y—e,))—g(y)} ba(y)dy

Let us consider at first

oo =o0,(1). (31)

o[ T = o)) - o0)
ek Lo, (n(y—e,»

Now we shall use the Condition C. Let us fix somee > 0 and A > 0 and find np € N
such that d,, < min{e?, A} and d,, < 3d2,. Further denote for any n > no

ba(y)-

d’ﬂv
Se.am = {w € Q, sup|g.(y, Y, %) — 9(y)| < 5 } .
veR

Then for any w € Se,a,n and n 2 ng we have (notice that supremum in what follows is
1
taken in fact over (~3an, }an) and hence g(y) > d)

l9-(y, ¥, 8°) — g(y)I
PN P B
lg (3, Y, 8°) — g(v)]

= sU] bﬂ
vk 99) + 92 (3, Y, B%) - 9(v) )
da
< ;zd <d2—n-—23=d:?<e
di -3 d2

(remember that {da}7%; is decreasing to zero). But since P (SZ,,) < d, we have for

any n 2 np
l9n(3, Y, 8°) — g(y)|
P
(ﬂeg _—_—_——'—gﬂ(y,YﬂD) by (y) > a) < A.
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Lemma 13. The asymptotic distribution of

L 1w (e (ej — 2 d
{n‘fc"‘ 2“" .Gul)v((c;‘((ej - t));ggtz))dtz b"(e")} (32)
i= k=1,p

is N(0, Q- I(g)).
Proof. Let us remember the fact that

g Ll (e — 2))g()dz _ [ [y — 2))9(2)d> _
m ba(e;) Twlei(y —0)g()dt 9(y)ba(y)dy = 0,

since

J (el (y - 2))g(2)dz, _ _Jv(G (v - 2))g(2)dz
fw(c;‘(y — t))_q(t)dt ""( )y( ) == fw(c;;‘(—y — i))g(t}dt g('y) bn(‘y)'

Moreover for any & = 1,...,p and any £, = 1,...,n the summands

Jw'(cg (ee — 2))g(z)d= ba(ee)
Jw(cz(ee—t))g(t)dt ¢

kfw (cz'(ej — 2))g(z)dz, b
% Juw(c;(e; — t)g(t)dt

are i.1. distributed r.v. and hence the variance - covariance matrix of (32) is equal to
(for k,r=1,...,p)

Tt v e = gz, ]
{Z e[ o e )] }

=

e; ) and Ty

Using the same steps as in proving (30) leads to the fact that this expression is — up to
a member 0,(1) - equal to

3 ZI]‘E 2 [fw’ Hy — 2))g( z)dz]

Tulesily —)gar W)W

=1
Taking into account that variances of random variables

eat Ju'egl(e; — 2))g(2)dz ‘ .
) w(er' (e — 1)g(t)dt () ‘

are uniformly in j = 1,2,...,n and k = 1,2,...,p bounded by

K var i L S (5 (e ~ 2))g(2)dz
[ wlcg (e — t))g(t)dt

(which exists due to existence of the Fisher information and due to some other technical
assumptions as d,/¢x T 00) and applying Lemma 10 one concludes the proof. =]
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Remark 8. Let us mention that the proof shows that an endeavour to avoid the
assumption of symmetry of g(y) would lead to some assumption about the rate of con-
vergence of the tails of g(y) to zero with respect to increase of the interval generated by
b.(y). See the assumption iii) of the paragraph 2 of [10]. In such case however it would
be necessary at least to modify all points at proofs which utilizes Condition E. It may
lead to a number of considerable technical problems.

Earlier than we give the main result of the Part 2 we sum up all assumptions we have
made up to now:

Condition A. Let the kernel w(y) be three times differentiable, positive everywhere
and symmetric. Suppose that there are constants Ky, K3, K3 and K, such that

"
2 o g,

sup w(y) < K su
s (v) < K, sen V)

sup W@ ¢ Ky and sup W < g,
i) 3 ek ) a

Preliminary estimator 5" is assumed to be such that for some & > 1 we have

n|

B -5 = 0.
Moreover let
lim ¢, =0, lim ne = co (33)

and )
log w™(c;;
__nz__"__ = o(1).
Further let g be symmetric, having continuous second derivative and for some M, 0 <
M < oo we have

sup |¢'(y)| < M.
yER

Finally let g(z) be decreasing for z > 0.
Condition B. Let forany a € R
lim n‘%c,“,2 f sup w(c; (2 + b—t)) g(t) g(z)dtdz = 0.
n—oo |bl<a

Moreover let us assume that there are v, D (v > 0, D > 0) such that for any z1, 22 € R
such that |2; — z;| < v we have w(z)/w(z;) < D.

Condition C. Let

lim — = oo.
n—oo Cp
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Moreover let there be Ky < oo such that maxien,j=1,..p [7ij| < K5. We shall also assume
that the density g is the element of G({d,}22,). To simplify the next text we need to
require that there is a sequence {a,}32;, @, > 0,a, / oo such that

(~am @) C {y € R: g(y) > d;’f},

Then define ba(y) = 1 for |y| < jan and ba(y) = 0 elsewhere. In addition to the
requirement (33) we will assume that

lim ncta? = oo.
R0
Condition D. Let us assume that there is Kg such that

P (“ argmax Hﬂn(ej(ﬂ)vy‘ﬁ")bn(éj)ll > Ks) nmoo 0.

BERP  j=1

Condition E. Let Fisher information I(g) exist and be finite. Moreover let for any
j=1...,n,e=1,...,n,te€RandseR

P (& —E{&le; =t} < —sle; =) = P (& = E{&le; = t} > sle; = 1).

Theorem 2. Under Conditions A, B, C, D and E we have following asymptotic
representation (k = 1,...,p)
Ll An 1, 2t [w!(c; (e; — 2))g(2)dz
{7 =), =) e S
Cn 7

=1

Proof. From the definition of A" it follows for any k=1,...,p

~fct Mﬁﬁ :

nic; {,Z_,: S e 7)) @)t
c_1 Y ST Eﬂ_w.”(_c'—il_(i-é_'))_

+ n ;;-’Qk Jl{ ::1 w(c,‘,;‘(e_,'——é,))

- [l } b6 (B - ﬂ?)} +

P
+3 (Br -8 Z RE(B; - B9) =0
t=1
where Rfl =0, (n‘%) for any k, ¢, £=1,...,p. Hence we may write forany k=1,...,p

cw'cy (e — &

Z I:kW ba(85) (34)

=1
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n n (.—1 =
" (et e; = &)
By — BY) Tk Tje [ =1 = -
fz( ) e 2o | R )

Ticy w'(eg (e — &)\
- { E'=1 w(cs(e; — &)) ba(&;) + lelt(ﬂ! :)
where S% = O,(1) for any k, ¢, £=1,...,p. Due to fact that 3" is consistent and due

to Lemma 11 and then Lemmas 8 and 10 we have

. ] T v e - &)
s "C"JZZ’”"[z,-,w(c—wej—éa))”

(B e

Es,,w ~ BP) =% 1(g)que

t=1
in probability. Using Lemma 14 (from the Appendix) we see that to assume that

Vallgg = BRIl # 0,(1) (3%)
would imply that

VR Y (B~ B9) - T # 05(1)
=1

at least for one k£ € {1,2,...,p}. But left hand side of (34) is bounded in probability and
hence the assumption (35) leads to contradiction. But it directly implies the assertion
of the Theorem.

Corollary 1.

c (n-’f(ﬂ‘" - ﬂ°)X’X) T N (0, Q- 17Y(g)).-
Proof. The proof follows directly from Theorem 2 and Lemma 13. o
APPENDIX

Lemma 14. Letforanyn € N {Ty}}, [, beamatrixand letforany j, k= | ... P

lim — ZT,, Tk = g

n—oo N

where Q) = {qjk};;] ”:=1 is a regular matrix. Then for any {7(") }:__1 , 4 = (‘71("), - 7,”(J'l))'r

such that limu—co "‘Y(")" = oo we have at least for one k € {1,...,p}

LSS BT

F=1 i=1

lim —
N—+00 7]
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Proof. Let € > 0 and find ng so that for any n > ny we have
L
;gﬁstk - Gik

Now let us assume that the assertion of the Lemma is not true. Then there is a subse-

<E
5

quence {n¢};2, such that
P N

SN T T

=1 i=1

limsup — = [Ki] < o0

1
faoo T

for any k= 1,...,p. Hence starting from some n; > no for any ns > ny we may write

P
Ak + i} o™ = Ki

=
where |7;] < €. Then (denoting q;jl ~ for a while - members of inversion matrix Q")

we have for any £ =1,...,¢
P

P
S Y o+ )0 =Y gpl K,

P
k=1 =1 k=1

2 P P
WO+ aw Y i =) 4 Ke

k=1 j=1 k=1
and finally
4 P P
S Ry AR S P T ol
k=1 k=1 =1
for any r = 1,...,p. And hence for ro such that

we have
(ne)
,

Tro

Pre?] < max 1Kyl max g4 +e - max g

(ne) . -1 . crl -1
) (1= g ) < - L -
Since ¢ was arbitrary and ,7,(:"' — oo this is a contradiction.
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