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This is mainly a survey paper with a new look on comparison of confidence regions. It is divided 
into two parts. In the first part we compare classes of nonlinear regression models having some linear-
like property (intrinsically linear models, models with constant information matrices, models with zero 
Riemannian curvature). In the second part we discuss four kinds of regions as candidate for being 
confidence regions for parameters: the elliptical region, the likelihood region, the linear inference region, 
and finally a confidence region proposed recently by the author. 

1. INTRODUCTION 

In this paper we consider a nonlinear regression model 

y = V(#) + e; (t? 6 6 ) (1.1) 

e ~ N(0,a2W) 

with the observed vector y € IR^, the vector of unknown parameters fl € O Q ]R'", 
m < TV. The matrix W is known, and will be supposed to be regular. It will be supposed 
that the boundary points of the (known) parameter space © are accessible as limit points 
of hit 0 , in symbols 0 C int 0 . (For example, 0 = [a., 6i] x . . . x [am, bm]). The (known) 
mapping i? € 0 —* ??($) € IR^ is supposed to be continuous, with continuous third 
order derivatives on int 0 and with rank \drj({)) / dr)T] = m on i n t 0 . 

A particular case of (1.1) is the linear model, with T]($) being linear in r). Statistical 
methods are much better elaborated in linear models than in nonlinear ones where such 
methods are only in development. One may say that the closer is the investigated model 
to the linear model, the better are the methods of statistical inference. Therefore our aim 
is to present different classes of models which have some properties of linear models (they 
are "flat" in some sense) and to show some consequences of this flatness on constructions 
of confidence regions for r3. 

^resented at PROBASTAT'91, Bratislava, August 26-30, 1991. 
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2. CLASSES OF NONLINEAR MODELS 

We shall consider four classes of nonlinear regression models, which have some features 
in common with linear models. They are labelled by (A) - (D) in Figure 1 below, where 
also the relations of inclusions between the classes are indicated, i. e. class (A) C class (B) 
C class (D), class (A) C class (C) C class (D). 

(A) - linear 
a2»7(t?) / ddidtij = 0 

(B) - const, inform, m. 
P{û)d2n(ti)ldtiidtij =0 

(C) - intrinsic, linear 
(I-P(0))d2n(0)/d<did0j = 0 

(D) - zero Riemannian curv. 

model (1.1) 

Fig. 1. 

The classes (A) - (D) can be characterized by different ways: 

- by the geometry of the expectation surface 

£ := {n(d) : i? G 6 } 

of model (1.1) 

- by some curvature measures of nonlinearity 
- by some relations between the first and the second order derivatives of J/(I?) 
- by the existence of some "linearizing reparameterizations". 
We present these characterizations in details, starting by the class (C). 

Class (C) - intrinsically linear models 
This class can be defined geometrically as the one having a planar expectation surface 

£. That is, £ is a subset of an m-dimensional plane in fft^. We have: model (1.1) is 
intrijisically linear iff there exists a (regular) reparameterization fi = /3(d) such that the 
new model is parameterized linearly by fl. Hence in many sense such model is close to a 
linear model with constraints on parameters. We have the following statements: 
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Proposition 2 .1 . Model (1.1) is intrinsically linear iff for every i? € int© and for 
every i, j the equality 

{I - P{0)) [PTIW) / ddiddj] = 0 

holds. Here P(d) is the matrix 

m-^M-W^lw-' (2.,) 
(the orthogonal projector onto the tangent plane to £), and M($) is 

(the Fisher information matrix for a = 1). 

The proposition can be found without proof and in a modified form in [5]. A proof of 
this proposition, as well as of the other propositions, should be presented in [14]. 

Proposition 2.1 gives the characterization of class (C) by a relation between first and 
second order derivatives of n^), since P(i?) is expressed in terms of the first order 
derivatives. 

Proposition 2.2. Model (1.1) is intrinsically linear iff the intrinsic curvature of 

model (1.1) 

K-mt (V)-- sup 
v 6 R m \ { 0 } 

j-V-iч*))^! /(.^w.) 
is identically equal to zero on int 0. 

The curvature Kiat($) is a curvature in a usual geometric sense, and it has been 

proposed as a measure of nonlinearity by Bates and Watts [1]. The used expression for 

I^int(^) i s derived in [9]. 

Class (B) - models with a constant information matrix -

Such models can be defined as models having a constant (Fisher) information matrix 

M(d) = M = const ; (d € 6 ) 

Geometrically it means that the parameter space 0 is a part of an m-dimensional Eu
clidean space having the inner product 

aT M~l b; (a, b € R m ) 

defined by this information matrix. The expression CT-1 [($ — $)TM - 1( i? — #)] is well 

known in statistics as the Mahanolobis distance between d and d. 

Since M_1(i9) is the asymptotic variance matrix of the least squares estimator of i?, 

models of class (B) are studied also as "stabilized variance models" (cf. Kass [10] and 

Hougaard [8], where also Proposition 2.4 is presented; cf. also Pazman [11]). 
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Proposition 2.3. Model (1.1) is with a constant infomation matrix iff its parameter 
effect curvature 

Kp^):= sup L ' P ( * ) | M J /(v?M(»)v) 
veRm\{0}|| OvOi)1 \\w 

is identically equal to zero. 

This gives a characterization of class (B) in terms of a curvature measure of nonlin-
earity. The parameter effect curvature Kpsr(d) has been introduced by Bates and Watts 
[1] as a complementary measure to Kmt(d). 

Propos i t ion 2.4. Model (1.1) is with a constant information matrix iff for every 
$ € int 0 , and for every i, j , k the equality 

Vf!)r.M = fi 
dvk dv-idtij 

holds. 

This is a characterization of class (B) by a relation between the first and the second 
order derivatives of r/(i?). 

The proofs of Propositions 2.3 and 2.4 are obtained essentially from dM(d) / dd = 0. 

Class (A) - linear regression models 
Here belong models having a linear 77(1?) 

n(#) = Fd + f 

F and / being a known matrix and a known vector. Geometrically, the expectation 
surface £ is an m-dimensional plane in MN, and at the same time, the parameter space 
6 is an m-dimensional Euclidean space with the Mahanolobis distance as the norm in 
G. So we have: class (A) C class (B) n class (C). We have yet more, as given by the 
following proposition. 

Propos i t ion 2.5. The equality 

class (A) = class (B) n class (C) 

holds. Model (1.1) is linear iff 

Kmt(v) = 0, Kpai(v) = 0 

identically on int G. 

P r o o f . From Propositions 2.1 and 2.4 we obtain that in a model from class (B) n 
class (C) one has 

dtiidVi 
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for every i? € int 0 and every i, j , hence n(<9) is linear in i?. The last statement of 
Proposition 2.5 follows from Propositions 2.2 and 2.3. • 

Class (D) - models with zero Riemannian curvature 
The definition is given in terms of the Riemannian curvature tensor with components 

defined by the equality 

Rhi^):=d^d^w [I-pW]MM~d^Wk
w [I~m]-dhd¥-, 

Model (1.1) is in the class (D) iff Rhi,k($) is zero for every d 6 0 , and for every h, i, j , k. 

Proposi t ion 2 .6 . There is a reparametrization of model (1.1) making the informa
tion matrix constant iff the Riemannian curvature tensor is identically equal to zero on 
int 6 . 

The proof of this proposition can be taken from differential geometry by identifying 
the information matrix M(ti) with a Riemannian metric tensor in 0 (cf. Eisenhart [6]). 

Corollary. We have class (B) C class (D), and class (C) C class (D). 

The first inclusion follows from Proposition 2.6, the second inclusion follows from 

Proposition 2.1. 

Proposition 2.7. Every model (1.1), such that dim(t9) = 1, is in class (D). A 
reparameterization making the information matrix constant is given by 

P = P(d)= f\\dn(t)/dt\\w 

where t?0 G int 0 is an arbitrary point from int 0 . 

The proof is obtained by a direct verification that M(i9) is constant. 

This proposition clearly shows that there are models in the class (D) which are not 
intrinsically linear. Hence class (C) ^ class (D). Taking a model with dim(i?) = 1 and 
such that ||d7?(i?) / dfl\\w ^ const, we see also that there are models in (D) which do not 
have a constant information matrix. In symbols, class (B) ^ class (D). The importance 
of models with zero Riemannian curvature in small sample nonlinear regression has been 
demonstrated in Pazman [11,12,13]. 

An example of a two dimensional regression model with zero Riemannian curvature 
is the classical Michaelis-Menten enzyme kinetic function 

*(*!)--• * * . / ( * , + *,•); (i = l,...,N) 

where X\,...,XN € 1R are fixed design points. 
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3. CONFIDENCE REGIONS FOR t? 

In this paper we shall consider four kind of regions, which may be considered as confidence 
regions for tf under some assumptions. We shall present them first under the assumption 
that a is known. 

Region (I) - the elliptical region 

{# e 0 : [t? - $}TM(d) $ - 0] < a2
Xm(l - «)} 

where $ is the maximum likelihood estimate 

ti:=d(y):= argmin \\ y - r,(0) \\w (3.1) 

dee 

and Xm(P) is the /3-quantile of the xm distribution. 

Region (II) - the likelihood region 

{# e Q : || y - -.(*) ||2„ - || y - .,(*) \\w< a2
X

2
m(l - a)} 

which has a contour of constant likelihood. 

Region (III) - the tangent elliptical region 

{* € 6 : || P(*)[vtf) - tl(*)] \\w< °2Xm(l - «) & II vW - •/(*) lk< r} 

where r > 0 is chosen so that 

r<M[KU*)]'1 

r2/2 < a2
X

2
m(l - /?) (3.2) 

with f3 much smaller than a. If there is no r € R satisfying both inequalities, then it 
means that a is too large to give a meaningful estimate of d. 

Region (IV) - the linear inference region 

{0ee:\\P(ti)[y-r,(#)}\\2
w<a2x2

m(l-a)} 

Although this region has formal similarities with region (III), there is the fundamental 
difference in that the projector e(i?) is used instead of P(d). 
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Some general properties of the regions 

Proposition 3 .1 . The region (I) is parameterically dependent. On the other hand, 
the regions (II) - (IV) are equivariant with respect to any regular reparameterization. 

In the proof of the second statement it is used that rj(d) an e(0) are invariant. Hence 
by setting a reparameterization d = t?(/3) in the regions (III) - (IV) we obtain the same 
expressions, as by making first the reparameterization in model (1.1) and computing the 
confidence regions for /3. 

Proposition 3 .2 . All four regions coincide in the case that model (1.1) is linear 
(class (A)). The regions (II), (III) and (IV) coincide if the model (1.1) is intrinsically 
linear (class (C)). 

P r o o f . The first statement is verified by a direct calculation. The second follows 
from Proposition 3.1, and from the first part of Proposition 3.2. • 

Proposition 3.3. If model (1.1) is in the class (B), then the region (I) has the form 

{tf € 0 : [tf - d]TM[d -d}< a2
Xm(l - a ) } 

and the regions (III) and (IV) are both of the form 

j r f e 9 : [I - i?]rM[t? - tf] + 0( | | 0 - 0 |!4) < a2
X

2
m(l -a)}. 

Essentially, the proof is obtained using the Taylor expansion for 7/(1?) at the point 0, 
and Proposition 2.4. 

Statistical properties of the regions 
Region (I) is exact and optimal in linear models, and theoretically it is justified also 

in general models by the asymptotic normality of 1? 

i ? ~ N(d, a2M-l(dj) 

and by a certain consistency of M($) when considered as an estimator of M(d) (cf. Jo-
hansen [9]). However, in finite sample applications, region (I) gives sometimes misleading 
confidence regions (cf. Bates and Watts [2], p. 65), with an overestimated confidence. 
This is true also in the particular case of intrinsically linear models. On the other hand, 
Ratkowsky [15] has shown empirically that reducing of the parameter effect curvature 
may approach considerably the probability density of d to the normal density, hence may 
make the region (I) valuable as confidence regions. This follows also from our Proposi
tion 3.3 which implies that when the information matrix is constant (i.e. the parameter 
effect curvature is zero, Proposition 2.3J, then the region (I) may be close to region (IV) 
which is known to be an exact confidence interval in any model (1.1). 
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The region (II) is the most popular in the applications of nonlinear regression. It is 
exact, and it can be considered optimal in intrinsically linear models (class (C)). It is used 
as an approximate confidence region also in some other models, however, correcting terms 
must be used. As is well known, Beale [3] proposed to multiply the term a2xm(l — a) 
in region (II) by a term depending on components of the intrinsic curvature of model 
(1.1). (Cf. Bates and Watts [1] for an explicit and numerically accessible formula for 
this term.) 

If d is the true value of the parameter, and P is any (fixed) orthogonal projector onto 
an m-dimensional subspace of HN,then the random variable 

\\P[y-v(0)}\\w 

is distributed xm- This is a well known result from linear models, which has nothing to 
do with nonlinear regression. Now, if we take P — P(d) (which is fixed when i9 is a fixed 
hypothetical parameter value), we obtain that the variable 

\\P(*)[y-v(i>)]\\w 

is distributed xm
 a s well- This implies that region (IV) is an exact confidence region in 

any model (1.1), however, it is not recommended (cf. [2]). 
The region (III) has been proposed recently by the author for models of class (D) 

(cf. [13]). If the number /? can be neglected when compared with a, then, as proved in 
Pazman [12], the random variable 

<r-2\\P(Hi0)-n(#)}\\w 

is distributed as xm- The assumptions on the number r given in (3.2) ensure that we 
can neglect the probability that 

\\vw-m\\w>r. 

The condition || rj(d).— T?(I9) \\w< r must enter into the definition of the confidence region 
(III) because || P(tf)[77(i?) - 77(1?)] \\w can be small also for those t ) £ 0 giving a large 
distance || »?(i?) - 7j(t?) ||iv, which is false. 

There can be computational difficulties with the establishment of the number r, name
ly with the computation or evaluation of Kmt($) for different values of tf (cf. Bates and 
Watts [1] for an algorithm). However, any serious analysis of regression models requires 
the computation of some curvature measures. In simple cases it is just sufficient to find 
a bound for Kmt(d) to verify the inequalities (3.2). 

We note that if the region (III) is composed from several disjoint sets (despite of the 
condition || r/(t?) - 77(1?) ||w< r) it means that model (1.1) is overlapping, i.e. there are 
several nonnegligible relative minima in (3.1). 
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Confidence regions in the case of unknown a 
If we have the possibility to estimate a2 from an independent experiment in a standard 

way, so to obtain an estimator s2 such that ks2/a2 is distributed xjt» then in all regions 
(I) - J(IV) we write the term 

ms2Fm,k(l - a) 

instead of the term <r2xm(l - a). Here Fm,k(l - a) is the 1 - a quantile of the F 
distribution with m and k degrees of freedom. In the inequalities (3.2) we can use s2 

instead of a2. 
If we have no such estimator of a2, we have to estimate a2 somehow from y. Different 

methods are possible for different classes of models and different regions. 
The estimator 

.2 h-m\\2
w 

Sl~ N-m 

with k = N — m is used in intrinsically linear models (class (C)). In these models 

(JV — m)a~2s2 is distributed independently from »?, and according to xjv-m- This is no 

more true in class (B) or (D). In those classes we can use the term 

*2 - - n ~ . (3-3) 
and k — N — m. This expression is not an estimator of a2 since it depends on d. However, 
the use of random variables depending of i? is allowed in confidence regions. In models 
from class (D), satisfying the inequalities (3.2), s\ is independent of d, and the random 
variable (At — m)a~2s\ is distributed X/v-m(cf- Pazman [13] for the use in region (III)). 

In the linear inference region (region (IV)) one uses that for the true d the random 
variable || [/ - P(v")][y - n(i?)] | |^ is independent from || P(0)[y - -(•&)] \\w and that 
a'2 || [/ - P(ti)][y - -(&)] \\2

W is distributed xjv-m- S o i n the region (IV) we set 

,, w-p(my-T,(m\2w 

and k = N — m. The so obtained confidence region, although exact in every model (1.1), 
is not recommended (cf. [2] p. 223 for an explicit opinion of this sort). One important 
reason is that s§ so computed is large exactly when # is on one of the very disjoint part 
of the confidence region. This makes these distant (and intuitively false) parts of region 
(IV) erroneously very important. 

So making the recapitulation, regions (I), (II), (IV) are not adequate for models from 
class (D). The region 

(N-m)\\P{4)[-(4)-(d)]\fa sF n „ \ h II «(*\ . M l II2 , r 
V • S < ^m,/V-m(l — a) & T)(V) — T](V) \\w< T 

m\\[I-P(v][y-r,(m\2
W 

is a confidence region for v~ when model (1.1) is in the class (D). 
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Comparison with a modificatication of the likelihood region 

Some au thors app rox ima te t he likelihood region (II) by sets having countours which 

are numerical ly s impler to c o m p u t e (cf. Hamil ton et al. [7], Clarke [4], To-Van-Ban 

[16]). In our context it is necessary to stop at Hamil ton [7] where a project ion of t he 

likelihood region on to the tangent space at t? and a quadra t i c Taylor formula are used. 

T h e region (III) considered in this paper is related to t he tangent space at $ as well, 

however, i ts origin has noth ing to do with t he likelihood region, and t h e region (III) is 

not equal to the region of Hamil ton et al. [7], 

(Received September 18, 1991.) 
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