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ALGORITHMS FOR BAYESIAN ESTIMATION 
OF SPLINE MODEL STRUCTURE 

J A N S P O U S T A 

A special case of model structure identification is studied. Convolution models with the kernel de
scribed by first order spline-functions are tested. Fast algorithm for finding the most probable structure 
of the model is described. 

1. INTRODUCTION 

There are two contradictory demands in practice of discrete adaptive control of contin

uous dynamic systems. 

- For good knowledge of system behavior, we must choose a short sampling period. 

- If an adaptive regression mode! based regulator with a given order is used, the 

numerical sensibility grows up with the sampling frequency. An increasing of the 

order which can improve the robustness is often not possible because of limited 

computing t ime, storage size etc. 

One way to solve this antagonism is to use a continuous da ta filtration. In this pa

per we use the filtration based on the spline-function approximation of the convolution 

kernel in the convolution model of a linear dynamic system. The motivation is to ob

tain a flexible tool for modelling kernels, particularly those with limited supports . An 

approximating spline-function can be expressed as a linear combination of given base 

spline-functions. The problem is to find the set of base functions, their number and 

some other demands (order, defect) are given. The crucial demand is tha t they must 

give "good" approximation of the (slowly changing) kernel of the system for purposes of 

control. 

We deal with the filtration derived from a spline-approximated convolution kernel 

in the convolution model of linear dynamic system. The kernel (denoted by K(t)) is 

parametrized through a fixed number of basic spline functions. This parametrization 

can be more flexible in comparison with usually used exponentials in the case of limited 

support of the kernel. The supports of the spline functions are namely limited, too. 
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If the basic spline functions are denoted by fh'i(t) and some real parameters #,- for 

i = 1,2, . . . , m , we write K(t) w YslLi "• fxi(t). The parameters #, are then est imated 

(and changed) on-line and through this estimation the adaptivity of the regulator is 

realized. 

The problem solved in the paper is to define the functions fni(t) before the adaptive 

regulation star ts . As a basis for this choice we have some knowledge of the system 

behavior, tha t is the da t a SN) for some N. 

Our solution is based on a Bayes decision algorithm, described in [2]. In our case, we 

must choose one hypothesis about the basis spline-functions from a set of all a priori 

defined hypotheses. In more detail we must: 

- define the set of all hypothesis {W}£f_, about the bases. Any hypothesis W 

corresponds to some basis Bv for each p. From the da ta (or from a sufficient statistic 

V) and from the corresponding bases (or from the filter matrices Sp defined by the 

bases Bp) we shall then need to compute the probabilities of all so given hypotheses 

in the Bayes manner. Therefore we must 

- adapt the algorithm for computing probabilities of the above hypotheses i.e. prob

abilities of the hypotheses about filter matrices on given da ta (see subsection 2.5.) 

and 

- find the optimal sequence of the hypotheses for the computat ion so tha t the results 

from one step could be used in the next one (see subsection 3.1.) and find how to 

do it (see 3.2.). 

2. PRELIMINARIES 

2 . 1 . T h e S y s t e m E q u a t i o n 

In this paper, we deal with the one-dimensional linear autonomous dynamic system 

described by the equation 

(«) = J K(т) y(t -т)dт + 0 + e(t), y(t)=l K(T)y(t-T)dT + 90 + e(t), (1) 

where y(t) — a signal value at t ime t 

K(.) — a convolution kernel 

#o — an absolute term 

e(t) — a Gaussian, zero mean term standing for 

uncertainty of the system behavior. 

We have measured the system output y(t) in N discrete equidistant t ime instants. 

We introduce a d a t a set «.W = {y(t\),y(t2),. ..y(tf/)} which is, we suppose, all our 

information about the system. Further we shall denote y, = y(tt) for simplicity. 

Our problem is to est imate the structure of the kernel K. 
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2 . 2 . S p l i n e - a p p r o x i m a t i o n 

There are different ways for description of convolution kernels of linear dynamic systems. 

One of them is the description through spline functions, piecewise polynomial functions. 

We choose the splines with degree 1 and defect 1 as the most simple. These splines are 

broken lines in fact. 

The points of breaking are called nodes of the spline-function and the set of all nodes 

A = {v0,V\,... ,vm+\) for some m is called splitting of the definition interval of the 

spline-function. Spline-functions with the same splitting create a linear functional space. 

The set of m "hat" functions 

(x — Um-,-_l)/(t>m-t — Vm_,_i) f o r i € (-TO_,-i, vm_,) 

{ («-._,-+, - x)/(«m_.+, - «m_0 for* €(-- ,_. , «„_.+,) (2) 
0 otherwise 

form a functional basis in the subspace of all first-order spline-functions, which satisfy 

the condition to be zero in v0 and vm+\. The space (and so the basis) is then determined 

through the number and the positions of nodes. In this paper we require to have the 

number m fixed. 

A kernel K(t) can be approximated as a superposition of the basis functions 

/ . ( - ) « £ ft/*.(-), (3) 
;=i 

where the weights { 0 , } ^ , parametrize now the corresponding kernel. 

The s t ructure estimation means estimation of suitable nodes in A and thus estimation 

of the corresponding basis. 

The task will be solved through the Bayesian algorithm, described in [4]. We must de

sign a set of hypothesis about the structure of K, i.e., a set of functional bases composed 

of the above-mentioned "hat" functions. Now, our idea is to shape properly compara

tively long kernel with a compratively small number of parameters and so to be able to 

consider larger period of da ta sampling. 

For approximation of a signal we take the first-order-splines, too. If the sampling 

period is equal to one, we have also a basis for signal description: 

x — n + 1 forx _ (n — 1, n) 

(t)={ n + l - x f o r _ £ ( n , n + 1) (4) 

0 otherwise. 

The coefficients for the description are then simply the sampled values of the system 

output »/,: 

N 

v(t) * J2 v*'/«(')• (5) 
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2 . 3 . Suff ic ient S t a t i s t i c s 

For the computation of hypothesis probabilities we shall use the ideas proposed for a 

multivariate regression model in [2]. Here, a sufficient matrix statistic V(t) € R"'*"1 i s 

described which is evaluated by the regression of "shifted" data: 

v(.) = ^ . - i ) + / ( . ) # ) , Vt0_,=el, (6) 

where e > 0 is some small number, t = t0, t0 + 1 , . . . ,t0 + k and the vector /( t) has the 

s t ructure 

/(i) = (y(o> y«- i ) , •••,y(t-i), i ) T 

for / = m — 2 which corresponds to the ienght of the kernel. 

The positive definite matrix V(t) (we shall write only V) can be decomposed into the 

form 

V = LDLT (7) 

where L is a unique lower triangular matrix with units on the diagonal and D is a 

positive diagonal matr ix . The computing of the probabilities (see [2]) is based on in the 

decomposition obtained values Da. 

2 .4 . D e f i n i t i o n of t h e H y p o t h e s e s 

Let us have an equidistant splitting A* of the interval (0, T), where T means the maxi

mum a priori known Ienght of the kernel A'(.) — i.e. we suppose suppA' C (0, T). The 

split t ing A* consists of n nodes: 

A* = K,«;,...,«;}, 

where 0 < v* < v* < ... < u* < T and moreover 

v* — 0 = v* ~ v* = . . . = T — v*n 

(equidistant spli t t ing). Let m < n. Let us choose some subset of the splitting: 8P C A*, 

8p = {t\*t}™=1. Then the set Ap = 6P U {0, T} defines a spline basis on interval (0, T) 

according to (2), if we adjoin t)J = 0, t>£ = v*t for it = 1 to m, and vm+l = T For all 

possible choices of the subsets Sp we have 

M 
• ( : ) 

bases B" = {Lf (<)};'!, for P = 1 to M. 

A hypothesis TV corresponds to the basis Bp: the hypothesis insists tha t the basis Bp 

is the most probable from all the M bases, if we know the da ta dN (and we have no 

other informations). 
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2 .5 . T h e C o m p u t a t i o n of H y p o t h e s i s Probab i l i ty 

A spline linear dynamic model can be converted to regression one by filtering the data. 

Let the filter matrix S is given by the convolution at t ime n (see [4]) 

Sij = [fKi*fYj}(n), i=l,...,m; j = l,...,n. (8) 

It follows from the substitution of both approximated the kernel (3) and the signal (5) 

into the system equation (1). The convolution is then reduced into a matr ix multiplying, 

where the middle term is the matrix S. 

The "spline" model keeps the properties of multivariate regression models for filtered 

data: /spu,.e(() = S/regression(i)- (The index "spline" means the spline model and "regres-

sion"means the original data.) It holds 

Kpline(l) = S degressions) S ( 9 ) 

and with the filtered statistics, we can compute the probability in the way of the following 

decomposition algorithm. 

The positive definite matrix Vspune{i) (we shall write only V) can be decomposed in 

form 

V = LDL1 (10) 

where L is a unique lower triangular matrix with units on the diagonal and D is a positive 

diagonal matr ix . 

About the kernel, we have a set of hypothesis {W1, H2,..., H',..., HM}. For all the 

hypothesis we can compute the statistics {V\,V2,...,Vi,..., VM} based on the observed 

data: 

V, = S,KegressionS , \ ( 1 1 ) 

where the matrix Si is given by (8), and decomposed them: 

V, = L,D,Lj, £>, = diag(< .1 ,<i2 , . . . ,<in + 2). (12) 

Then according to [2], it can be written: 

p(H \k + 1 measured data) oc —. (13) 

Comput ing all M probabilities is in real cases extremly demanding on the computer 

t ime. The following chapter says how to carry out this computations as efficient as 

possible. 

3. MAIN RESULTS 

3 . 1 . I d e a of an A l g o r i t h m for t h e Sequent ia l C o m p u t a t i o n of all t h e H y 

p o t h e s e s Probab i l i t i e s 

Comput ing all the M probabilities in the way of (8), (11), (12), (13) step-by-step takes 

too much t ime. But , it is possible to choose a sequence of computed hypothesis so tha t a 
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large part of computations-results in the previous step executed probability-computation 
(matrix rows, columns etc.) is utilized for the next steps. 

The idea is simple: we choose the sequence of the computed probabilities (and also 
the corresponding bases) so that the next basis differs from the previous one only in 
the position of a single node. This implies that in the next basis {/j£ '} there are 
maximally 3 basis-functions /Jj£!}, /j£j" and fx*+1 different from the previous base 
{/iV )• ft implies that in the filter matrix Sp+\ at maximum three rows differ from rows 
the matrix Sp. Moreover, the elements of the three rows can be recalculated even more 
efficiently. 

We shall see that the re-computation of the LDLT decomposition after the change of 
one node is more efficient if we change a node with small index. 

Example. We show the work of the algorithm on a very simple example with n = 6 
and m = 3. 

No. 
Positiou 

lst 2nd Згd 4th 5th бth 

1 
2 
3 
4 
5 

X X X 

X . X X 

X . . X X 

X . . X X 

X . X . X 

6 
7 
8 
9 

10 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

•
 

•
 

•
 

X
 

•
 

X
 

X
 

' 

• 
X

 
X

 
-

X
 

•
 

•
 

•
 

X
 

X
 

11 
12 
13 
14 
15 

X X . . X 

X X X 

X X X 

X . X X 

X X . X 

16 
17 
18 
19 
20 

X . X . X 

X X . . X 

X X . X . 

X . X X . 

X X X . 

21 
22 
23 

X . X X . 

X X . X . 

X X X 

("x" means "node", "." means "the position is free". The standard defined nodes in 
the 0th and 7th positions are not displayed.) In this example M = 20, but we need 
23 steps. Bases No. 17, 21 and 22 had been already computed in previous steps. The 
algorithm does not compute the probability in this cases; it changes only the matrices 
in the storage. D 
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On the assumption tha t the first node and the last one are fixed on positions 0 and 

n + 1 respectively and that p is the vector of the nodes positions, the algorithm works 

in following manner: 

- Put all nodes as right as possible. 

- Change step-by-step the position of the second node to all its possible positions. 

- W h i l e the nodes are not as left as possible do: 

-Ifp(3) = 2, 
t h e n find the lowest left shiftable node, shift it once to left and shift all the 

left neighbours of this node step-by-step as right as possible; 

e lse shift the 3rd node once to the left, but before tha t "clear" the place for 

it, if it is not empty. 

e n d of if 

- Change step-by-step the position of the second node to all its posible positions. 

e n d of w h i l e 

e n d of t h e a l g o r i t h m 

3 . 2 . T h e D a t a M a t r i c e s and T h e i r Re-ca lcu la t i on 

There are the auxiliary algorithms described in this section. 

3.2.1. Storing of the Filter Matrix 

The way of writing the filter matrix into the storage is described here. 

Detailed analysis shows that the filter matrix S has not more than L = 2(?n + n — 2) 

elements different from zero. (For the proof see [6].) Between two non-zero elements in 

every column (row) are only non-zero elements. So, the whole matrix can be stored in 

four da ta vectors: 

- real-vector va lues (L) containing rowvise values of the non :zero elements of the 

matrix; 

- integer-vector first(m) containing in its tth element the column index of the first 

non-zero element in the tth row of the matrix; 

- integer-vector las t (m) containing in its tth element the column index of the last 

non-zero element in the tth row of the matrix; 

- integer-vector index(m) containing in its tth element the index of the first non-zero 

element in the tth matr ix row in the vector values . 
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This method does t h e computation with the matrix more efficient and economizes t h e 

storage. 

E x a m p l e . Let us have a filter matrix 1 2 x 5 . 

/ «n 
0 

0 

0 

0 

«12 

0 

0 

0 

0 

«13 «14 

023 «24 

0 0 

0 0 

в25 «26 

«35 «36 

0 0 

«27 0 

«ЗT «38 

«47 «48 
0 0 

0 

0 

«39 

«49 

0 0 

0 0 

0 0 

«4,10 «4,11 

T h e d a t a vectors are then: 

values(30) = ( a n , . . , , a l 4 , a 2 3 , . . . 

« 5 9 , - - , « 5 , 1 2 , 0 , 0 , 0 , . . . , 0 ) ; 

first(5) = (1, 3, 5, 7, 9); 

last(5) = (4, 7, 9, 12, 12); 

index(5) = (1, 5, 10, 15,21). 

i«27,«35, •••,°39,«47, 

0 

0 

0 

«4,12 

«59 «5,10 "5,11 «5,12 ) 

3.2.2. Re-calculation of the Elements of Filter Matrix 

If the position of one node is changed, maximally three rows of the filter matr ix are 

changed: t h e node is an element of supports of three basic spline-functions, in maximum, 

and one basic function corresponds with oue row. Moreover, according to the definition 

it is not necessary to compute all elements of the changed row. This subsection shows 

how to re-calculate most of elements without computing of convolutions. 

An element of a filter matrix S is defined by the convolution s = [/# * / y ] ( r ) . T h e 

function fa is the lst-order spline, linear everywhere except the nodes nieft < n c e n t e r < 

"right, continuous everywhere and fa\n\ett) = /,v(n r j g nt) = 0 and /redeemer) = 1. 

- Suppose, tha t in the next step the node nCenter is changed: n c e l l t e r = n c e n t e r + £, 

£ € ( n i e f t -n c e n t e r , n r i g h t - n c e n t e r ) . The nodes n.er t, n c e n t e r , n r i g h t define a new function 

fa and s — [JK * / y ] ( T ) - Then the following implications are valid: 

s u p p / y C ( -oo ,min{n c e l l t e r , ncenter}) =*• -s = 

s u p p / y C (max{ncëlltЄr, n c e n t er} + <*>) 

nCenter ~ "left 

_ s 
"center ~ "left 

"right ~ "center 

"right ~ "center 

(14) 

(15) 

Suppose that in the next step the node n r i ght is changed: n r i g ht = n r i g h t + £, ( € 

("center ~ "right, +oo ) . The nodes nleft, nCe„ter, nright define a new function JK and 

« = [JK * / v ] ( r ) . Then the following implications are valid: 

s u p p / y C ( - o o , nc e n t e r) U (max{"right, «right}, +oo) =$> s = s, (16) 
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s u p p / y C (nCe„ter, min{nrigi,t, nrigi,t}) => (17) 

nright — nCenter , £ / " , , , , , . 
= - . s = _ £ <,+ - / fy(t)dt. 

nright — ncenter nrigllt — ncenter J-co 

Suppose, tha t in the next step the node nieft is changed: nieft = n,eft + £, <f € 

(—00, nce„ter — nieft). The nodes nieft, ncenter, nrigi,t define a new function / K and 

5 = [fK * / y ] ( r ) . Then the following implications are valid: 

s u p p / y C ( - 0 0 , min{nieft, njef,}) U (nce l l t e r, +00) => § = 5, (18) 

s u p p / y C (max{nieft, ni e f ,} , ncen ,e r) => 

e r+oo 

(19) 

nCenter — n,eft nCe„ter — nicft /
+00 

fү(t)dt. 

T h u s we may simplify the re-computation of the matr ix. 

E x a m p l e . Three rows of a filter matrix are given. We change the common node of 

t h e three corresponding basic functions. Letters in the rows mean the implications: A 

means (14), B means (15), C means (16), D means (17), E means (18). K means " t h e 

convolution is computed per definition". 

I -. 

C C K K D D K K 

B B B B K K A 

K K K E 

' • ) 

The equation (19) is in this example not used. 

3.2.3. The Product 5 V ST and Its L D /^-decomposi t ion. 

There are only three rows and three columns changed in the actualized S VST matr ix 

product after one s tep. If the changed node is the (m-h 1 —?)-th the changed rows/columns 

are the i — 1, i, i + 1. 

E x a m p l e , for m = 12, i = 7 ("x" means "modified", "." means "not modified", 

omit ted means "zero". ): 
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S VST = 
Х Х Х Х Х Х Х Х Х Х Х Х 

Х Х Х Х Х Х Х Х Х Х Х Х 

Х Х Х Х Х Х Х Х Х Х Х Х 

LD = 
X X X X X X 

X X X X X X X 

Х Х Х Х Х Х Х Х 

X X X X 

X X X X X 

X X X X X X 

х х х х х х х / 

Even, it is not necessary to change all elements of matrices of the L D LT-decomposition 
are all chauged. In the matter of fact, the non-changed elements are all elements in the 
first i — 2 columns of the matrix L with exception of the rows i — 1, i, i + 1 and the i — 2 
"first" (in index) elements of the matrix D. 

This implies that our algorithm for the next-step-search is correct: it changes mostly 
the low-index nodes. 

4. CONCLUSIONS 

This work links up the results from papers [2] (automatic estimation of the model order) 
and [4] (spline approximation in adaptive controllers). The solved problem is to estimate 
the most probable structure of spline description of the convolution kernel. 
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The above algorithm computes m-times faster compared with the computation "per 

definition" (m means the given number of base functions). The s t ructure of the main al

gorithm is open to parallelisation and/or adaptable to consider an additional information 

(omitt ing of hypothesis known as non-probable etc.). 

A remaining problems are to extend the results to a more general linear system and 

to restrict the big number of prior hypotheses by using some another additional prior 

knowledge. 

(Received July 18, 1991.) 
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