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ON VARIOUS CRITERIA OF OPTIMALITY 
IN PROBABILISTIC DECISION-MAKING 

J I Ř I N A V E J N A R O V Á 

There are two possibilities how to define the optimality of a decision function - with respect to a 
given set of distributions - in "local" and "global" senses, applying the minimax rule. But an optimal 
decision function in any of these senses need not be the optimal one for any distribution in this set. 
It is shown, using linear programming methods, how to find out whether the global minimax decision 
function is optimal or not. A suitable representation of the decision function is found - in the latter 
case - on the base of a barycenter concept. 

1. I N T R O D U C T I O N 

Let us consider the following problem. We have to determine a value of a variable Y 
knowing the value of a variable X. A decision function is a mapping 

d : X - ^ Y 

(where X and Y are the ranges of X and Y respectively), which assigns a value y to 
every x. Let us suppose P to be a joint distribution of XY. Then we can define an error 
of the decision d(x) as 

eP(d(x);x)= £ P(x,y), 

i,eY:j,M*) 

and an expected error of the decision function d as 

e>(d) = 5%P(d(-.);-.) = £ P(x,y)(l - S(d(x),y)) 
xeX (x,j)eXxY 

(where S(u, v) = 1 if u = v and S(u,v) = 0 otherwise). 

Our aim is to provide such decisions, which minimize the decision error. 

If we knew the distribution P, we could choose a decision function dp satisfying 

inequalities 
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ep(dp(x);x)<eP(d(x);x) 

for every a: € X and every decision function d, or equivalently 

ep(dp) < eP(d) 

for every decision function d. Any function dp satisfying these inequalities is called an 

optimal decision function with respect to the distribution P. 

But in many cases we do not know the distribution P exactly. Let us consider the 

situation in which we can assume that it belongs to some class of distributions V. If we 

make a decision d(x) — y, the value of the corresponding error can be as large as 

max ep(y;x). 

If we wish this maximum error to be the least possible one, we have to choose such y 

tha t minimizes this expression. Then, we get a minimax rule 

min max ep(y;x). 
v Per 

Any optimal decision function (it need not be unique) with respect to this rule (assuming 

V is fixed) will be denoted dm: 

d.(x) £ a rgmin max ep(y;x) 

and called a local minimax decision function. 

But there is another possibility of defining the minimax decision function. We can 

select a function d which minimizes the maximal possible expected error of the decision 

function, i.e. 

max ep(d). 
per v ' 

Any such function is called a global minimax decision function and denoted d': 

d* € are min max e„(d). 6 d Per pv ' 

It is obvious from the definitions of d, and d* that 

max ep(<ľ) < max eP(d.) 
Per v ' ~ Per ' 

and, at the samé time, 
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max ep(d.(x);x) < max ep(d*(x); x) for all i g X . 

These properties seem to be contradictory, but they are not as 

max ep(d) = max V J ep(d(x); x) < ^ J max ep(d(x); x). 

Example 1 in the Appendix shows that these inequalitites are strict, generally. It can 

be seen tha t d, in this example is the optimal decision function with respect to P2 and 

d3 is the optimal one with .respect to P. . So d* = d2 is optimal with respect to none of 

the distributions in V• It is not difficult to find other examples where d, again is not 

optimal with respect to any distribution in V. 

The question we want to answer is the following: What are the conditions under which 

d* (resp. d„) is an optimal decision function for some P £ VI If such P exists, it can be 

used as a representation of the minimax decision function. This distribution can be, in 

fact, more appropriate for practical use than the decision function (see e.g. [2]). Let us 

denote V* C V the set of all distributions from V with respect to which the minimax 

decision function d* is optimal. So, the first question is whether V* is empty or not. 

This problem will be solved for d* (although similar conclusions can be done for d, as 

well) and for V being a convex linear polyedr. 

2. EXPLICIT SOLUTION OF THE PROBLEM 

It can be seen from the form of the expected error of a decision tunction tha t if a distri

bution Pa is a linear combination of distributions P\ and P2 then the error epa(d(x);x) 

of every decision d(x) and the expected error ep(d) of every decision function d is a linear 

combination of t he decision errors ep, (d(x); x) and epJ(d(x); x) and the expected errors 

of the decision functions Spt(d) and ep2(d) respectively. In general, taking into account 

the convex polyedr with k vertices in (k — l)-dimensional space, we have 

it 

ePa(d(x);x) = 1£aie.p,(d(z);x) 

and 

k 

ePi,(d) = ] T <*,•£* (<*), (1) 
; = i 

for ,. 
k -r* 

Pa.= ^OiP, a = ( « , , . . . , «fc), a . > 0 , 2^ai=\. 
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What does the optimality of a decision function mean? The decision function dP is 

optimal with respect to the distribution P if 

ep(dP) < eP(d) 

for all decision functions d. Therefore the question whether the minimax decision func

tion d* (as mentioned above we could consider d« and eP(d(x);x) instead of d* and 

eP(d) as well) is optimal for some Pa is equivalent to the problem whether there exists 

Q satisfying 

e » r ) < ePa(d) 

for every decision function d . Rewriting this inequality using (1), we get 

k k 

X>e>,K) < E^P,^)-
i=l i=l 

Since it is a convex linear combination, the a $ have to satisfy in addition the condition 

k 

y ^ Q i = l, Q, > 0, i = \,...,k. 

In the case of k = 2 this problem can be solved explicitly. Let us set Qi = fi, then 

a-i = \ — fj and we have the inequality 

0ePl(d*) + ([- l3)eP2(d*) < BePs(d) + (1 - 8)tp2(d), 

or equivalently 

0[-f,(d*) - ePl(d)} < (1 - f])[eP2(d) - ep2(d*)}, 

and therefore 

fi[ePi(d*) - ePl(d) + eP2(d) - eP2(d*)} < eP,(d) - e>2(d*). (2) 

Theorem 1 is an immediate consequence of this inequality. 

T h e o r e m 1 . Let V = {Pp = /3P, + (1 - P)P2, 0 £ [0,1]} and d* be the global 

minimax decision function. Let us denote 

Bid) - eP2(d)-eP2(d*) 
P{ ' e>, (d*) - eP, (d) + eP2(d) - eP2(d*)' 

If there exists /3* satisfying inequalities 

B* < 8(d) 

for all d satisfying ep\(d) — ep2(d) < eP](d*) — ePi(d*), and 

P > P(d) 

for all d satisfying the opposite inequality, then PQ- S V C V. 
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Remark. It should be stressed that the respective fi has to meet as many inequal
ities as there are different decision functions with the exception of those for which the 
denominator is equal to zero. In this case 

ePl(d') - ePl(d) = eP2(d') - eP2(d) 

and therefore 

eP, (d) > ePl (d') and ep2 (d) > ep2 (d') 

for d" being the global minimax decision function. Therefore the inequality (2) holds for 
all/3. 

3. SOLUTION VIA THE LINEAR PROGRAMMING METHODS 

In general, however, such a simple optimality criterion (as set forth in Theorem 1) cannot 
be found. Let us denote V the set of all decision functions from X to Y excluding d* 
(let us notice that V is finite since both X and Y are finite) and J = card(V). We can 
index decision functions in V by numbers 1,..., J and we get the following problem: To 
find out whether the system of J inequalities 

k 

£ a . [ c f t ( 4 ) - e f l ( O ] > 0 , J = 1,...,J 

and the equality 

! > « - . 

has at least one solution such that a, > 0, t = 1 , . . . , k. 
This problem can be reformulated in terms of linear programming: To minimize an 

arbitrary constant function under the conditions stated above. It can be easily solved 
using the simplex algorithm (see e.g. [1]). Using slack variables ak+i,... ,ak+j, we get 
equality constraints 

k 

Y, " - M 4 ) - ePi(d')] ~ «*+; =0, j = 1,..., J, 
i=i 

and 

E«. = i, 
;=i 

<*.->0, i=\,...,k + J. 
In order to determine some basic solution we use an artificial variable ak+j+\. The 

problem has then the form 
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min wak+J+i (3) 

(where w is some large constant) under conditions 

£ Oi[ePi(d') - tPi(dj)} + ak+i = 0, j = 1 , . . . , J, 

k 
Yloi + ak+J+i = 1, 
i'=i 

Q , > 0 , i=l,...,k+J + 1. 

From this form we can easily get the basic solution 

(ak+u...,ak+J,ak+J+1) = (0 , . . . ,0,1) . 

This solution, however, is not feasible. Applying the simplex method, we get eventually 

the optimal solution of this problem. 

It is well known (see e.g. []]) tha t if this solution involves the artificial variable, a 

feasible solution of the primal problem does not exist. In the other case, the optimal 

solution of the problem (3) is a feasible solution of the primal problem and we can find 

all feasible solutions « ( / ) , / = 1,..., L (for some L < r - j~m~fi i ) i of the primal problem 

(see [1] again). 

This general result obtained by linear programming methods can be interpreted for 

our purpose in this way: If the solution involves the artificial variable ak+J+1, the set 

V is empty. Otherwise the set V is a convex polyedr with vertices Pa(i), I — 1,...,L, 

where a%, ...,ak are certain coordinates of a(l). 

But what shall we do if V" is the empty set? One possible answer will be offered in 

the next section. 

4. APPROXIMATION OF DISTRIBUTIONS IN V 

In order to solve this problem we have at first to define an /-divergence, which is used to 

measure the dissimilarity of two distributions. The / -divergence of probabilities P and 

Q is defined in the discrete case for every function f(u) convex on (0, oo) and str ict ly 

convex at the point u = 1 as 

«*'.«-E«*(ž$) 
r6X 

(setting 

""(8.)-
for such j - tha t Q(x) = 0 and P(x) > 0). 

*) lІm M 
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Let us return to the problem stated above. For every decision function d we can 

find a set of distributions Vd this decision function is optimal for. At this moment, we 

consider all joint probability distributions defined for the pair of variables XY. Therefore 

it can be easily seen that Vd ^ 0 for any d (it is enough to consider the distribution 

Pd(%,y) — cardX '^ f '( ; rj = y a n c ' l^(:c'2/) ~ 0 otherwise). Consider d* and the set 

V^ of distributions which have the same optimal decision function d*. Any of these 

distributions can be used to represent the decision function d*. But some of them are 

"too dis tant" from the original set V of the distributions having the minimax decision 

function d*. For the purpose of the representation of d* it seems to be reasonable to 

use such distribution P* G Vd', which is the "closest" possible to the distributions from 

V, i.e. an approximation of distributions from the set V in the set Vd>- It can be done 

using the barycenter concept introduced by Perez in [3]. 

Let us consider sets V and Q (not necessarilly different). Distribution Q* will be 

called a Dj-barycenter of a set V with respect, to a set Q, if 

Ö * € a r g m i u max DjíP,Q). 
Ь Q Є Є PЄV 1K '^' 

Distribution Q* then has the following characteristics: 

1. T h e minimax decision function is optimal with respect to it, i.e. 

eQ-(d*) < eQ.(d) 

for all possible decision functions d. 

2. T h e divergence Dj(P,Q*) is minimal for the least favourable P € V, i.e. 

nmxDj(P,Q*) < nmxDj(P,Q) 
Pev

 1K ^ ~ p&> n '^' 

for every Q € Q. 

T h e practical construction of the £>/-barycenter is another problem whose solution 

is qui te difficult and exceeds the framework of this paper. But the whole procedure 

(decision whether there exists, or not, any P S V with respect to which d* is opt imal , 

the construction - in the latter case - of the set Vd' and finding the barycenter of V in 

Vd') is demonstra ted in Example 2 in the Appendix. 

Barycenter of the set V with respect to the set Q need not be unique, which is shown 

in Example 3 of the Appendix. 
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APPENDIX 

Example 1. Let the class V consist of the two following distributions 

r,(0,0) = i, P2(0,0) = i, 

r,(0,l) = 

r,(i,o) = 

r2(0,l) = | , 

r2(i,o) = Ą, 

r,(l,l) = l, p2(l,l) = l. 

Knowing the value of the variable X, we want to decide about the value of the variable 
Y. Using the local mini max rule we get 

(7.(0) = 0 and d.(l) = 0. 

Defining the other functions 

rf,(0) = 0, t f , ( l ) « l , 
4(0) = 1, 4(1) = 0, 

4(0) = 1, 4(1) = 1, 

we can compute corresponding errors 

ep,(di) = h - * ( * ) = & 

ep,(d*) = b eP2(d2)=f4, 

ePl(d3) = ± eP,(d3)=l 

*pA<l.) = h ep 2(4) = | . 

It is obvious that not d. but 4 is the global minimax decision function. 

In Section 4 we have defined the /-divergence. There is a large class of functions 
satisfying the requirements stated there, i.e. we can define a lot of divergences (see e.g. 
[4]). In our examples we will use only one of them - the total variation (f(u) = \u — 1|) 

V-(r,Q) = £|P(*)-Q(z)|. 
*eX 

Example 2. Let us consider following convex set V of distributions 

ro(0,0) = i + ^«, 

/'„(0,1) = £ - ! « , 

Pa(h0) = h 

!3«(M) = I - | r « , a €[0,1]. 
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It is not difficult to find out that d2 = 1 is the optimal decision function for Paia € 
[0, $},d3(0) = M 3 ( l ) = 0 is the optimal one for Pa,a e [?, f|] and d, = 0 is the optimal 
otte for Pa,a € [f|, 1]. But the minimax decision function is 

«T(0)=0, <f(l) = l 

and so it is not optimal for any a € [0,1]. 
Let us consider a. set 

V* = {P: P(0,0) = p., P(0,1) = Pi, P(1,0) = ^ P(l , 1) = 1 - p, - p2 - p3, 

Pi > Pi, Pi + P . + p) < !}• 

The decision function d* is the optimal one with respect to the distributions from this 
set. 

The total variation of the distributions P„ € V and P € ^* is 

V(P», P) = I ^ + 12" ~ *»•I + Ij-J ~ g " - Pal + I- - Pal + I - - - ^ « + Pi + Pa + Pal-

It is obvious that to determine 

max V(Pa,P)= max V(Pa,P) 
raev «€[o,t] v ' 

only values in boundary points of the interval [0,1] are important (for V(Pa,P) is a 
convex function of the variable a). So, we will be interested only in maxima of the 
values V(PQ,P) and V(Pt,P). It is too laborious and not very interesting to determine 
the subsets of [0, I]3, where one or the other value is maximal. Therefore, it is not done 
here, but only the result is stated. We have to determine values of parameters P\,Pz and 
p3, which the max{V(P0, P), V(Pt, P)} is minimal for. These values are 

11 1 

,„ =;* = -, Л = -and the maximum value is 

max{l/(P0,P), V(PUP)} = A-. 

So the harycenter of the set V with respect to the set V is the distribution P*: 

I"(0,0) = %, 

P*(0,D = &, 

m,o) = ii, 
P*(l,») = 53 

and the following equality holds 

max V(Pa,P*) = -. 
rer ' 9 
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Example 3. Let us consider a convex set V of distributions 

pa(o,o) = ! + §_, 

^(0,1) = è -

P.0,0) = | + 

^ ( M ) = -

<*> 
а, a € [ 0 , l ] . 

It is clear, that d2 = 1 is optimal for Pa,a € [0, fy (by the way d, = d2) and rfi _ 0 is 
optimal for Pa,a € [^, 1], while 

<f(0)=0, rf*(l) = l. 

A set of distributions with respect to which d* is optimal has the form (4) again. Using 
the same procedure as in Example 2, we will find out, that the barycenter of the set V 
with respect to V" is an arbitrary distribution from the set 

P* = { P : P ( 0 , 0 ) = P l , P ( 0 , l ) = p 2 , P ( l , 0 ) = 2 | - P l , P ( l , l ) = l | - p 2 , 

P\ > P 2 + £ } . 

(Received September 25, 1991.) 
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