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COMPUTATIONAL EXPERIENCE WITH IMPROVED 
CONJUGATE GRADIENT METHODS FOR 
UNCONSTRAINED MINIMIZATION 

LADISLAV LUKŠAN 

The paper contains a description of new restart procedures for the conjugate gradient methods and 
a numerical investigation of the influence of line search and scaling on their efficiency. Computational 
results obtained by means of 15 sufficiently difficult problems are given. 

I. I N T R O D U C T I O N 

We are concerned with the finding of a local minimum x* € IR" of the function 

F : X —> IR on an open set X C R" , i .e. a point x* € IR" tha t satisfies the inequality 

F{x*)<F(x) Vx€B{x*, e) for some e > 0 , where B(x*,e) = {x €lRn : || x-x* | |<e} C X 
is an open ball contained in X C IR". The most frequently used methods for this purpose 
are the variable metric (VM) methods whose iteration step has the form 

x+=x + as (1.1) 

where x and x+ are old and new vectors of variables respectively, a is a positive stepsize 
chosen so that 

F+- F < e , « s T
S (1.2a) 

and 

» V > £-2-sTff (1.2b) 

with 0 < I\ < 1/2 and I\ < e2 < 1, where F and F+ are old and new values of the 
objective function respectively, g and g+ are old and new gradients of the objective 
function respectively, and s is a direction vector satisfying the equation Bs + g = 0, 
where B is a symmetric positive definite approximation of the Hessian matrix that is 
constructed iteratively (see [17]). 

If the number of variables is large, then matrix B cannot be stored, nor factored in 
a reasonable time, so other methods have to be used. There exist several classes of 
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such methods : conjugate gradient methods [10], difference versions of t runca ted Newton 

methods [7], variable metric methods with limited storage [19], sparse variants of variable 

metr ic methods [26], and part i t ioned variable metric methods for separable problems 

[12]. T h e last two classes require the special s t ruc ture of opt imizat ion problems. From 

the other classes t he simplest are the conjugate gradient methods which need only 3-5 

n-dimeusional vectors (it depends on their implementat ion) . Recently new a t ten t ion 

has been given to these methods because they are globally convergent with mild and 

reasonable assumpt ions . 

In this paper , we are concerned with an efficient implementat ion of the conjugate 

gradient (CG) methods . These methods are i terative and their i terat ion s tep has the 

form (1.1) where a is a positive stepsize chosen so tha t 

F+-F< e,asJg (1.3a) 

and 

I*VI < e^gl (1.3b) 

with 0 < £i < £2 < 1/2 and « is a direction vector which is constructed i teratively by 

means of the formula 

s+ = -g++fis (1.4) 

(with s = — g in the first i terat ion) . The paramete r 0 is computed so t h a t t h e CG 

method with perfect line search finds the minimum of a quadra t ic function after a finite 

number of steps. There are three possibilities: the Hestenes and Stiefel [13] method 

PHS = ~ - (1.5a) 
y's 

the Polak and Ribiére [20] method 

ßpн = ~ ( L 5 b ) 
<Г<7 

and t h e Fletcher and Reeves [10] method 

fe = ^ (1.50 
9 9 

(we use notat ion d = x+ — x and y = g+ — g). Although t h e Hestenes and Stiefel (HS) 

m e t h o d (1.5a) is most general and the Fletcher and Reeves ( F R ) m e t h o d (1.5c) is t h e 

simplest with good global convergence properties ( theoret ical) , the most numerically 

efficient was proved to be the Polak and Ribiere ( P R ) method (1.5b). 

T h e CG m e t h o d s are more sensitive to their implementat ion than the VM m e t h o d s : 

1. T h e initial e s t i m a t e or, = 1 of a+ in the line search algori thm does not have 

theoretical justification for CG methods . Therefore the CG m e t h o d s are more 

sensitive to t h e initial e s t imate oj than the VM methods . 
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2. CG methods need more perfect line search than VM methods . We usually use 

e2 = 0.1 in (1.3) instead of e 2 = 0.9 in (1.2). 

3. CG methods strongly depend on restarts while VM methods need not be res tar ted. 

In this paper we propose several efficient implementations of the CG methods based 

on recent convergence results. Computat ional efficiency of these implementat ions is 

demons t ra ted on 15 sufficiently complicated test problems. 

2. R E C E N T C O N V E R G E N C E RESULTS 

It is well known tha t any CG method with perfect line search (with (1.3b) where e2 = 0) 

finds t he min imum of a quadra t ic function after at most n s teps. This property implies 

tha t any convergent CG method with asymptotically perfect line search and with periodic 

res tar t is n-s tep quadratically convergent (see [2]). This result is very useful because 

asymptot ical ly perfect line search can be easily realized by both quadra t ic and cubic 

interpolat ions. 

The global convergence of CG methods can be assured by suitable restar t rules. The 

simplest such rule is the so-called angle test which consists in set t ing /? = 0 in (1.4) 

whenever 

-'--i^nfjr* ,21) 

where So is a prescribed constant (usually e0 = 1 0 - 3 ) . A more complicated angle test is 

proposed in [25]. If the line search is asymptotically perfect, the global convergence of 

CG methods can be assured by periodic restarts (see [16]). 

The first global convergence result which does not depend on restar ts has been ob

tained by Zoutendijk [28] and Powell [22], who proved tha t the F R method with perfect 

line search is globally convergent in the sense tha t 

lim inf || g |i = 0 (2:2) 

where lim inf is taken over the iterative process (1.1). Later Al-Bali [1] generalized this 

result to include the FR method without perfect line search. He has shown tha t (2.2) 

holds for the F R method whenever S2 < 1/2 in (1.3). Recently great effort was devoted 

to generalizing this result to other CG methods . Touati-Ahmed and Storey [27] have 

shown t h a t the i terative process (1.1) and (1.4) with a line search satisfying (1.3) is 

globally convergent if 

0 < 0 < n2(iFR (2.3) 

and 

A | | < / + | | 2 < (l/fj2)
k (2.4) 

hold in every i terat ion, where 0 < A, 1 <i)2< l / (2S2) are suitable constants and k is the 

i teration number counted from the last restart . Moreover, (2.3) and 1 < rj2 < 1/(2S2) 
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imply the inequality 
/ ^ _ 1 - | | 2 

1 - e-2^2 

independently of (2.4) (see the proof of Theorem 2.2 given in [27]). Therefore the CG 
method is a descent one if (2.3) and 1 < rj2 < l/(2e2) hold. The most general result has 
been obtained by Gilbert and Nocedal [11], who have shown that the both PR and HS 
methods are globally convergent if they generate positive values of 0 and if (2.5) holds. 
This result is very important because it allows us to develop a great number of useful 
restart procedures for CG methods. 

3. NEW RESTART PROCEDURES 

We limit our attention to the PR method, but the same considerations can be used for 
the HS method. Usually the PR method is implemented with periodic restarts and with 
angle test which serves as a safeguard. Let us denote this possibility as REST = 1 :• 

0 = 0 if (2.1) holds, 

0 = 0 iffc = n + l , 

/? = &PR otherwise, 

where k is the iteration number counted from the last restart (i.e. from the last iteration 
with 0 = 0). 

In [23], Powell points out that the PR method works better if it is restarted also 
whenever 

PPR< 0. (3.1) 

Let us denote this strategy as REST = 2 : 

0 = 0 if (2.1) holds, 

0 = 0 if k = n + 1 

0 = 0 if (3.1) holds, 

0 = 0PR otherwise. 

Convergence results noted in the previous section together with our computational 
experiments show that the PR method is more efficient if it is restarted not only when 
(3.1) holds, but also whenever 

fipR > Th0FH (3.2) 

(see (2.3)) where 1 < fj2 < l/(2e2) is a suitable constant (we recommend fj2 = 1.34, 
all recommended values given in this paper were obtained experimentally by means of 
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extensive compula t ions ) . Let us denote this strategy as REST = 3 : 

0 = 0 if (2.1) holds, 

0 = 0 if k = v + 1, 

0 = 0 if either (3.1) or (3.2) holds, and 

0 = 0pft otherwise. 

We have performed several tests with these three rules. The best results were obtained 

with the choice REST = 3, which is the first restart procedure we recommend. Note 

tha t the test (2.1 ) has not been active in any problem chosen for detailed study of restart 

causes. 

T h e PR method with periodic restarts can be disadvantageous for some problems 

tha t require more restar ts at the beginning of the iterative process. Therefore we tried 

to adap t the criterion (2.4) for subst i tut ing the periodic restarts . The original form (2.4) 

is also disadvantageous because it does not, depend on the number of variables and for 

v large' it can cause too frequent restarts. Therefore we are proposing a new rule which 

implies restart whenever 

A || ff+ | |2> B* (3.3a) 

where 
^ = 1 0 ~ 4 r (3.3b) 

and where A and r are suitable constants (we recommend A = 10~8 and r = 4.1). This 

leads to the new restart procedure we denote as REST = 4 : 

0 = 0 if either k = V2n or (2.1) holds, 

0 = 0 if either (3.1) or (3.2) holds, 

0 = 0 if (3.3) holds, and 

0 = /i[,H otherwise. 

Test k = I2it serves only as a safeguard and it has not been active in any problem chosen 

for detailed s tudy of restart causes. 

Another restart condition can be derived from gradient, orthogonality. If any ( '(I 

method with perfect line search is applied to a quadrat ic function, then necessarily 

grg+ = 0. In the general case, we can require (p </+ = 0, which gives 0Pfi = 0,.-^. 

Therefore we are proposing the rule which implies restart, whenever either (3.2) or 

0f'H<il\0FH (3.4) 

holds, where Tjl is a suitable constant (we recommend tj^ = 0.74). Let us denote the 

resulting procedure as REST = 5 : 

:i = 0 if either k = 12;; or (2.1) holds. 

0 = 0 if either (3.1) or (3.2) holds. 

,i = ,ipn ot herwise. 
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Note tha t for ?/, — 0.8 and Tj2 = 1.2 we obtain the Powell restart procedure proposed in 

[21]. T h e Powell restart procedure will be denoted as REST = 6. 

T h e gradient orthogonali ty is not the only condition which can be used for monitor

ing the P R me thod . Another such condition is mutual conjugacy. If any ( ' ( ! method 

with perfect line search is applied to a quadrat ic function, then necessarily yis+ = 0. 

Therefore we are proposing the new rule which implies restart whenever 

| y V | > 5 / o l l 2 / l l l h + l l (3.5) 

where Tj0 is a sui table constant (we recommend Tj0 = 0.015). This leads to the new restart 

procedure we denote as REST = 7 : 

P = 0 if either k = 12M or (2.1) holds, 

(3 = 0 if either (3.1) or (3.2) holds, 

(3 = 0 if (3.5) holds, 

/3 = fipft otherwise 

T h e proposed restart procedures were proved very efficient as will be shown in Sec

tion 5. Note tha t we have studied many other restart procedures, such as ones given in 

[11,14,27], but the results obtained have been worse then those given in Section 5. 

4. LINE SEARCH AND SCALING 

Since the OG methods require more perfect line search than other methods , they are very 

sensitive to its realization. We essentially use the s tandard line search implementat ion, 

which can be represented by the following algorithm: 

A l g o r i t h m 4 . 1 . Input data: A > 0, 0 < (3, < rl2 < 1, 0 < £i < I2 < 1/2. 

Step 1. Determine the initial es t imate o , of o + . Set at := 0. Set i : = 1. 

Step 2. Set o , := min(o , , A / || .s | | ) . Set /), := a, and a, := «,-. If the conditions (1.3) are 

satisfied with F + and </+ replaced by F(x + «,«) and </(.c + o,.s) respectively, then 

set o + : = o, and t e rmina te the computa t ion . If both (1.3a) and .sT(/(.r + o,.s) < 0 

hold then go t o Step 3, else go to Step 4. 

Step 3. If o , = A / || .« || then set o + := o , and t e rmina te the computa t ion , else 

de te rmine the new es t imate o, by cubic extrapolat ion. Set o , := m a x ( o , , cr,/l32), 

set o, : = min (a . , ff./jf,), and go to Step 2. 

Step 4- Determine the new es t imate o, by cubic interpolation. Set o , := max(o , , p, + 

+/31(<T, - />,)), set o,- := min(o, , /5, +/?2(<x, - />,)). 
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Step 5. If the conditions (1.3) are satisfied, with F+ and <;+ replaced by F(a: + rv,s) and 

r/(.r + rv,.s) respectively, then set o + := rv, and terminate the computa t ion . If both 

(1.3a) and .sxy{.r + o,.s) < 0 hold then set />, := n , , else set a, := o , . Go to Step 4. 

Comments. 

1) ( ' ( i methods are sensitive to the order of interpolation. Therefore we recommend the 

cubic interpolation given in [5] over the quadrat ic one. The results obtained with 

the quadra t ic interpolation was much worse tha t those given in Section 5. Good 

results were obtained also with the conic interpolation proposed in [3]. 

2) All results shown in Section 5 were obtained with the input da t a Z\ = 0.0001, e2 = 

0 .1 , / i , = 0.01, i 2 = 0.9. We have performed also tests with other values of ~-z, but 

~2 = 0.1 was proved very rea.sona.lile. Bound A , which serves to safeguard against 

overflows, depends on the problem to be solved, and corresponding values are given 

in Section 5. 

(ireal a t tent ion was devoted to the choice of the initial es t imate r>, in Step 1 of the 

line search a lgor i thm. There exist two s tandard choices: 

a , = 1 (4.1) 

for the Newton method and 
F,„„, - F 

o , = 2 - ~ ^ (4.2) 

for the CG methods (see [10]), where Fmln is the lower bound for the minimal value 

F{x"). These simple choices are inefficient, but they are often combined. In [9], the 

initial e s t imate 

o , = min f 1,2 -^j J (4.3) 

is recommended, while in [fi] and [15], the authors propose the initial es t imates 

o , = min ( 1,4 " ' ^ ~ F J (4.4) 

and 

n , = min ( 2, 2 '""' I 
V *Ti7 / 

respectively. T h e choice (4.4) is frequently used for the VM methods . Our experience 

show thai the choice (4.3) is slightly bet ter then (4.4) and (1.5) and we recommend it 

over all choices (1.1) (1.5). 

Other initial es t imates can be derived from the assumption tha t F+ — F = F — F~, 

where F~ is the value of the objective function in the previous i terat ion. Therefore, we 

can subs t i tu te F - F~ for F„m, - F in (4.2) and we obtain 

o, = 2 - " Z (4.0) 
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as in [8]. Again (4.3) can be combined with (4.1). The resulting initial es t imate has the 

form 

cvi = min ( l , 2 ' ~ ' J , (4.7) 

which generalizes (4.3). The choice (4.7) is shown to be very effective in Section 5. This 

choice was proved more efficient than other more complicated choices we have tested, 

and we recommend it in connection with CG methods. 

For the simplification of subsequent considerations, we denote by INIT = 1 the choice 

(4.1), by I NIT = 2 the choice (4.2) if Fmm is given or (4.1) otherwise, by I NIT = 3 

the choice (4.3) if F„,m is given or (4.1) otherwise, by IN IT = 4 the choice (4.6), and 

by I NIT = 5 the choice (4.7). 

Another useful tool for improving (,'G methods is scaling, which was originally devel

oped for VM methods (see [24]). The scaling consists in replacing (1.4) by 

. s + = 7 + ( V + /J.s), (4.8) 

where 7+ is the scaling factor. We can use the same scaling factor as for the BFGS 

method (see [17]). Then 

7 + = ^ (4-9) 

(again y - </+ - g and </ = ;r+ - x). Note that when we use (4.8) then (1.5b) and (1.5c) 

have to lie replaced by 

*<;< = - "-T- (4.10b) 
7 9 9 

and 
1 ( f / + ) V 

tiFH = - - L - L - - (4.10c) 
7 9 9 

where 7 is the scaling factor used in the previous i teration. 

For the simplification of subsequent considerations, we denote by SCAL = 1 the 

choice 

1+= ' 

and by SCAL = 2 the choice 

7 + = 7 V i ' f i < 7 , 

7 + = 7 , . if ft > T . 

where 0 < 7, < 1 < 7 2 (we recommend 7i = 0.005 and % = 200). The bounds 7, and 

7 2 serve for improvement of stability. 

)•+ = £f^, otherwise, 
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5. COMPUTATIONAL EXPERIMENTS 

In this section, we present results of a comparative study of CG methods obtained by 
means of 15 sufficiently difficult test problems given in [17], which are modifications of 
test problems given in [4]: 

1. The chained Rosenbrock function. 
2. The chained Wood function. 
3. The chained Powell singular function. 
4. The chained C'ragg and Levy function. 
5. A generalization of the Broyden tridiagonal function. 
6. A generalization of the Broyden banded function. 
7. Toint's 7-diagonal generalization of the Broyden tridiagonal function. 
8. A generalization of the Nazareth trigonometric function. 
9. A generalization of the Toint trigonometric function. 

10. A penalty function. 
11. An augmented Lagrangian function. 
12. A generalization of the first Brown function. 
13. A generalization of the second Brown function. 
14. A discrete boundary value problem. 
15. A discrete variational problem. 

All test problems were solved for 20 (7). = 20) and 100 (n = 100) variables and selected 
problems were solved for 200 (11 = 200) and 500 (n = 500) variables. For most problems 
we used the bound A = 1000 (see Algorithm 4.1), for problems 4, 10, 12, 13 we chose 
A = 10. and for problems 9, 11 we chose A = 1. The computation was always stopped 
whenever the gradient norm became less then 10 -6. The results of our experiments are 
summarized in several tables. Table 1, Table 2, Table 4 and Table 5 contain detailed 
tests for 20 and 100 variables. Hows of these tables correspond to 15 test, problems and 
columns correspond to selected methods. The results are presented in the form IT-IF, 
where IT is the number of iterations and IF is both the number of function evaluations 
and the number of gradient evaluations (in our line search algorithm the value and the 
gradient, of the objective function are evaluated at the same time). The asterisk in the 
second row of several tables means that a nonoptimal point with the gradient norm less 
then 10_li was obtained. The row denoted by E contains the total number of iterations 
and the total number of function evaluations. Table 3 contains only total numbers of 
iterations and total numbers of function evaluations. Table 6 contains detailed tests 
for 200 variables. Test problems 2, 8, 9, 14, and 15 were not used because problem 2 
has many almost, stationary points, problems 8 and 9 are too dense, problem 14 is too 
ill-conditioned, and problem 15 is unbounded. 

"fable I shows the efficiency of individual restart procedures for "standard" choices 
IN IT = 5 and SCAL = 2. We can see that the periodic restart procedure (REST = 3) 
can be less efficient for problem 14, which requires more frequent restarts. 
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ТаЫе X 

(PR) 
n = 20 

INIT = Ь, SCAl = 2 (PR) 
n = 20 REST = 3 REST = 4 REST = Ь REST = 6 REST = 7 

1 221-433 244-476 235 489 244-504 247-47!) 
2 147-291 137-271 226-447 124-247 138-273 

3 55-117 55-117 58 121 52-116 51-122 

4 139-282 136-276 141-289 116-234 132-267 
5 19-39 19-39 20-44 19-40 19-39 

6 25-59 25-59 25-59 26-63 28-68 
7 20 42 20-42 20-43 19-43 19 43 
8 24-68 24-68 24-68 30-82 24 08 

9 36-83 37-88 32-76 32-76 34-83 

10 73-111 73-111 73-Ш 71-108 74- 116 

11 170-346 118-255 178-382 175-387 135 285 

12 10-28 10-28 10-28 14-48 10-31 

13 3-10 3-10 3-10 3-10 3-10 
14 236-462 129-253 101-197 180-348 102-198 
15 35-09 51-100 41 84 40-81 49-97 

£ 1213-2140 1081 2193 1187-2448 1145-2387 1065-2179 

Table 2 contains results obtained for different initial est imates in the line search algo

r i thm (for the choices REST = 3 and SCAL = 2). This table demons t ra tes the great 

effectiveness of the initial es t imate (4.7) and it shows that (4.3) is be t te r than both (4.1) 

and (4.2). Similar results were obtained also for other restart procedures. 

(PR) 
n = 20 

REST = 1, SCЛL = 2 (PR) 
n = 20 INIT = 1 INIT = 2 INIT = 3 INIT = 4 INIT = 5 

1 209-438 204-635 211-422 193-383 221-433 
2 445-951* 305-1078 329-678 168-339 147-291 
3 59-140 64-139 49-104 60-132 55-117 
4 149-319 136-917 134-267 166-322 139-282 
5 20-48 18-26 18-36 17-43 19-39 
6 25-66 26-52 25-51 25-67 25-59 

7 22-48 20-162 20-38 22-49 20-42 
8 34-127 28-73 36-81 24-70 24-68 
9 37-90 37-90 37-90 36-83 36-83 

10 75-112 73-114 • 72-108 74-102 73-111 
11 162-354 168-532 167-364 119 264 170 346 
12 9-31 11-38 12-31 10-33 10-28 
13 3-7 3-6 3-6 3 16 3-10 
14 234-458 326-741 221-435 251-479 236-462 
15 45-92 45-92 45-92 39-75 35-69 
V 1528-3281 1464-4695 1379-2803 1207-2457 1213-2440 

More extensive tests are presented in Table 3. Here the influence of initial es t imates 

and scaling opt ions is shown for all 7 restart procedures described in Section I. We can 
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see t h a t t h e new restart procedures are very efficient in connection with t h e " s t a n d a r d " 

choices I NIT = 5 and SCAL = 2, while t h e simplest restart procedures based on 

periodic res tar t s (first two rows in the table) perform worse in this case. 

(PR) 1N1T = 3 IN!T = 3 1NIT = Ь IN1T = Ь 
» = 20 SCAL= 1 SCAL = 2 SCAL = 1 SCAL = 2 

REST = 1 1477-3818 1445-2928 1615-3234 1753-3480 
REST = 2 1456-3796 1505-3040' 1320-2650 1445-2890 
REST = 3 1531-3889 1379-2803 1299-2623 1213-2440 
REST = 4 1276-3320 1309-2652 1362-2728 1081-2193 
REST = 5 1641-4164 1668-3409 1380-2764 1187-2448 
REST = 6 1475-3858 1343-2818 1155-2370 1145-2387 
REST = 7 1817-4541 1763-3553 1082-2231 1065-2179 

Although almost all tests were performed for the P R m e t h o d , Table 4 contains some 

exper iments with other GCJ methods . Here the surprisingly good performance of t h e F R 

method with the choice REST = 7 is shown and the worse efficiency of t h e HS m e t h o d 

in comparison with t h e PR method is demonst ra ted . 

(FR) ÌN1T = 5, SCAL = 2 (HS) IN1T = 5, SCAL = 2 

n = 20 REST = 3 REST = 7 REST = 3 REST = 7 
1 259-479 260-528 226-439 262-490 
2 164-327 114-232 160-318 205-401 
3 79-159 56-123 49-110 49-110 
4 136-273 123-254 110-220 176 346 
5 19-39 21-46 18-37 18-37 
6 26-55 30-70 26-61 26-61 
7 20-40 18-41 20-42 20-42 
8 44-101 21-57 24-68 24-68 
9 56-114 33-76 37-92 38-88 

10 98-147 76-119 74-115 74-115 
11 137-270 173-377 162-333 318-619 
12 27-61 12-37 11-31 11-31 
13 5-11 3-10 3-10 3-10 
14 346-670 105-209 261-509 208-405 
15 40-81 29-60 41-79 54-106 
V 1456-2827 1074-2239 1222-2464 1486-2929 

Table 5 shows the efficiency of individual restart, procedures for 100 variables. Here a 

good robustness of the choice REST = 7 is demons t ra ted . 
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(PR) 
ii = 100 

/Лf/Г = 5, SCAL = 2 (PR) 
ii = 100 REST = 3 REST = 4 REST = 5 REST = 6 REST = 7 

1 649-1152 737-1298 854-1761 855-1756 829-1591 
2 886-1718* 730-1409 986-1951* 1525-3063* 705-1377* 
3 48-103 48-103 47-103 47-103 70-148 
4 158-319 249-496 159-325 225-468 157-312 
5 20-41 20-41 20-41 21-45 22-44 

6 28-68 28-68 28-68 30-72 28-68 
7 24-50 24-50 25-53 25-53 24-53 
8 37-95 620-752 19-54 19-54 39-92 

9 125-252 134-256 123-250 115-235 118-237 

10 91-149 91-149 92-152 93-173 91-154 
11 164-327 226-440 162-336 147-305 112-234 
12 14-40 14 34 14-40 15-40 15-50 

13 3-10 3-10 3-10 3-10 3-10 
14 8819-17489 6707-13340 3197-6371 3051-6075 3197-6371 
15 9-18 9-18 9-18 9-18 9-18 
£ 11075-21831 9640-18464 5738 11533 6180 12470 5419-10759 

T h e influence of initial es t imates and scaling options for 200 variables is shown in 

Table 6. Here t he expressive efficiency of the initial es t imate (4.7) and the scaling (4.9) 

is demons t r a t ed . 

Table 6 

(PR) 
n = 200 

REST = 7 (PR) 
n = 200 INIT = 3 /лг/r = з /Л'/Г = 5 INЧT = 5 

SCAL= 1 SCA L = 2 SCAL = 1 SCAL=2 

1 1492-7073 1185-2374 1566-2993 1532-2902 

3 53-107 51-107 52-114 52-118 
4 157 375 132-277 161-314 137-276 
5 24-45 27-53 21-50 20-46 

6 29-54 30-59 29-06 30-67 
7 24-55 24-49 24-55 25-54 

10 47-123 48 99 47-134 46-89 
11 96-222 879-1749 134-269 108 217 
12 17-44 17-45 18-53 18-51 
13 3 7 .4 7 3 10 3 III 

£ 1942-81(15 2396 1819 2055 -1058 1971 3833 

Finally our restar ted ('(1 method (the PR met hod with choices HE ST = i. IX IT = •">• 

and SCAL = 2) was compared with other optimization methods . Table 7 contains the 

comparison of this ( ' ( ! method with the 5-step limited memory (LM) Bl'XiS method 

proposed in [19], with the difference version of the t runcated Newton (TN) method 

given in [7], and with the parti t ioned variable metric (VM) method described in [12] 

implemented with an imperfect i terative solution of the linear system Hs + </ = 0. 

Problem 10 and Problem 12 were modified for the compula t ions yielding Table 7 since 

a par t i t ioned s t ruc tu re was required. 
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7» = 500 CG LM TN VM 
1 2537-4052 2564-2819 823-10423 1497-1825 
3 44-97 240-257 23-124 44-45 
4 253-536 108-115 21-221 38-40 
5 23-51 23-25 14-64 18-20 
6 28-65 34-36 15-145 147-148 
7 25-61 33-38 12-56 21-25 

10 138-291 172-217 26-281 18-21 
11 246-451 124-132 109-387 85-89 
12 191-441 127-135 104-302 117-120 
13 83-88 83-84 81-164 84-85 
E 3568-6133 3508-3858 1228-12167 2069-2418 

Time 7:32.86 7:11.17 12:49.67 11:49.69 

Results in the last table show that the simple conjugate gradient method can be 
competitive with other more complicated methods. 

(Received February 28, 1991.) 
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